
Preproceedings of the 26nd Symposium on

Implementation and Application of Functional

Languages (IFL 2014)

Sam Tobin-Hochstadt (editor)

Contents

Reactive Web Applications with Embedded Dynamic Dataflow in F#
Anton Tayanovskyy, Simon Fowler, Loic Denuziere and Adam
Granicz

Blank Canvas and the remote-monad design pattern: A Foreign Function
Interface to the JavaScript Canvas API

Andrew Gill, Aleksander Eskilson, Ryan Scott and James
Stanton

Project H: Programming R in Haskell
Mathieu Boespflug, Facundo Dominguez, Alexander Vershilov and
Allen Brown

Type-Directed Elaboration of Quasiquotations: A High-Level Syntax for
Low-Level Reflection

David Raymond Christiansen

FEDELE: A Mechanism for Exending the Syntax and Semantics for the
Hybrid Functional-Object-Oriented Scripting Language FOBS

James Gil de Lamadrid

Source-to-Source Compilation in Racket: You Want it in Which Language?
Tero Hasu and Matthew Flatt

Combining Shared State with Speculative Parallelism in a Functional Language
Matthew Le and Matthew Fluet

Towards Execution of the Synchronous Functional Data-Flow Language Sig
Baltasar Trancn Y Widemann and Markus Lepper

Declaration-level Change and Dependency Analysis of Hackage Packages
Philipp Schuster and Ralf Lmmel

An Efficient Type- and Control-Flow Analysis for System F
Connor Adsit and Matthew Fluet

Worker/wrapper for a Better Life
Brad Torrence, Mike Stees and Andrew Gill

Selected Issues in Persistent Asynchronous Adaptive Specialization for Generic
Array Programming

Clemens Grelck and Heinrich Wiesinger

v

vi CONTENTS

Abstract machines for higher-order term sharing
Connor Smith

Church Encoding of Data Types Considered Harmful for Implementations
Pieter Koopman, Rinus Plasmeijer and Jan Martin Jansen

Bidirectional parsing: a functional/logic perspective
Peter Kourzanov

Type Families and Elaboration
Alejandro Serrano, Patrick Bahr and Jurriaan Hage

Really Natural Linear Indexed Type Checking
Arthur Azevedo de Amorim, Marco Gaboardi, Emilio Jess Gallego
Arias and Justin Hsu

Editlets: type based client side editors for iTasks
Laszlo Domoszlai, Bas Lijnse and Rinus Plasmeijer

Task Oriented Programming with Purely Compositional Interactive Vector
Graphics

Peter Achten, Jurrin Stutterheim, Laszlo Domoszlai and Rinus
Plasmeijer

An Iterative Compiler for Implicit Parallelism
Jose Manuel Calderon Trilla and Colin Runciman

Branch and Bound in a Data Parallel Setting
Sven-Bodo Scholz

Stream Processing for Embedded Domain Specific Languages
Markus Aronsson, Emil Axelsson and Mary Sheeran

Flipping Fold, Reformulating Reduction
Gershom Bazerman

Parametric lenses: change notification for bidirectional lenses
Laszlo Domoszlai, Bas Lijnse and Rinus Plasmeijer

Making a Century in HERMIT
Neil Sculthorpe, Andrew Farmer, and Andrew Gill

Dynamic resource adaptation for coordinating runtime systems
Stuart Gordon and Sven-Bodo Scholz

Editing Functional Programs Without Breaking Them
Edward Amsden, Ryan Newton and Jeremy Siek

Towards a native higher-order RPC
Olle Fredriksson, Dan Ghica and Bertram Wheen

Towards Tool Support for History Annotations in Similarity Management
Thomas Schmorleiz and Ralf Lmmel

Moxy: a language with monoidally extensible syntax
Michael Arntzenius

CONTENTS vii

Towards efficient implementations of effect handlers
Steven Keuchel and Tom Schrijvers

Preface

The 26th Symposium on Implementation and Application of Functional Lan-
guages (IFL 2014) takes place at Northeastern University in Boston, USA from
October 1 to 3, 2014. It represents the return of IFL to the USA for the third time.
IFL 2014 is hosted by the Programming Research Lab at Northeastern University.
At the time of writing, the symposium had 47 registered participants from Den-
mark, the Netherlands, Norway, Germany, France, Hungary, the United Kingdom
and the United States of America.

The goal of the IFL symposia is to bring together researchers actively engaged
in the implemen- tation and application of functional and function-based program-
ming languages. It is a venue for researchers to present and discuss new ideas and
concepts, works in progress, and publication-ripe results.

Following the IFL tradition, there is a post-symposium review process to pro-
duce formal proceedings which will be published by the ACM in the International
Conference Proceedings Series. All participants in IFL 2014 were invited to submit
either a draft paper or an extended abstract describing work to be presented at
the symposium. The submissions were screened by the program committee chair to
make sure they are within the scope of IFL. Submissions appearing in the draft pro-
ceedings are not peer-reviewed publications. After the symposium, authors have
the opportunity to incorporate the feedback from discussions at the symposium
into their paper and may submit a revised full article for the formal review pro-
cess. These revised submissions will be reviewed by the program committee using
prevailing academic standards.

The IFL 2014 program consists of 31 presentations and one invited talk. The
contributions in this volume are ordered according to the intended schedule of
presentation. In order to make IFL 2014 as accessible as possible, we have not
insisted on any particular style or length for the submissions. Such rules only apply
to the version submitted for post-symposium reviewing.

As is usual for IFL, the program last three days with a social event and an
invited talk. The invited talk will be given by Niko Matsakis of Mozilla Research,
who will discuss the role of ownership in the type system of Rust, a progamming
language designed for low-level systems programming in a memory-safe fashion.
The social event takes place on October 2 and consists of two parts: a trip through
the city and harbor of Boston on a duck boat, and, in the evening, a banquet dinner
in downtown Copley Square.

We are grateful to many people for their help in preparating for IFL 2014.
Most significantly, Asumu Takikawa of Northeastern University served as local ar-
rangements chair, and without his efforts this event would not have been possible.

ix

x PREFACE

Additionally, the staff of the College of Computer and Information Science, par-
ticularly Nicole Bekerian and Doreen Hodgkin, helped make IFL a success. Our
student volunteers also play an important role in the smooth running of the event.

Special thanks are due to Rinus Plasmeijer, last year’s chair and the head of
the IFL steering committee, for advice and experience that improved IFL 2014.

Reactive Web Applications with Dynamic Dataflow in F#

Anton Tayanovskyy Simon Fowler Loïc Denuzière Adam Granicz
IntelliFactory, http://www.intellifactory.com

{anton.tayanovskyy, simon.fowler, loic.denuziere, granicz.adam}@intellifactory.com

Abstract
Modern web applications depend heavily on data which may change
over the course of the application’s execution: this may be in
response to input from a user, information received from a server, or
DOM events, for example.

Much recent work has been carried out with the hope of im-
proving upon the current callback-driven model: in particular, ap-
proaches such as functional reactive programming and data binding
have proven to be promising models for the creation of reactive
web-based user interfaces.

In this paper, we present a framework, UI.Next, for the creation
of reactive web applications in the functional-first language F#,
using the WebSharper web framework. We provide an elegant
abstraction to integrate a dataflow layer built on the notion of a
dynamic dataflow graph—a dataflow graph which may vary with
time—with a DOM frontend, allowing updates to be automatically
propagated when data changes. Additionally, we provide an interface
for the specification of declarative animations, and show how the
framework can ease the implementation of existing functional web
abstractions such as Flowlets [3] and Piglets [11].

Categories and Subject Descriptors D.3.2 [Language Classifica-
tions]: Data-flow languages; Applicative (functional) languages

Keywords Dataflow; Web Programming; Functional Program-
ming; Graphical User Interfaces; F#

1. Introduction and Background
Modern web applications depend hugely on data which changes dur-
ing the course of the application’s execution. A common approach to
handling this in JavaScript is through the use of callbacks, meaning
that whenever a piece of data changes, a callback is executed which
performs the appropriate updates.

While this suffices for smaller applications, callbacks become
unwieldy as an application grows: inversion of control reduces the
ability to reason about applications, often resulting in concurrency is-
sues such as race conditions. Applications also become increasingly
difficult to structure, as view modification code becomes intertwined
with application logic, decreasing modularity.

The reactive programming paradigm provides a promising solu-
tion to this problem: instead of relying on state which is mutated

[Copyright notice will appear here once ’preprint’ option is removed.]

by callbacks, reactive approaches work by defining interdependent
variables, and rely on a dataflow graph to propagate changes to
dependent elements. Research into functional reactive programming
[12] (FRP) builds upon this by using concepts from functional pro-
gramming to model time-varying data.

FRP systems are based around the notion of a Signal or Be-
haviour—a value which varies with time—and an Event, which can
be thought of as either a discrete occurrence such as a mouse click,
or a predicate event which occurs exactly when a signal satisfies a
set of predicates.

Functional Reactive Programming provides a very expressive
and clear semantics, with powerful higher-order combinators to
work with continuously-varying values. Although the theory is clear,
implementing such systems poses several challenges such as space
leaks, in particular with regard to higher-order stream operations:
the canonical example of this is that by allowing a signal of signals,
it therefore becomes necessary to record the entire history of the
signal after its creation in order to allow future signals to depend on
previous values. This naturally results in a memory leak, as memory
usage must grow linearly with execution time.

To overcome this issue, different approaches have been taken
by different systems. In particular, Arrowised FRP [16] disallows
signals from being treated as first-class altogether, relying instead
on a set of primitive signals and a set of stream combinators to
manipulate these, while the Elm language [10] prohibits the creation
of higher-order signals directly in the type system. Real-time FRP
[32] and event-driven FRP [33] systems further restrict operations
on streams to those which can be implemented in a manner that will
yield acceptable real-time behaviour.

The use of higher-order signals is, however, natural when creat-
ing graphical applications. By ruling out higher-order signals, the
underlying dataflow graph remains static, meaning that it cannot
change during the course of the application’s execution. In practice,
this means that it is difficult to create applications with multiple
sub-pages, such as in the single-page application (SPA) paradigm.

Our alternative solution consists of a dataflow layer which
interacts with a DOM frontend, using F# and the WebSharper 1

functional web framework. We introduce reactive variables, or Vars,
and Views, read-only projection of Vars within the dataflow graph.
A key difference between this and the traditional FRP paradigm is
that the system we propose only makes use of the latest available
value in the system, but as a result supports monadic combinators to
support dynamic composition of Views.

We designed our framework, UI.Next, taking into account the
following key principles:

Modularity: The dataflow graph should be defined separately to
the DOM representation, meaning that it should be possible to
display the same data in different ways on the view layer in a
similar way to the Model-View-Controller architecture. It should

1 http://www.websharper.com

Submission to Preproceedings of IFL 2014 1 2014/9/24

also be possible to perform different transformations to the same
node in the dataflow graph.

Leak-Freedom: A primary design decision was to prevent space
leaks. Traditional pure monadic FRP systems permit the in-
clusion of space leaks by allowing higher-order event stream
combinators, whereas other dataflow systems often keep strong
links between nodes of the dataflow graph and as a result require
manual unsubscription from data sources. Our solution does not
keep strong links between nodes in the dataflow graph, and as
a result prevents this class of leaks. space leaks are avoided by
working purely with the latest value of reactive variables.

Preservation of DOM Node Identity: DOM nodes consist of
more than is described in the DOM tree. State such as whether
an element is currently in focus, or the current text in an input
box, is preserved upon a DOM update, and only subtrees which
have been explicitly marked as time-varying will change on an
update.

Composability and Ease-of-Integration: Elements in the DOM
representation compose easily due to a monoidal interface, and
we introduce an elegant embedding abstraction to allow time-
varying DOM fragments to be integrated with the remainder of
the DOM tree representation.

1.1 Contributions
• An implementation of a dynamic dataflow system which is

amenable to garbage collection by not retaining strong links
between nodes in the dataflow graph through the use of an
approach inspired by Concurrent ML [28] (Section 2).

• A reactive DOM frontend for the WebSharper web framework,
allowing DOM nodes to depend on dataflow nodes and update
automatically (Section 3).

• A declarative animation API which integrates with the DOM
frontend, and can be driven by the dataflow system (Section 4).

• Implementations of functional abstractions such as Flowlets [3]
and Piglets [11] using UI.Next, showing how the framework
can ease the implementation of such abstractions, and how these
abstractions can be used to build larger applications (Section 5).

• Example applications making use of the framework (Section 6).

Source code for the framework can be found at http://www.
bitbucket.org/IntelliFactory/websharper.ui.next, and
a website containing samples and their associated source code can be
found at http://intellifactory.github.io/websharper.
ui.next.

2. Dataflow Layer
The dataflow layer exists to model data dependencies and conse-
quently to perform change propagation. The layer is specified com-
pletely separately from the reactive DOM layer, and as such may be
treated as a render-agnostic data model.

The dataflow layer consists primarily of two primitives: reactive
variables, Vars, and reactive views, Views.

A Var is a time-varying variable, and can be thought of as very
similar to a standard F# ref cell. The difference, however, is that a
Var may be observed by Views: changes to a Var therefore update
any dependent Views in order to trigger change propagation through
the remainder of the dataflow graph.

2.1 Vars
Vars are parameterised over a particular type. The actions that may
be performed on Vars are straightforward: they may be created,

their value may be set, and they may be updated using the current
value.

One additional operation, SetFinal, marks the value as fi-
nalised, meaning that no more writes to that variable are permitted.
This is included in order to prevent a class of memory leaks: if it
is known that a value does not change after a certain point, then
SetFinal may be used to optimise accesses to the variable.

The operations that may be performed on Vars are detailed in
Listing 1.

Listing 1. Basic operations on Vars
type Var =
static member Create : 'T -> Var<'T>
static member Get : Var<'T> -> 'T
static member Set : Var<'T> -> 'T -> unit
static member SetFinal : Var<'T> -> 'T -> unit
static member Update : Var<'T> -> ('T -> 'T) ->

unit

2.2 Views
A View provides a way of observing a Var as it changes. More
specifically, a View can be thought of as a node in the dataflow
graph which is dependent on a data source (Var), or one or more
other dataflow nodes (View).

The power of Views comes as a result of the implementation of
applicative and monadic combinators, allowing multiple views to
be combined: these operations are shown in Listing 2.

Listing 2. Operations on Views
type View =
static member Const : 'T -> View<'T>
static member FromVar : Var<'T> -> View<'T>
static member Sink : ('T -> unit) -> View<'T> ->

unit
static member Map : ('A -> 'B) -> View<'A> -> View

<'B>
static member MapAsync : ('A -> Async<'B>) -> View

<'A> -> View<'B>
static member Map2 : ('A -> 'B -> 'C) -> View<'A>

-> View<'B> -> View<'C>
static member Apply : View<'A -> 'B> -> View<'A>

-> View<'B>
static member Join : View<View<'T>> -> View<'T>
static member Bind : ('A -> View<'B>) -> View<'A>

-> View<'B>

A View can be created from a Var using the FromVar function.
Additionally, it is possible to create a View of a constant value using
the Const function.

The Sink function acts as an imperative observer of the View
– that is, the possibly side-effecting callback function of type
('T -> unit) is executed whenever the value being observed
changes. This function is crucial in the implementation of the
reactive DOM layer described in Section 3.

The remaining abstractions are ubiquitous in the functional
domain: Map allows a function to be applied to the new value
of an observed Var whenever it changes, yielding another view.
In terms of the dataflow graph, this results in an additional node
which depends on the original view. MapAsync is a helper function
which facilitates asynchronous calls as supported within F# and
WebSharper.

The applicative combinators Map2 and Apply, as first exposited
by McBride and Paterson [21], allow for static composition of
Views. Using these combinators, it is possible to apply functions of
arbitrary arity to nodes within the dataflow graph.

Submission to Preproceedings of IFL 2014 2 2014/9/24

Finally, the monadic combinators Join and Bind allow dynamic
composition of graphs – that is, a dataflow graph may consist of
nodes which are themselves time-varying dataflow graphs, allowing
the graph to change during the course of execution. Although this
dynamism is natural in GUI programming, most implementations of
FRP systems do not support this for efficiency reasons as outlined
in Section 7.2.

2.3 Models and Collections
When working with collections which may change with time, it is
often better to work with higher-level models than simple Vars and
Views. A Model<'I, 'M> represents a mutable model, providing a
projection between a mutable type ’M (such as an F# ResizeArray)
and an immutable type ’I (such as an F# list). This proves very
useful when rendering a collection, for example.

A specialisation of the Model type is the ListModel, which
internally represents a time-varying collection as a ResizeArray
but allows the model to be viewed as a list. Additionally, several
operations to modify the collection are provided: these are shown in
Listing 3.

Listing 3. Operations on a ListModel
type ListModel<'Key,'T> with
member Add : 'T -> unit
member Remove : 'T -> unit

type ListModel with
static member Create<'Key,'T when 'Key : equality>

: ('T -> 'Key) -> seq<'T> -> ListModel<'Key,'
T>

static member FromSeq<'T when 'T : equality> : seq
<'T> -> ListModel<'T,'T>

static member View : ListModel<'Key,'T> -> View<
seq<'T>>

A ListModel is created using a function which derives a key to
be used for equality testing, and a sequence of elements. Addition
and removal of elements can be performed with the Add and Remove
functions, but more importantly it is possible to obtain a View of
the collection using the ListModel.View function.

2.4 Implementation
2.4.1 Vars
The implementation of a Var is shown in Listing 4. A value of
type Var<'T>, where ’T is a polymorphic type variable, consists
of mutable value field, a flag to specify whether or not the Var has
been set as final, and a method by which any dependent views may
be notified that the variable has been updated. This is implemented
as a Snap, discussed in Section 2.4.2

Listing 4. Implementation of a Var
type Var<'T> =
{
mutable Const : bool
mutable Current : 'T
mutable Snap : Snap<'T>

}

2.4.2 Snaps
The implementation of the dataflow layer depends largely on the
notion of a Snap: an observable snapshot of a value.

The IVar Abstraction
At its core, a Snap is based on the notion of an immutable variable,
or IVar [28]. An IVar is created as an empty cell, which can be

written to only once: multiple writes to an IVar are not permitted.
Attempting to read from a ‘full’ IVar will immediately yield the
value contained in the cell, whereas attempting to read from an
‘empty’ IVar will result in the thread blocking until such a variable
becomes available. This is shown in Figure 1.

Emptystart

Full

Put (notify
blocked
threads)

Get (queue request)

Get (return value)

Figure 1. State Transition Diagram for an IVar

The IVar abstraction heavily inspires the method by which
change propagation in the graph is handled. In this sense, there
are no explicit links within the dataflow graph: that is, edges in the
dataflow graph are not represented using concrete links – instead,
dependent nodes can be thought of as attempting to retrieve a value
from an IVar indicating obsoleteness. If the value is not obsolete,
indicated in the IVar model as trying to retrieve a value from an
empty cell, then the requests are queued2. As soon as the value
in the dataflow node has been updated, meaning that it should be
propagated through the graph, then all threads are notified with the
latest value and continue execution.

Snap Implementation
While the IVar abstraction encapsulates the essence of a Snap, in
reality the implementation is slightly more complex. A Snap can be
thought of as a state machine consisting of four separate states:

Ready: A Snap containing an up-to-date value, and a list of threads
to notify when the value becomes obsolete.

Waiting: A Snap without a current value. Contains a list of threads
to notify when the value becomes available, and a list of threads
to notify should the Snap become obsolete prior to receiving a
value.

Forever: A snap in the Forever state indicates that it contains
a value that will never change. This is an optimisation as it
prevents nodes waiting for the Snap to become obsolete when
this will never be the case.

Obsolete: A snap in the Obsolete state indicates that the snap
contains obsolete information.

The state transition diagram for a Snap is shown in Figure 2.

Waitingstart

ReadystartForever Obsolete

MarkReady MarkObsoleteMarkForever

MarkObsolete

Figure 2. State Transition Diagram for a Snap

Snaps can be modified by four operations. These are:

2 Native JavaScript is single-threaded, but we make use of the F# asyn-
chronous workflow capabilities on the client by using a custom scheduler.

Submission to Preproceedings of IFL 2014 3 2014/9/24

MarkForever: Updates the Snap with a value, transitioning to the
Forever state to indicate that the value will never change.

MarkObsolete: Marks the Snap as obsolete, notifying all threads
that are waiting for an updated value.

MarkReady: Marks the Snap as containing a new, up-to-date
value, notifying all threads that are waiting for the initial value.

MarkDone: Marks the Snap as containing a value. If the Snap has
been marked as constant, then transitions to the Forever state,
otherwise transitions to the Ready state.

Additionally, Snaps support a variety of applicative and monadic
combinators in order to implement the operations provided by
Views: to implement Map2 for example, a Snap must be created
which is marked as obsolete as soon as either of the two dependent
Snaps becomes obsolete.

In order to react to lifecycle events and trigger change propa-
gation through the dataflow graph, the When eliminator function is
used.

val When : Snap<'T> -> ready: ('T -> unit) ->
obsolete: (unit -> unit) -> unit

The When function takes a snap and two callbacks: ready, which
is invoked when a value becomes available, and obsolete, which
is invoked when the Snap becomes obsolete.

2.5 Change Propagation
As discussed in Section 2.4.1, a Var consists of a current value,
and a Snap which is used to drive change propagation. When the
value of a Var is updated, the current Snap is marked as obsolete
and replaced by a new Snap in the Ready state.

At its core, a View consists of a function observe to return a
Snap of the current value.

type View<'T> =
| V of (unit -> Snap<'T>)

The simplest View directly observes a single Var: this simply
accesses the current Snap associated with that Var, updating when-
ever the Snap becomes obsolete.

Listing 5 shows the pattern of creating views which depend
on other views. The CreateLazy function takes as its argument
an observation function of type (unit -> Snap<'A>), which is
a function returning a Snap representing the latest value of the
dependent dataflow nodes. This is created lazily for efficiency.

Listing 5. View Implementation
static member CreateLazy observe =
let cur = ref None
let obs () =
match !cur with
| Some sn when not (Snap.IsObsolete sn) -> sn
| _ ->
let sn = observe ()
cur := Some sn
sn

V obs

static member Map fn (V observe) =
View.CreateLazy (fun () ->
observe () |> Snap.Map fn)

static member Map2 fn (V o1) (V o2) =
View.CreateLazy (fun () ->
let s1 = o1 ()
let s2 = o2 ()
Snap.Map2 fn s1 s2)

The implementations of Snap.Map and Snap.Map2 are shown
in Listing 6. We omit some optimisations for brevity.

Listing 6. Snap Combinator Implementation
let Map fn sn =
let res = Create ()
When sn (fn >> MarkDone res sn) (fun () ->

MarkObsolete res)
res

let Map2 fn sn1 sn2 =
let res = Create ()
let v1 = ref None; let v2 = ref None
let obs () =

v1 := None; v2 := None
MarkObsolete res

let cont () =
match !v1, !v2 with
| Some x, Some y ->
MarkReady res (fn x y)

| _ -> ()
When sn1 (fun x -> v1 := Some x; cont ()) obs
When sn2 (fun y -> v2 := Some y; cont ()) obs
res

The Snap.Map2 function takes a dependent Snap sn and a
function fn to apply to the value of sn when it becomes available.
Firstly, an empty Snap is created. This is passed to the When
eliminator along with two callbacks: the first, called when sn is
ready, marks res as ready, containing the result of fn applied to the
value of sn. The second, called when sn is obsolete, marks res as
obsolete.

The Snap.Map2 function applies a function to multiple argu-
ments, which can in turn be used to implement applicative combi-
nators. In order to do this, a Snap res and two mutable reference
cells, v1 and v2, are used. When either of the dependent Snaps
sn1 or sn2 update, the corresponding reference cell is updated and
the continuation function cont is called. If both of the reference
cells contain values, then the continuation function marks res ready,
containing the result of fn applied to sn1 and sn2. If either of the
dependent Snaps become obsolete, then res is marked as obsolete.
This avoids glitches, which are intermediate states present during the
course of change propagation, and avoids such intermediate states
being observed by the reactive DOM layer.

3. Reactive DOM Layer
The reactive DOM layer allows data models described using the
dataflow backend to be used to create reactive web applications
which update automatically as a result of change propagation within
the dataflow graph. In addition to providing a set of reactive input
controls which depend on and modify Vars, the DOM layer provides
combinators allowing dynamic DOM fragments to be directly
composed with static fragments.

The simplest example of this is a text label which mirrors the
contents of an input text box. This is shown in Listing 7.

Listing 7. A label mirroring the contents of an input box
let rvText = Var.Create ""
let inputField = Doc.Input [] rvText
let label = Doc.TextView rvText.View
Div0 [

inputField
label

]

We begin by declaring a variable rvText of type Var<string>,
which is a reactive variable to hold the contents of the input

Submission to Preproceedings of IFL 2014 4 2014/9/24

box. Secondly, we create an input box which is associated with
rvText, meaning that whenever the contents of the input field
changes, rvText will be updated accordingly. Next, we create a
label using Doc.TextView, which we associate with a view of
rvText. Finally, we can place these components inside a <div>
tag using the Div0 function.

3.1 Monoidal Interface
A key design decision that was made in implementing the reactive
DOM layer was the decision to use a monoidal interface for both
DOM elements and DOM attributes. As the API is purely generative,
meaning that it does not permit the deconstruction of nodes, we
believe the use of a monoidal interface is an appropriate choice for
DOM combinators as it does not differentiate between the absence
of a node, a single node, or a list of nodes. Previous iterations of
DOM node combinators within WebSharper did not use such an
interface, and therefore often required explicit yield expressions
within node lists.

All DOM elements in the reactive DOM layer are of type Doc,
which represents either an empty DOM node, a single DOM node,
or multiple DOM nodes. To form a monoid, Doc supports the
operations shown in Listing 8. The same operations are supported
by reactive attributes, of type Attr.

Listing 8. Monoidal operations on Doc
static member Empty : Doc
static member Append : Doc -> Doc -> Doc
static member Concat : seq<Doc> -> Doc

Here, Empty is the neutral identity element, which represents
an empty DOM tree. Append is an associative binary operation,
which combines two DOM subtrees: more precisely, the two DOM
subtrees become sibling nodes, and the second subtree is rendered
after the first.

In accordance with the monoid laws, appending an element to
the empty Doc, and appending the empty Doc to the element does
not change the element. Concatenation is implemented as a fold
over a sequence of Docs, using Doc.Empty as the initial element.

3.2 Reactive Elements and Attributes
Reactive elements are created using the Doc.Element function,
which takes as its arguments a tag name, a sequence of attributes,
and a sequence of child elements. As discussed in section 3.1, these
sequences are concatenated.

static member Element : name: string -> seq<Attr> ->
seq<Doc> -> Doc

Reactive attributes can be static, dynamic, or animated. Static at-
tributes correspond to simple key-value pairs, as found in traditional
DOM applications, whereas dynamic attributes are instead backed
by a View<string>. We defer discussion of animation attributes
to Section 4.

static member Create :
name: string -> value: string -> Attr

static member Dynamic :
name: string -> value: View<string> -> Attr

static member Animated :
name: string ->
Trans<'T> ->
view: View<'T> ->
value: ('T -> string) -> Attr

3.3 Embedding Reactive Views
Arguably the most important function within the Reactive DOM
layer is the Doc.EmbedView function:

static member EmbedView : View<Doc> -> Doc

Semantically, this allows us to embed a time-varying DOM
fragment into a larger DOM tree. This is the key to creating reactive
DOM applications using the dataflow layer: by using View.Map to
map a rendering function onto a variable, for example, we can create
a value of type View<Doc> to be embedded using EmbedView.

By way of example, consider rendering an item in a to-do list,
where the item should be rendered with a strikethrough if the task
has been completed. We begin by defining a simple type, with a
reactive variable of type Var<bool> which is set to true if the task
has been completed.

type TodoItem =
{ Done : Var<bool>
TodoText : string }

It would then be possible to render such an item as shown in
Listing 9. Note that here, Del0 is a notational shorthand for an
HTML element without any attributes, and Doc.TextNode
creates a DOM text node.

We also make use of the F# construct |>, pronounced ‘pipe’,
which signifies reverse function application.

let (|>) x f = f x

Listing 9. Embedding Reactive Views
View.FromVar todo.Done
|> View.Map (fun isDone ->

if isDone
then Del0 [Doc.TextNode todo.TodoText]
else Doc.TextNode todo.TodoText)

|> Doc.EmbedView

We use this pattern extensively when developing applications
using UI.Next.

3.4 Implementation
Doc
We store an in-memory representation of DOM trees, propagating
these to the DOM when necessary. At the outermost layer, a Doc
consists of information about its associated subtree, and a unit view
which is used to propagate updates upwards through a tree. This is
shown in Listing 10.

Listing 10. Implementation of the Doc type
type Doc =

{ DocNode : DocNode; Updates : View<unit> }

A DocNode is a node in the in-memory skeleton DOM represen-
tation. Defined as an algebraic data type, a DocNode may represent
the concatenation of two Docs as a result of an Append operation,
a DOM element, an embedding of a reactive DOM subtree, a DOM
text node, or an empty node.

When creating nodes, the Updates view is combined with any
dependent sub-views using the monadic and applicative combinators
discussed in Section 2.2. For example, the Updates view of an
AppendDoc is dependent on the Updates views of both sub-nodes,
and as such is constructed using the Doc.Map2 combinator, as
shown in Listing 11. Note that the Docs.Mk is simply a constructor
function for a Doc record, taking a DocNode and an Updates view
as its arguments. The ||> operator is similar to |>, but instead takes
a tuple of arguments to pass to a function.

Submission to Preproceedings of IFL 2014 5 2014/9/24

let (||>) (a, b) f = f a b

Listing 11. Construction of an AppendDoc DocNode
static member Append a b =

(a.Updates, b.Updates)
||> View.Map2 (fun () () -> ())
|> Docs.Mk (AppendDoc (a.DocNode, b.DocNode))

EmbedView
As discussed in Section 3.3, the EmbedView allows a time-varying
DOM segment to be embedded within the DOM tree, with any
updates in this segment being reflected within the DOM. The
implementation of this is based on the idea of ‘dirty-checking’,
as employed by many reactive DOM libraries such as Facebook
React [1].

The DocNode representation of a time-varying DOM node is a
DocEmbedNode, shown in Listing 12.

Listing 12. The DocEmbedNode type
type DocEmbedNode =

{ mutable Current : DocNode
mutable Dirty : bool }

The record has two mutable fields: the Current field represents
the current value of the embedded view, and the Dirty field is set
to true if the View<Doc> has changed, indicating that the DOM
subtree should be updated.

The implementation of the EmbedView function is shown in
Listing 13.

Listing 13. Implementation of the EmbedView function
static member EmbedView view =

let node = Docs.CreateEmbedNode ()
view
|> View.Bind (fun doc ->

Docs.UpdateEmbedNode node doc.DocNode
doc.Updates)

|> View.Map ignore
|> Docs.Mk (EmbedDoc node)

The EmbedView function works by creating a new entry in
the dataflow graph, depending on the time-varying DOM segment.
Conceptually, this can be thought of as a View<View<Doc>>, which
would not be permissible in many FRP systems. Here, the monadic
Bind operation provided by the dynamic dataflow layer is crucial
in allowing us to observe not only changes within the Doc subtree
(using doc.Updates), but changes to the Doc itself: when either
change occurs, the DocEmbedNode is marked as dirty, and the
update is propagated upwards through the tree.

Synchronisation
As previously discussed, any updates in the DOM representation
are propagated upwards through the tree representation. In order to
trigger a DOM update, we use the Sink imperative observer func-
tion discussed in Section 2.2, which triggers a function whenever
a View (in this case the Updates view of the root node in the Doc
tree) changes.

Synchronisation between the virtual DOM skeleton and the
physical DOM representation is performed using an O(n) traversal
of the virtual DOM tree, in a similar way to existing libraries. While
at first this may seem prohibitive for a responsive web application,
such an approach has been proven by libraries such as React to
yield acceptable performance since such traversals are generally not
computationally expensive, and there tend to be few physical DOM
changes.

For an element node, the synchronisation algorithm recursively
checks whether any child nodes have been marked as dirty. In the
case of EmbedNodes, it is not only necessary to check whether
the EmbedNode itself is dirty but also whether the current subtree
value represented by the EmbedNode is dirty: this ensures that both
global (entire subtree changes) and local (changes within the subtree)
changes have been taken into account.

An important consideration when implementing the synchroni-
sation algorithm was the preservation of node identity – that is, the
internal state associated with an element such as the current input
in a text box, and whether the element is in focus. For this reason,
when updating the children of a node, simply removing and reinsert-
ing all children of an element marked dirty is not a viable solution:
instead we associate a key with each item, which is used for equality
checking, and perform a set difference operation to calculate the
nodes to be removed.

4. Declarative Animation
Animation is increasingly used in modern web applications, espe-
cially when visualising data, when processing user input, or advanc-
ing state within a control flow.

In the context of web applications, animations are typically im-
plemented as an interpolation between attribute values over time.
Such animations must be composable in order for different anima-
tions to run either sequentially or concurrently, must support the
specification of interpolation strategies for a given type, and easing
functions, which specify how quickly the animation progresses at
different points during the animation.

Native CSS provides animation functionality which can inter-
polate values, apply easing functions, and apply animations both
sequentially and concurrently through the use of keyframes. While
this is sufficient and intuitive for simple applications, the approach
founders when animations depend explicitly on dynamic data and
cannot be determined statically.

The D3 library [4] provides more powerful animation functional-
ity. In particular, the library enables animations to depend directly on
data sets, for animations to be delayed, and for the specification of
transitions—animations which are triggered when a node is added,
changed, or removed from the DOM.

D3 is an extremely powerful library, and its use has led to some
very impressive animated visualisations. The API, however, does not
lend itself particularly well to a functional, statically typed language:
in particular, animations are generally constructed using selections,
using function chaining to add animations and transitions. This
results in animations being declared in a more imperative style.

The declarative animation library in UI.Next allows animations
(an interpolation of a value over time) and transitions to be specified
separately. These are then integrated with the reactive DOM layer in
one of two ways: more commonly, they can be attached directly to
elements as attributes and therefore react directly to changes within
the dataflow graph, but they may also be scheduled imperatively.

An animation is defined using the Anim<'T> type, where the ’T
type parameter defines the type of value to be interpolated during the
animation. As shown in Listing 14, an Anim<'T> type is internally
represented as a function Compute, mapping a normalised time (a
value between 0 and 1 denoting progress through the animation) to
a value, and the duration of the animation.

Listing 14. Implementation of the Anim<’T> type
type Anim<'T> =
{ Compute : Time -> 'T; Duration : Time }

An animation can be constructed using the Anim.Simple or
Anim.Delayed functions: Anim.Simple can be seen as a delayed

Submission to Preproceedings of IFL 2014 6 2014/9/24

animation with a delay of 0. This takes as its arguments an interpo-
lation strategy, an easing function, the duration of the animation, the
delay of the animation in milliseconds, and the start and end values.

static member Anim.Simple :
Interpolation<'T> ->
Easing ->
duration: Time ->
delay: Time ->
startValue: 'T ->
endValue: 'T ->
Anim<'T>

To describe collections of animations, we once again make use
of a monoidal interface: in this case, the semantics of monoid
concatenation are that the animations play concurrently as opposed
to sequentially. Collections of animations are represented by the
Anim type and supports the monoidal Empty, Append and Concat
operations, as well as a function Pack to lift an Anim<unit> type
into a singleton animation collection.

static member Append : Anim -> Anim -> Anim
static member Concat : seq<Anim> -> Anim
static member Empty : Anim
static member Pack : Anim<unit> -> Anim

Concatenation of a list of animations involves creating a new
animation with the length of the longest constituent animation,
and a compute function which ‘prolongs’ shorter animations by
not performing further interpolation after the end of the original
animation.

Transitions are specified using the Trans type. Functions for
creating and modify Trans types are shown in Listing 4.

static member Create : ('T -> 'T -> Anim<'T>) ->
Trans<'T>

static member Trivial : unit -> Trans<'T>
static member Change : ('T -> 'T -> Anim<'T>) ->

Trans<'T> -> Trans<'T>
static member Enter : ('T -> Anim<'T>) -> Trans<'T>

-> Trans<'T>
static member Exit : ('T -> Anim<'T>) -> Trans<'T>

-> Trans<'T>

A transition can either be created with the Trivial function,
meaning that no animation occurs on changes, or with an animation.
Enter and exit transitions, which occur when a node is added or
removed from the DOM tree respectively, can be specified using the
Enter and Exit functions. Upon a DOM update, a set intersection
is performed between the nodes that have enter and exit transitions
and the nodes which have been added and removed respectively, and
these are concatenated and played as an animation collection.

An animation is embedded within the reactive DOM layer as an
attribute through the Attr.Animated function:

static member Animated : name: string -> Trans<'
T> -> view: View<'T> -> value: ('T -> string
) -> Attr

This function takes the name ofthe attribute to animate, a
transition, a view of a value upon which the animation depends
(for example, an item’s rank in an ordered list), and a projection
function from that value to a string, in such a way that it may be
embedded into the DOM.

5. Functional Web Abstractions
Functional programming and static type systems can ease web
programming by facilitating the implementation of functional web

abstractions. In particular, Formlets [8] provide a structured means,
based on the notion of an applicative functor [21], of retrieving input
from a user. Using Formlets, it is possible to define a statically-typed
model of the input (for example as a record), and populate this model
with input gained from form controls.

Previous work has built upon Formlets in various ways. By
extending Formlets with a monadic interface in addition to an
applicative one, sequences of Formlets called Flowlets [3] can be
created, where each stage in the flow can depend on previously-
submitted input. Additionally, Formlets by default do not allow
any flexibility in how forms are rendered: this is addressed by a
Pluggable GUI-let, or Piglet [11].

UI.Next greatly simplifies the implementation of Piglets and
Flowlet-style combinators. In this section, we discuss the implemen-
tation of these abstractions, and how their implementation has been
eased using the framework. Additionally, we discuss a method by
which pages and application state may be synchronised with the
current URL, to allow easier sharing of locations within single-page
applications.

5.1 Flowlets
The Flowlet-style combinators we have implemented are shown
in Listing 15. It is important to note that this is not a direct
implementation of Flowlets: in particular, we do not build forms
using static, applicative composition, instead allowing each stage
of the flow to handle the retrieval and processing of user input.
The primary objective of these combinators, however, is to allow
applications with a linear control flow to be constructed in a simple,
intuitive fashion.

Listing 15. Flowlet Combinators
type Flow =
// Definition
static member Define : (('A -> unit) -> Doc) ->

Flow<'A>
static member Static : Doc -> Flow<unit>
// Mapping
static member Map : ('A -> 'B) -> Flow<'A> -> Flow

<'B>
// Monadic Combinators
static member Bind : Flow<'A> -> ('A -> Flow<'B>)

-> Flow<'B>
static member Return : 'A -> Flow<'A>
// Rendering function
static member Embed : Flow<'A> -> Doc
// Helper function
static member Do : FlowBuilder

Pages in the flow are defined using the Define function.
To define a page, we require function takes a callback of type
('A -> unit), used to pass the resulting value to subsequent
stages of the flow, and renders the page as a Doc. It is also possible
to define a static page which does not progress the flow by using the
Static function.

Internally, a Flow<'T> is represented as a singleton record
containing one member, a function Render which takes as its
arguments a Var to be used for rendering the flow and a continuation
function (’T -> unit), resulting in a unit value.

Listing 16. Implementation of the Flow type
type Flow<'T> =
{ Render : Var<Doc> -> ('T -> unit) -> unit }

To combine multiple stages of a flow, the Bind function is used.
This is shown in Listing 17.

Submission to Preproceedings of IFL 2014 7 2014/9/24

Listing 17. Implementation of the Flow.Bind function
static member Bind m k =

{ Render = fun var cont -> m.Render var (fun r
-> (k r).Render var cont) }

The Bind function is implemented by creating a new Flow
record from a flow m of type Flow<'A> and a continuation function
('A -> Flow<'B>). The newly-created flow renders m to the Var
var, with the value r returned by that particular stage of the flow
applied to the continuation function k to construct the next stage in
the flow.

The eliminator function for Flow types, Embed, is defined in
Listing 18.

Listing 18. Implementation of Flow.Embed
static member Embed fl =

let v = Var.Create Doc.Empty
fl.Render v ignore
Doc.EmbedView (View.FromVar v)

We begin by creating a Var v used to contain the current page
rendering, initially consisting of the empty document. The flow
is ‘executed’ by invoking the Render function with the variable,
which is updated by the bind operation, and finally by embedding
the resulting View.

Through the use of computation expressions [24], it is possible
to specify flows in a manner analogous to do-notation in Haskell.
Consider the following example flow:

1. A user is asked for a name and address, which is used to create
a Person record.

2. The user is then asked to specify whether they wish to specify a
phone number or e-mail address.

3. Based on the previous answer, the user is asked for either a
phone number or an e-mail address.

4. The user is shown the data that they entered.

Such a flow would be described by the computation expression
shown in Listing 19.

Listing 19. A flow described as a computation expression
let ExampleFlow () =

Flow.Do {
let! person = personFlowlet
let! ct = contactTypeFlowlet
let! contactDetails = contactFlowlet ct
return! Flow.Static (finalPage person

contactDetails)
}
|> Flow.Embed

This format provides a simple and expressive way of describing
applications with a linear control flow.

5.2 Piglets
Formlets [8] allow user input to be retrieved in a type-safe fashion
through the use of applicative functors to aid static composition. In
spite of their advantages including type-safety, composability, and
formal definition, formlets suffer from a lack of modularity: that is,
the rendering of a formlet is tightly coupled to its data model. In
order to change the ordering of components within the formlet, for
example, it is necessary to modify the underlying data model.

Piglets [11] alleviate these concerns by separating the model
and the view. Piglets consist of two separate components: a stream
composed of values of components within the Piglets, and a view

builder function which is provided with the values in the stream,
and returns a rendering of the form. This is shown in Listing 20.

Listing 20. Structure of a Piglet
type Piglet<'a, 'v> =

{ stream: Stream<'a>; viewBuilder: 'v }

In order to create a Piglet, the Yield function is used. The
argument to this can be a function, in which case static composition
can be achieved through the use of the applicative-style composition
operator ⊗. Both operations are shown in Listing 21.

Listing 21. Piglet Construction and Composition Functions
val Yield :
'a -> Piglet<'a, (Stream<'a> -> 'b) -> 'b>

val ⊗:
Piglet<'a -> 'b, 'v1 -> 'v2> ->
Piglet<'a, 'v2 -> 'v3> ->
Piglet<'b, 'v1 -> 'v3> ->

We are currently working towards an implementation of Piglets
using the UI.Next framework. In particular, UI.Next replaces the
Stream with primitives from the dataflow layer, as shown in Listing
22.

Listing 22. Piglets using UI.Next primitives
type Piglet<'a, 'v> =

{ read : View<Result<'a>> ; render : 'v }

val Yield : 'a -> Piglet<'a, (Var<'a> -> 'v) -> 'v>

In particular, a Piglet implemented using UI.Next consists of
a View containing the current state of the form, and a rendering
function. Creating a Piglet using Yield creates a Var which is used
within the rendering function, and the implementation of ⊗ uses
View.Map2 to create a dependent View.

The original Stream implementation relied on manual subscrip-
tion and pushing of values, whereas this is all handled by dataflow
combinators in the UI.Next implementation. Replacing much of
this imperative-style logic with functional combinators results in
more concise, understandable, and readable code. Use of UI.Next
primitives also avoids the need to specify explicit disposal functions,
as was the case with Streams.

5.3 Sites with Multiple Pages
This work focuses on facilitating the creation of single-page appli-
cations: applications which run in a single page in the browser. Such
applications often consist of multiple sub-pages, using JavaScript to
transition between them.

Using our approach, implementing such functionality is simple
and idiomatic. We begin by declaring a data type which describes
the different pages in the site, and rendering functions (producing a
Doc) for each:

type IFLPage = | Home | CallForPapers | Registration
| Submission |

let renderHome v =
Div0 [

H10 [txt "Home"]
...

]

let renderCFP v = ...

Submission to Preproceedings of IFL 2014 8 2014/9/24

We then create a Var<IFLPage>, representing the current page.
Using this, we may then create a View, and map the appropriate
rendering function, resulting in a view of the rendering of the current
page. This may then be embedded into a page using EmbedView;
navigation between pages is possible by changing the previously-
created Var.

let v = Var.Create Home
View.FromVar v
|> View.Map (fun pg ->

match pg with
| Home -> renderHome v
| CallForPapers -> renderCFP v
| Registration -> renderRegistration v
| Submission-> renderSubmission v)

|> Doc.EmbedView

6. Examples
In this section, we present two examples using the framework: the
first of which showcases reactive animation and the treatment of
object identity, and the second of which describes a form rendered
using the Piglets implementation backed by UI.Next.

6.1 Object Constancy
Object Constancy is a technique for allowing an object representing
a particular datum to be tracked through an animation. In particular,
consider the case where the underlying data does not change, but
the user controls filtering criteria: changes in such criteria may add
new data to the visualisation, remove currently-displayed data, and
assuming sorting criteria remains constant, change the ordering of
the data.

In such a case, the objects representing the data remaining in the
visualisation should not be removed and re-added, but instead should
transition to their new positions. Such an example is discussed by
Bostock [5], using the D3 [4] library.

The example described by Bostock [5] displays the percentage of
the population in a particular age bracket for a number of different
states, where 10 states are displayed. The percentages for each state
are displayed in descending order. To recreate this example using
our declarative animation framework, we begin by defining a data
model using F# records.

type AgeBracket = | AgeBracket of string
type State = | State of string
type DataSet = {

Brackets : AgeBracket []
Population : AgeBracket -> State -> int
States : State []

}
type StateView = {

MaxValue : double
Position : int
State : string
Total : int
Value : double

}

Here, AgeBracket and State are representations of age brack-
ets and states respectively, and DataSet is a representation of the en-
tire data set as read in from an external data source. The StateView
record specifies details about how a state should be displayed based
on other visible items: MaxValue specifies the maximum percent-
age, Position specifies the rank of the item in the visible set,
State specifies the name of the state, Total specifies the total
number of items within the set and Value specifies the percentage
value of the item.

let SimpleAnimation x y =
Anim.Simple Interpolation.Double Easing.

CubicInOut
300.0 x y

let SimpleTransition =
Trans.Create SimpleAnimation

let InOutTransition =
SimpleTransition
|> Trans.Enter (fun y -> SimpleAnimation Height

y)
|> Trans.Exit (fun y -> SimpleAnimation y Height

)

Using this, it is possible to define an animation lasting for 300ms
between 2 given values. With the animation, we can then create two
transitions: an unconditional transition SimpleTransition, and
a transition InOutTransition which is triggered when a DOM
entry is added (Enter) and removed (Exit).

The Enter and Exit transitions interpolate the y co-ordinate of
a bar between the bottom of the SVG graphic (Height) and a given
position. In particular, upon entry, the element will transition from
the origin position to the desired position; and will transition back
to the origin position on exit.

We now specify a rendering function taking a View<StateView>
and returning a Doc to be embedded within the tree. We elide some
of the function in the interest of brevity, but you can find the
complete source of the example online3.

let Render (state: View<StateView>) =
let anim name kind (proj: StateView -> double) =

Attr.Animated name kind (View.Map proj state)
string

// Projection functions
let x st = Width * st.Value / st.MaxValue
let y st = Height * double st.Position / double st

.Total
let h st = Height / double st.Total - 2.

S.G [Attr.Style "fill" "steelblue"] [
S.Rect [

"x" ==> "0"
anim "y" InOutTransition y
anim "width" SimpleTransition x
anim "height" SimpleTransition h

] []
]

The helper function anim takes the name of the attribute to
animate, the transition to use, and a projection from the state view
to the value to use within the transition. We then specify three
projection functions: one for the width of the bar, based on the
value as a proportion of the maximum value in the set; one for the
Y-position of the bar, and and one for the height of the bar. These
may then be specified as attributes of the object to animate.

Finally, we create a selection box to allow the user to modify the
age bracket, which in turn modifies the current list of StateViews.
To implement object constancy, a key which uniquely identifies the
data is required [14]. In the case of StateView, this is State: we
use this when embedding the current set of visible elements using
the ConvertSeqBy function, which is a memoising conversion
function useful for preserving node identity. It is then possible to
embed this into the DOM using EmbedView.

S.Svg ["width" ==> string Width; "height" ==> string
Height] [

shownData

3 https://github.com/intellifactory/websharper.ui.next/
blob/master/src/ObjectConstancy.fs

Submission to Preproceedings of IFL 2014 9 2014/9/24

|> View.ConvertSeqBy (fun s -> s.State) Render
|> View.Map Doc.Concat
|> Doc.EmbedView

]

6.2 Reactive Piglets
In this simple example, we define a form which consists of three
fields: a first name, a last name, and a type of pet. We begin by
defining a data model.

type Pet = | Cat | Dog | Piglet
type Person = { firstName: string; lastName: string;

pet : Pet }
let Pets = [Cat ; Dog ; Piglet]
let showPet = function
| Cat -> "Cat" | Dog -> "Dog" | Piglet -> "Piglet"

The next step is to use the Return and Yield operation to
construct a Piglet. We also use the Validation.Is function to add
validation to the form: should either the first or last name be empty,
the failure will be propagated and displayed upon submission. The
WithSubmit function adds a Submitter type, which can be used
to snapshot the state of the form stream when a submission button
is pressed. This can then be used as part of an AJAX call to a server,
or to display errors.

let Person init =
Piglet.Return (fun f l p -> { firstName = f;

lastName = l ; pet = p})
<*> (Piglet.Yield init.firstName

|> Validation.Is Validation.NotEmpty "Please
enter your first name.")

<*> (Piglet.Yield init.lastName
|> Validation.Is Validation.NotEmpty "Please

enter your last name.")
<*> (Piglet.Yield init.pet)
|> Piglet.WithSubmit

Finally, we define a view for the Piglet. The Render function
is provided with Vars for the fields in the Piglet, which are in turn
used with the built-in form components in UI.Next.

let radioButtons (v: Var<Pet>) = ...
let Person init =
ViewModel.Person init
|> Piglet.Render (fun first last pet submit ->

Doc.Concat [
Div0 [Doc.TextNode "First Name: " ; Doc.Input

[] first]
Div0 [Doc.TextNode "Last Name: " ; Doc.Input

[] last]
radioButtons pet
Div0 [Doc.Button "Submit" [] submit.Trigger]
Div0 [Doc.TextView (submit.Output |>
View.Map (function
| Success u ->

"Person: " + u.firstName + " " +
u.lastName + ", Pet: " + (showPet u.pet)

| Failure errs ->
List.fold (fun out (str: ErrorMessage) ->
out + " " + str.Message) "" errs))]])

7. Related Work
7.1 Dataflow Systems
Synchronous dataflow languages originated as a means of specifying,
designing, and implementing real-time systems such as those used
within hardware. Languages such as ESTEREL [2], LUSTRE [13],

and Lucid Synchrone [27] can compile programs to transition
systems, in such a way that they may be formally verified using
techniques such model checking. Such approaches are generally
limited to the hardware domain, as the languages do not support
features required in more general programs such as recursion or
dynamic memory allocation.

REACTIVEML [20] is an extension of OCaml embedding
the synchronous dataflow paradigm, providing primitives such
as signal and await to express dataflow within the language.
Cooper and Krishnamurthi [9] extend the Scheme programming
language with dynamic dataflow to create a system, FrTime, which
works by modifying the Scheme evaluator.

Scala.React [19] embeds the dataflow paradigm into Scala,
introducing an imperative dataflow language, time-varying values,
and event streams. The implementation is driven by a scheduler
which proceeds in discrete steps, known as propagation turns, and
the graph is constructed using weak pointers. A similar technique is
used within OCaml React [6].

7.2 Functional Reactive Programming
Functional Reactive Programming [12, 15, 31] has served a large
inspiration for the dataflow-based model for reactive user interfaces
that we have described. FRP systems are based around primitive ab-
stractions modelling time-varying data, referred to as Behaviours
or Signals, and Events which occur either as a response to events
such as user input, or when a signal satisfies a set of predicates.

The semantics of FRP are extremely attractive and clear: time-
varying values are simple to transform and reason about, and event
streams provide a method by which interaction can modify these.
Despite their mathematical simplicity, the implementation of FRP se-
mantics is notoriously difficult. In particular, early implementations
of FRP such as Fran [12] remained very true to FRP semantics, at
the cost of introducing memory leaks: in order to fully implement
the FRP semantics (which allowed signals to depend on any past,
present or future value), it was necessary to store every signal value,
regardless of whether or not it would be used. This in turn led to
memory usage growing linearly with time.

Subsequent approaches favour less expressive forms of FRP to
provide better runtime guarantees. Real-time FRP [32] only allows
signals to be used in ways which can be implemented efficiently, and
can be reasoned about when developing real-time systems. Event-
driven FRP [33] takes this further by only propagating changes as a
result of a discrete event.

Arrowised FRP [16, 23] disallows signals to be treated as first-
class values instead providing only transformers or combinators on
primitive signals. Manipulating signals in this way is eased through
the use of the Arrow abstraction [17]. Such an approach, although
less expressive than purely-monadic FRP approaches such as Fran,
are far more efficient and practical. The issue with arrowised FRP
as it pertains to GUI programming is that it cannot adequately
express dynamic dataflow graphs, as it becomes impossible to
specify monadic combinators on time-varying values. Since our
implementation of signals (Views), works purely on the latest
available value, it is possible to specify monadic combinators,
meaning that dynamic composition is possible.

The Elm programming language [10] is a language providing
first-class FRP primitives with the goal of easing the creation
of responsive GUIs. Elm implements static signal composition
operators such as lift which work on the latest value in the signal,
equivalent to View.Map in our dataflow layer, and liftn, which
is equivalent to View.Map2 and View.Apply. In addition, Elm
provides a construct foldp to perform transformations based on
previous signal values. The asynchronous capabilities of Elm are
mirrored in UI.Next through the use of the MapAsync function,
which is supplemented by the RPC functionality supported by

Submission to Preproceedings of IFL 2014 10 2014/9/24

WebSharper. In order to prevent space leaks, the creation of higher-
order signals is prohibited by the type system. Such an approach is
a good solution to the problem, but is not feasible when working
within an existing ML type system. Instead, we forego the ability
to perform time-dependent transformations as a primitive operation
within the reactive layer, instead postulating that such functionality
may be attained either using simple single-layer callbacks, or an
approach based on concurrent processes such as Concurrent ML
[28].

More theoretical recent work [18?] focuses on languages
implementing FRP semantics, including higher-order signals, while
guaranteeing leak-freedom. In particular, the approach described
by ?] divides expressions into those which may be evaluated
immediately, and those which depend on future values and whose
evaluation must be delayed. In order to prevent space leaks, obsolete
behaviour values are aggressively deleted. The approach relies on a
specialised type system and an explicit notion of time being exposed
to the programmer, which limits its applicability to our problem
domain.

7.3 Reactive DOM Libraries
Facebook React [1] is a library which, in a similar way to our
approach, allows developers to construct DOM nodes programmati-
cally. This process is facilitated through JSX, an HTML-like markup
language with facilities for property-based data binding. The key
concept behind React is the use of an automated ‘diff’ algorithm,
driven by a global notion of time instead of a dataflow system: as
a result, DOM updates are batched for efficiency. We decided to
use a dataflow-backed system instead of purely a diff algorithm to
avoid losing control over DOM node identity. Our approach uses
some aspects of React, such as dirty-checking, but this is localised
to DOM fragments which have been specifically embedded.

Flapjax [22] is a dataflow-backed programming language pro-
viding full FRP functionality which can also be used as a JavaScript
library. As the library does not prohibit higher-order signals, it is
possible to introduce space leaks as previously discussed.

7.4 Functional Web Programming
Functional programming has been found to be very applicable to the
web programming domain. In particular, functional programming
and the static type systems associated with many functional pro-
gramming languages allow for the development of many powerful
web abstractions to ease the structuring and development of web
applications.

WebSharper takes inspiration from Links [7], a language which
allows client, server, and database code to be written in a single
source language, thus mitigating the impedance mismatch problem.
F# functions are compiled to JavaScript aided by quotations [30],
and AJAX calls are easily represented using F# asynchronous
workflows.

Formlets [8] are an abstraction for retrieving typed user input
from HTML forms, which have been extended by Denuzière et al.
[11] to enable the specification of customised rendering functions.
Flowlets [3] augment Formlets with a monadic interface to enable
the construction of multiple dependent formlets.

The interactive Data, or iData abstraction [25] is an edit-driven
approach to type-safe forms: edits to input fields trigger compu-
tations, with previous state being restored in the case of invalid
data being entered. This is taken further by the iTasks workflow
management system [26] which makes use of multiple high-level
combinators such as recursion, sequence, and choice.

8. Conclusion
In this paper, we have presented a framework in F#, UI.Next, facil-
itating the creation of reactive DOM applications backed by a dy-

namic dataflow graph. Guided by previous work on functional reac-
tive programming and dataflow systems, our framework consists of
a dataflow layer consisting of Vars, representing time-varying vari-
ables, and Views, read-only representations of Vars in a dataflow
graph. Our dataflow representation is modular as it is decoupled
from the DOM layer, and amenable to garbage collection by not
allowing higher-order event streams or keeping strong links between
dataflow nodes. While inspired by functional reactive programming,
we make several simplifications which facilitate the implementation
of higher-order monadic operations on Views to allow dynamic
dataflow graph composition, in turn supporting common GUI pro-
gramming patterns.

The DOM layer uses a monoidal interface to aid composability,
and through the use of the EmbedView function, allows time-varying
DOM elements to be directly embedded into a larger tree. Updates to
the in-browser DOM are performed only when necessary and build
on the well-founded notion of dirty-checking, minimising needless
node generation both as an efficiency measure and to preserve
node identity. Such an approach within a strongly, statically-typed
language has proven extremely useful in aiding the implementation
of several functional web abstractions, such as Piglets and Flowlets.

Additionally, we have presented an interface for declarative
animation based on the dataflow graph, which integrates directly
into the reactive DOM layer as reactive attributes, and can be backed
directly by reactive attributes. This enables the creation of rich, data-
backed animations using a statically-typed, declarative interface.

8.1 Future Work
The current implementation of UI.Next is freely available for
experimentation. Future work will be centred around effectively
integrating event streams within the dataflow layer to aid handling
of user interactions. We envisage that usage of the concurrent
programming paradigm as in Concurrent ML [28] or Hopac 4 will
prove to be a promising future direction for this purpose.

We are currently investigating how to further integrate the
reactive layer with plain HTML through the use of an F# type
provider [29]. A more ambitious goal involves implementing the
dataflow layer in a distributed setting with updates to a Var on a
server being propagated automatically to clients. We are additionally
currently working on a frontend implementation for the Windows
Presentation Foundation, to allow the dynamic dataflow backend to
be used within traditional desktop applications.

Other planned work includes further efficiency benchmarking
and optimisation: while we currently implement some optimisa-
tions to minimise physical DOM accesses, further optimisation is
possible.

Strongly, statically-typed languages have been shown to aid the
development of web applications by better allowing applications to
be structured, and decreasing debugging time by detecting errors
earlier in the development process. We hope that continued research
into functional web programming will allow web developers to fully
take advantage of these advances.

References
[1] React | A JavaScript Library for Building User Interfaces. http:

//facebook.github.io/react/, 2014.
[2] Gérard Berry and Georges Gonthier. The Esterel synchronous program-

ming language: design, semantics, implementation. Science of Com-
puter Programming, 19(2):87–152, November 1992. ISSN 01676423.
.

[3] Joel Bjornson, Anton Tayanovskyy, and Adam Granicz. Composing
Reactive GUIs in F# using WebSharper. In Implementation and
Application of Functional Languages, pages 203–216. Springer, 2011.

4 https://github.com/VesaKarvonen/Hopac

Submission to Preproceedings of IFL 2014 11 2014/9/24

[4] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D3: Data-
Driven Documents. Visualization and Computer Graphics, IEEE
Transactions on, 17(12):2301–2309, 2011.

[5] Mike Bostock. Object Constancy. http://bost.ocks.org/mike/
constancy/, 2012.

[6] Daniel Bünzli. React / Erratique. http://erratique.ch/
software/react, 2010.

[7] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. Links:
Web Programming Without Tiers. In FrankS de Boer, MarcelloM
Bonsangue, Susanne Graf, and Willem-Paul de Roever, editors, Formal
Methods for Components and Objects, volume 4709 of Lecture Notes in
Computer Science, pages 266–296. Springer Berlin Heidelberg, 2007. .

[8] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. The
Essence of Form Abstraction. In Programming Languages and Systems,
pages 205–220. Springer, 2008.

[9] Gregory H. Cooper and Shriram Krishnamurthi. Embedding Dynamic
Dataflow in a Call-by-Value Language. In Peter Sestoft, editor,
Programming Languages and Systems, volume 3924 of Lecture Notes
in Computer Science, pages 294–308. Springer Berlin Heidelberg, 2006.
.

[10] Evan Czaplicki and Stephen Chong. Asynchronous Functional Reactive
Programming for GUIs. In Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’13, pages 411–422, New York, NY, USA, 2013. ACM. .

[11] Loïc Denuzière, Ernesto Rodriguez, and Adam Granicz. Piglets to the
Rescue. In Rinus Plasmeijer, editor, Proceedings of the 25th Interna-
tional Symposium on Implementation and Application of Functional
Languages (IFL ’13), 2013.

[12] Conal Elliott and Paul Hudak. Functional Reactive Animation. In Pro-
ceedings of the ACM SIGPLAN International Conference on Functional
Programming (ICFP ’97), volume 32(8), pages 263–273, 1997.

[13] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous
data flow programming language LUSTRE. Proceedings of the IEEE,
79(9):1305–1320, September 1991. ISSN 0018-9219. .

[14] Jeffrey Heer and Michael Bostock. Declarative Language Design for
Interactive Visualization. Visualization and Computer Graphics, IEEE
Transactions on, 16(6):1149–1156, 2010.

[15] Paul Hudak. Functional Reactive Programming. In Swierstra, editor,
Programming Languages and Systems, volume 1576 of Lecture Notes
in Computer Science, chapter 1, page 1. Springer Berlin Heidelberg,
Berlin, Heidelberg, March 1999. ISBN 978-3-540-65699-9. .

[16] Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson.
Arrows, Robots, and Functional Reactive Programming. In Advanced
Functional Programming, pages 159–187. Springer, 2003.

[17] John Hughes. Generalising monads to arrows. Science of Computer
Programming, 37(1-3):67–111, May 2000. ISSN 01676423. .

[18] Neelakantan R. Krishnaswami, Nick Benton, and Jan Hoffmann.
Higher-order Functional Reactive Programming in Bounded Space. In
Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’12, pages 45–58,
New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1083-3. .

[19] Ingo Maier, Tiark Rompf, and Martin Odersky. Deprecating the
Observer Pattern. Technical Report EPFL-REPORT-148043, 2010.

[20] Louis Mandel and Marc Pouzet. ReactiveML: A Reactive Extension
to ML. In Proceedings of the 7th ACM SIGPLAN International
Conference on Principles and Practice of Declarative Programming,
PPDP ’05, pages 82–93, New York, NY, USA, 2005. ACM. ISBN
1-59593-090-6. .

[21] Conor McBride and Ross Paterson. Applicative Programming with
Effects. Journal of Functional Programming, 18(01):1–13, May 2007.
.

[22] Leo A. Meyerovich, Arjun Guha, Jacob Baskin, Gregory H. Cooper,
Michael Greenberg, Aleks Bromfield, and Shriram Krishnamurthi. Flap-
jax: A Programming Language for Ajax Applications. In Proceedings
of the 24th ACM SIGPLAN Conference on Object Oriented Program-
ming Systems Languages and Applications, OOPSLA ’09, pages 1–20,
New York, NY, USA, 2009. ACM. .

[23] Henrik Nilsson, Antony Courtney, and John Peterson. Functional
Reactive Programming, Continued. In Proceedings of the 2002 ACM
SIGPLAN Workshop on Haskell, Haskell ’02, pages 51–64, New York,
NY, USA, 2002. ACM. ISBN 1-58113-605-6. .

[24] Tomas Petricek and Don Syme. The f# Computation Expression Zoo.
In Practical Aspects of Declarative Languages, pages 33–48. Springer,
2014.

[25] Rinus Plasmeijer and Peter Achten. iData for the World Wide Web
âĂŞ Programming Interconnected Web Forms. In Masami Hagiya and
Philip Wadler, editors, Functional and Logic Programming, volume
3945 of Lecture Notes in Computer Science, pages 242–258. Springer
Berlin Heidelberg, 2006. .

[26] Rinus Plasmeijer, Peter Achten, and Pieter Koopman. iTasks: Exe-
cutable Specifications of Interactive Work Flow Systems for the Web.
In Proceedings of the 12th ACM SIGPLAN International Conference
on Functional Programming, ICFP ’07, pages 141–152, New York, NY,
USA, 2007. ACM. .

[27] Marc Pouzet. Lucid Synchrone, version 3. Tutorial and reference
manual. Université Paris-Sud, LRI, 2006.

[28] John H. Reppy. Concurrent Programming in ML. Cambridge University
Press, 2007.

[29] Don Syme, Keith Battocchi, Kenji Takeda, Donna Malayeri, Jomo
Fisher, Jack Hu, Tao Liu, Brian McNamara, Daniel Quirk, Matteo
Taveggia, and Others. Strongly-typed language support for internet-
scale information sources. Technical report, Technical Report MSR-
TR-2012-101, Microsoft Research, 2012.

[30] Don Syme, Adam Granicz, and Antonio Cisternino. Language-Oriented
Programming: Advanced Techniques. In Expert F# 3.0, pages 477–501.
Springer, 2012.

[31] Zhanyong Wan and Paul Hudak. Functional Reactive Programming
from First Principles. SIGPLAN Not., 35(5):242–252, May 2000. ISSN
0362-1340. .

[32] Zhanyong Wan, Walid Taha, and Paul Hudak. Real-time FRP. In
Proceedings of the Sixth ACM SIGPLAN International Conference on
Functional Programming, volume 36 of ICFP ’01, pages 146–156,
New York, NY, USA, October 2001. ACM. ISBN 1-58113-415-0. .

[33] Zhanyong Wan, Walid Taha, and Paul Hudak. Event-Driven FRP. In
Shriram Krishnamurthi and C. R. Ramakrishnan, editors, Practical
Aspects of Declarative Languages, volume 2257 of Lecture Notes in
Computer Science, pages 155–172. Springer Berlin Heidelberg, 2002. .

Submission to Preproceedings of IFL 2014 12 2014/9/24

Blank Canvas and the remote-monad design pattern
A Foreign Function Interface to the JavaScript Canvas API

Extended Abstract

Andrew Gill Aleksander Eskilson Ryan Scott James Stanton
Information and Telecommunication Technology Center

The University of Kansas
{andygill,aeskilson,ryanscott,jstanton}@ittc.ku.edu

Abstract
JavaScript is the de-facto assembly language of the internet.
Browsers offer an array of powerful rendering and event processing
services, including a simple 2D canvas. Blank Canvas is Haskell
DSL that provides a Foreign Function Interface to the JavaScript
canvas API and the JavaScript event API. With this capability,
Haskell programmers can draw pictures on the browsers, and ac-
cess input from the keyboard and mouse. At the University of
Kansas, we use the blank-canvas package for teaching Haskell,
where it provides a more interesting I/O experience than stdio.

We investigate the use of the remote-monad design pattern,
using Blank Canvas as our driving example. After explaining the
design pattern, and constructing the basic remote capability, we
critically assess the feasibility of our straightforward approach, and
explore improvements.

1. Introduction
Blank Canvas is a Haskell binding to the complete HTML5 Canvas
API. Blank Canvas allows Haskell users to write, in Haskell, inter-
active images onto their web browsers. Blank Canvas gives the user
a single full-window canvas, and provides many well-documented
functions for rendering images.

As a first example and in order to give a feel for the library,
consider drawing a single red line onto the canvas. In Haskell, using
Blank Canvas we can write the following.

send context $ do -- Ê
moveTo(50,50) -- Ë
lineTo(200,100)
lineWidth 10
strokeStyle "red"
stroke() -- Ì

Copyright held by author(s). This is an unrefereed extended abstract, distributed for the
purpose of feedback toward submitting a complete paper on the same topic to IFL’14.

First, the send command (Ê) sends a monadic list of commands
to a (graphics) context. Second, the list of commands (Ë) operates
on this context in an imperative manner. Finally, the stroke()
commands (Ì) actually draws the red line. At this point, the screen
looks like

In JavaScript, the same actions can be performed using an al-
most identical code fragment.

-- JavaScript
context.moveTo(50,50);
context.lineTo(200,100);
context.lineWidth = 10;
context.strokeStyle = "red";
context.stroke();

Blank Canvas has packaged the JavaScript API as a small Do-
main Specific Language in Haskell, and allows Haskell users to
access the canvas. At the University of Kansas, we make extensive
use of this API. Students find it easy to understand, and complete
medium-sized projects, usually games, using Blank Canvas as the
primary IO mechanism. In the graduate FP class, we also under-
take an FRP exercise [1, 8], which uses Blank Canvas to render
shapes onto the canvas. Using the Blank Canvas API, we also have
developed slide presentation software, and an internal animation
framework. Finally, the popular diagrams package [11, 12] has
been ported to use blank Canvas as a back end [7].

The central issue, and the subject of the full paper, is quan-
tifying the costs associated with having code execute outside the
Haskell runtime system, and remotely running monadic code. The
browser, running JavaScript, is typically a separately executing pro-
cess from a Haskell program. Thus, we have two extreme solutions
to our API implementation, sending each command over a network
connection piecemeal, or compiling the entire Haskell program and
runtime system into JavaScript. We investigate a middle ground be-
tween sending commands piecemeal, and compiling wholesale to
JavaScript, using a design pattern.

2. Remote-monad DSL Pattern
Haskell has no standard graphics library. Instead, a rich Foreign
Function Interface (FFI) capability is used to tunnel to C, and
onwards to established libraries, such as OpenGL. There are three
conceptual problems to be solved in crossing to non-native C (and
C++) libraries, such as OpenGL:

• First, control flow needs to flow to the correct C function. Given
the lowest level of the GHC runtime system is written in C, this
is straightforward. Callbacks, from C to Haskell can also be
arranged.

• Second, the data structures that are arguments and results of
calls to (and from) C need to be coerced into the correct format.
C strings are not the same as Haskell strings.

• Third, the abstractions of OpenGL may not be idiomatic
Haskell abstractions. For example, many APIs assume OO-
style class inheritance. This can be simulated in Haskell, but
raises an obfuscation barrier.

Any time control flow leaves the eco-system, all three of these
concerns come to into play. All three are well handled in the
Haskell FFI for C. There is a way of directly promoting a C func-
tion into Haskell-land, there is a good support for marshalling data
structures, in C structures, as well an automatic memory manage-
ment support, and Haskell abstraction capabilities are used to build
more Haskell-centric APIs on top of the FFI capability. Calling C
functions directly from Haskell is cheap. However, we want to in-
vestigate another FFI with a different tradeoff, where the call is re-
mote and expensive, and understand what abstractions can be used.

The remote-monad pattern is our name for the transmission of
a (fixed) set of commands to a remote site, for execution. In its most
basic form, we have a send command, a remote location identifier,
and a single command.

send :: Name -> RemoteCommand a -> IO a
remote :: Name
readRemoteFile :: String -> RemoteCommand String
example :: IO ()
example = do

txt <- send remote (readFile "foo")
print txt

The idea is that the send command reifies the RemoteCommand,
sends it to the remote location, runs it, accepts the response, trans-
ports it back to the original send, and returns the remotely gener-
ated value. This pattern can implemented using the first two of the
three requirements above of a an FFI interface, as described above.
First, a remote function is called (control is moved to the remote
site), and back. Second, the pattern takes care of the necessary data
conversation conventions, both in transport, and on the remote site.

The remote-monad command has many manifestations. At KU,
we have used it for Blank Canvas, but also for Sunroof (sending
whole JavaScript programs), and using Kansas Lava [2] to talk to
remote peripherals. Furthermore, The pattern appears in many dif-
ferent places. If we interpret “remote” to mean different environ-
ment, the run function for many well know monads can be consid-
ered a send. Software transactional memories (atomically [3]),
the ST monad (runST [5]) and IO (forkIO [4]) can also ben
considered close instances of the remote-monad pattern, where a
monad is executed in a different context.

The remote-monad patterns has two laws:

send (return a) = return a (1)
send m1 >>= send m2 = send (m1 >>= m2) (2) [*]

The first law states that a send has no effect except the remote
commands. The second law, which has a pre-condition of non-
interference[*], states that remote commands preserve ordering,
and can be split and joined into different sized packets. The pre-
condition is interesting: it is possible to have the result of two
send’s be the same as a single send, yet the observable effects
be different, for example a screen update is done between the two
send commands.

3. Blank Canvas
Blank Canvas is a small library at around 1500 lines of Haskell.
At the heart of the library is the remote-monad, and the send
command. There is quite a bit of careful construction, however, to
make everything work.
The packet principles are:

• Where possible, everything in a send-packet should be sent to
be executed together.

• The breaks between packets should be deterministic and stati-
cally/syntactically determinable.

• Packets are not combined between different calls to send.

The command principles are:

• Anything that returns () is asynchronous, and may be com-
bined with the next monadic command, or send instantly.

• Anything that does not return () is synchronous, and requires a
round-trip to the server.

The Canvas data type has a small number of constructors. The
four main constructor are:

data Canvas :: * -> * where
Method :: Method -> Canvas ()
Query :: Query a -> Canvas a
Bind :: Canvas a -> (a -> Canvas b) -> Canvas b
Return :: a -> Canvas a

The choice of constructors follow the principles carefully.
Method is used for asynchronous drawing commands, while Query
is used for commands that need a round trip. Bind and Return
form the monad for Canvas, allowing monadic reification [9, 10].

4. Benchmarking Blank Canvas
A key question is the cost of using the remote-monad design pat-
tern. At first glance, it would seem prohibitive. The current version
of Blank Canvas (0.5) uses Haskell Strings internally, transliter-
ating each command to a String, and combines intra-send com-
mands, where possible. Absolutely every command needs trans-
lated then sent over a (typically local) network.

We have measured Blank Canvas on a small number of bench-
marks, and compared to native JavaScript. We have two classes
of benchmarks: “display” benchmarks, that simply render to the
HTML5 canvas, and “query” benchmarks, that the inner loop of the
benchmark invokes some from of query that requires a round-trip
from server, to client, back to the server.

Blank Canvas works on almost any modern, HTML5 compliant
browser. Figure 1 gives our initial results. We have tested each
benchmark on recent versions of Firefox and Chrome, on both
Linux and OSX, to gain a crude overall benchmark for how much
using the remote-monad design pattern costs. The Haskell tests
were run 100 times using criterion [6], the JavaScript tests were
averaged over 100 runs.

Linux OSX
Firefox Chrome Firefox Chrome

Benchmark Haskell JS Ratio Haskell JS Ratio Haskell JS Ratio Haskell JS Ratio

D
isplay

Bezier 6.90 4.09 1.69 4.03 1.71 2.36 11.56 3.23 3.58 8.51 0.55 15.47
CirclesRandSz 138.64 105.45 1.31 71.15 25.07 2.84 68.77 46.26 1.49 66.97 12.84 5.22
CirclesUniSz 106.90 75.41 1.42 62.43 15.28 4.09 71.19 31.32 2.27 67.52 12.54 5.38
FillText 57.95 48.33 1.20 4.99 1.80 2.77 7.81 5.22 1.50 5.07 1.29 3.93
StaticAsteroids 365.10 121.71 3.00 309.59 14.92 20.75 197.92 30.49 6.49 201.21 8.07 24.93
Image 214.63 21.87 9.81 421.41 57.41 7.34 596.29 209.74 2.84 657.68 75.82 8.67

Q
uery

IsPointInPath 22.31 0.49 45.53 27.73 0.26 106.65 33.72 0.73 46.19 74.71 0.37 201.91
MeasureText 184.18 50.56 3.64 160.76 2.04 78.80 265.22 5.92 44.80 320.49 1.40 228.92
Rave 58.30 20.50 2.84 38.66 1.71 22.61 62.18 10.98 5.66 115.43 0.58 199.02

Table 1. Benchmarking Blank Canvas vs. Native JavaScript. (times in milliseconds)

The display benchmarks are:

• Bezier – drawing 1000 bezier curves.
• CirclesRandomSize – 1000 filled in circles of random sizes.
• CirclesUniformSize – 1000 filled in circles of a uniform size.
• FillText – 50 words
• StaticAsteroids – 1000 wire polygons.
• Image – 100 images of a cat, drawn at different sizes.

What can be seen is that the relative performance varies widely,
depending on browser and benchmark, but on average, the cost of
using Haskell, and the Blank Canvas API is between approximately
2 and 25, and typically less than 5. This is surprising and encour-
aging! We were expecting a larger overhead. We can also see the
importance of a testing with different environments.

The query benchmarks are:

• IsPointInPath – Draw 1000 rectangles and and points; the
points’ color depends on if the point is inside the rectangle.

• MeasureText – measure the width of 100 words.
• Rave – gradient bars.

Here, as expecting, the cost is much higher. However, again, the
result is encouraging. The places where the overhead is especially
high are where a specific browser does an especially good job of op-
timization. Further, as has been pointed out by Jeffrey Rosenbluth,
a number of our queries simply allocate a numbered resource, and
this unique number generation can be done on the server, allowing
a command rather than query to be used.

5. Related Work
The final paper will contain a detailed related work section, in-
cluding various JavaScript-based Haskell compilers, and other ap-
proaches to the FFI problem.

6. Conclusion
This short extended abstract has introduced the remote-monad de-
sign pattern, and shown its use in a full scale case-study for ac-
cessing the HTML5 Canvas JavaScript API. The cost was not pro-
hibitive, and the API is useful in practice.

Acknowledgments
We would like the thank Jeffrey Rosenbluth, for writing
diagrams-canvas, and helping with the implementation of Blank
Canvas, and Justin Dawson, for working on an earlier version of the

asteroid benchmark. This material is based upon work supported
by the National Science Foundation under Grant No. 1117569 and
Grant No. 1350901.

References
[1] C. Elliott and P. Hudak. Functional reactive animation. In In-

ternational Conference on Functional Programming, 1997. URL
http://conal.net/papers/icfp97/.

[2] A. Gill, T. Bull, A. Farmer, G. Kimmell, and E. Komp. Types and
associated type families for hardware simulation and synthesis: The
internals and externals of Kansas Lava. Higher-Order and Sym-
bolic Computation, pages 1–20, 2013. ISSN 1388-3690. . URL
http://dx.doi.org/10.1007/s10990-013-9098-7.

[3] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Composable
memory transactions. In Proceedings of the tenth ACM SIGPLAN
symposium on Principles and practice of parallel programming, pages
48–60. ACM, 2005.

[4] S. L. P. Jones, A. D. Gordon, and S. Finne. Concurrent haskell. In Con-
ference Record of POPL’96: The 23rd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, Papers Presented
at the Symposium, St. Petersburg Beach, Florida, USA, January 21-24,
1996, pages 295–308, 1996.

[5] J. Launchbury and S. L. Peyton Jones. Lazy functional state threads.
ACM SIGPLAN Notices, 29(6):24–35, 1994.

[6] B. O’Sullivan.
http://hackage.haskell.org/package/criterion, 2014.

[7] J. Rosenbluth.
http://hackage.haskell.org/package/diagrams-canvas,
2014.

[8] N. Sculthorpe and A. Gill.
http://hackage.haskell.org/package/yampa-canvas, 2014.

[9] N. Sculthorpe, J. Bracker, G. Giorgidze, and A. Gill. The
constrained-monad problem. In In Proceedings of the
18th ACM SIGPLAN International Conference on Func-
tional Programming, pages 287–298. ACM, 2013. URL
http://dl.acm.org/citation.cfm?doid=2500365.2500602.

[10] J. Svenningsson and B. J. Svensson. Simple and compositional reifi-
cation of monadic embedded languages. In International Conference
on Functional Programming, pages 299–304. ACM, 2013.

[11] B. Yorgey. http://hackage.haskell.org/package/diagrams,
2014.

[12] B. A. Yorgey. Monoids: theme and variations (functional pearl). In
Haskell Syposium. ACM, 2012.

Project H: Programming R in Haskell
PRELIMINARY DRAFT

Mathieu Boespflug Facundo Domı́nguez
Alexander Vershilov

Tweag I/O

Allen Brown
Amgen

Abstract
A standard method for augmenting the “native” set of libraries
available within any given programming environment is to extend
this set via a foreign function interface provided by the program-
ming language. In this way, by exporting the functionality of ex-
ternal libraries via binding modules, one is able to reuse libraries
without having to reimplement them in the language du jour.

However, a priori bindings of entire system libraries is a te-
dious process that quickly creates an unbearable maintenance bur-
den. We demonstrate an alternative to monolithic and imposing
binding modules, even to make use of libraries implemented in
a special-purpose, dynamically typed, interpreted language. As a
case study, we present H, an R-to-Haskell interoperability solution
making it possible to program all of R, including all library pack-
ages on CRAN, from Haskell, a general-purpose, statically typed,
compiled language. We demonstrate how to do so efficiently, with-
out marshalling costs when crossing language boundaries and with
static guarantees of well-formation of expressions and safe acqui-
sition of foreign language resources.

Keywords R, Haskell, foreign function interface, quasiquotation,
language embedding, memory regions

1. Introduction
The success or failure in the industry of a programming language
within a particular problem domain is often predicated upon the
availability of a sufficiently plethoric set of good quality libraries
relevant to the domain. Libraries enable code reuse, which ulti-
mately leads to shorter development cycles. Yet business and regu-
latory constraints may impose orthogonal requirements that not all
programming languages are able to satisfy.

Case in point: at Amgen, we operate within a stringent regula-
tory environment that requires us to establish high confidence as to
the correctness of the software that we create. In life sciences, it is
crucial that we aggressively minimize the risk that any bug in our
code, which could lead to numerical, logical or modelling errors
with tragic consequences, goes undetected.

[Copyright notice will appear here once ’preprint’ option is removed.]

We present a method to make available any foreign library
without the overheads typically associated with more traditional
approaches. Our goal is to allow for the seamless integration of
R with Haskell — invoking R functions on Haskell data and vice
versa.

Foreign Function Interfaces The complexity of modern soft-
ware environments makes it all but essential to interoperate soft-
ware components implemented in different programming lan-
guages. Most high-level programming languages today include
a foreign function interface (FFI), which allows interfacing with
lower-level programming languages to get access to existing sys-
tem and/or purpose-specific libraries [2, 9]. An FFI allows the
programmer to give enough information to the compiler of the host
language to figure out how to invoke a foreign function included as
part of a foreign library, and how to marshal arguments to the func-
tion in a form that the foreign function expects. This information is
typically given as a set of bindings, one for each function, as in the
example below:

{-# LANGUAGE ForeignFunctionInterface #-}
module Example1 (getTime) where
import Foreign
import Foreign.C

#include <time.h>

data TimeSpec = TimeSpec
{seconds :: Int64
, nanoseconds :: Int32
}

foreign import ccall ”clock gettime”
c clock gettime :: ClockId→ Ptr TimeSpec→ IO CInt

getTime :: ClockId→ IO TimeSpec
getTime cid = alloca $ λts.do

throwErrnoIfMinus1 ”getTime” $
c clock gettime cid ts

peek ts

In the above, c clock gettime is a binding to the clock_gettime()
C function. The API conventions of C functions are often quite dif-
ferent from that of the host language, so that it is convenient to ex-
port the wrapper function getTime rather than the binding directly.
The wrapper function takes care of converting from C representa-
tions of arguments to values of user defined data types (performed
by the peek function, not shown), as well as mapping any foreign
language error condition to a host language exception.

Binding generators These bindings are tedious and error prone to
write, verbose, hard to read and a pain to maintain as the API of the
underlying library shifts over time. To ease the pain, over the years,

1 2014/9/8

binding generators have appeared [1], in the form of pre-processors
that can parse C header files and automate the construction of
binding wrapper functions and argument marshalling. However,
these tools:

1. do not alleviate the need for the programmer to repeat in the
host language the type of the foreign function;

2. add yet more complexity to the compilation pipeline;

3. being textual pre-processors, generate code that is hard to de-
bug;

4. are necessarily limited in terms of the fragments of the source
language they understand and the types they can handle, or
repeat the complexity of the compiler to parse the source code.

Point (1) above is particularly problematic, because function signa-
tures in many foreign libraries have a knack for evolving over time,
meaning that bindings invariably lag behind the upstream foreign
libraries in terms of both the versions they support, and the number
of functions they bind to.

Moreover, such binding generators are language specific, since
they rely on intimate knowledge of the foreign language in which
the foreign functions are available. In our case, the foreign language
is R, which none of the existing binding generators support. We
would have to implement our own binding generator to alleviate
some of the burden of working with an FFI. But even with such a
tool in hand, the tedium of writing bindings for all standard library
functions of R, let alone all functions in all CRAN packages, is but
a mildly exciting prospect. One would need to define a monolithic
set of bindings (i.e. a binding module), for each R package. Because
we cannot anticipate exactly which functions a user will need, we
would have little recourse but to make these bindings as exhaustive
as possible.

Rather than bind all of R, the alternative is to embed all of R.
Noting that GHC flavoured Haskell is a capable meta-programming
environment, the idea is to define code generators which, at each
call site, generates code to invoke the right R function and pass
arguments to it using the calling convention that it expects. In
this way, there is no need for a priori bindings to all functions.
Instead, it is the code generator that produces code spelling out
to the compiler exactly how to perform the R function call – no
binding necessary.

It just so happens that the source language for these code gen-
erators is R itself. In this way, users of H may express invoca-
tion of an R function using the full set of syntactical conveniences
that R provides (named arguments, variadic functions, etc.), or in-
deed write arbitrary R expressions. R has its own equivalent to
clock_gettime(), called Sys.time(). With an embedding of R
in this fashion, calling it is as simple as:

printCurrentTime = do
now ← Jr| Sys.time() K
putStrLn ("The current time is: " ++ fromSEXP now)

The key syntactical device here is quasiquotes [7], which allow
mixing code fragments with different syntax in the same source file
— anything within an Jr| ... K pair of brackets is to be understood
as R syntax.

Contributions In this paper, we advocate for a novel approach
to programming with foreign libraries, and illustrate this approach
with the first complete, high-performance tool to access all of R
from a statically typed, compiled language. We highlight the dif-
ficulties of mixing and matching two garbage collected languages
that know nothing about each other, and how to surmount them by
bringing together existing techniques in the literature for safe mem-
ory management [6]. Finally, we show how to allow optionally as-

cribing precise types to R functions, as a form of compiler-checked
documentation and to offer better safety guarantees.

Outline The paper is organized as follows. We will first walk
through typical uses of H, before presenting its overall architecture
(Section 2). We delve into a number of special topics in later
sections, covering how to represent foreign values efficiently in a
way that still allows for pattern matching (Section 3.1), optional
static typing of dynamically typed foreign values (Section 3.2),
creating R values from Haskell (Section 3.3) and efficient memory
management in the presence of two separately managed heaps with
objects pointing to arbitrary other objects in either heaps (Section
3.4). We conclude with a discussion of the overheads of cross
language communication (Section 4) and an overview of related
work (Section 5).

2. H walkthrough and overall architecture
2.1 Foreign values
Foreign functions act on values, for which presumably these for-
eign functions know the representation in order to compute with
them. In the specific case of R, all values share a common struc-
ture. Internally, R represents every entity that it manipulates, be
they scalars, vectors, uninterpreted term expressions, functions or
external resources such as sockets, as pointers to a SEXPREC struc-
ture, defined in C as follows:

typedef struct SEXPREC {
SEXPREC_HEADER;
union {

struct primsxp_struct primsxp;
struct symsxp_struct symsxp;
struct listsxp_struct listsxp;
struct envsxp_struct envsxp;
struct closxp_struct closxp;
struct promsxp_struct promsxp;

} u;
} SEXPREC, *SEXP;

Each variant of the union struct corresponds to a different form
of value. However, no matter the form, all values at least share
the same header (called SEXPREC_HEADER). The type of pointers
to SEXPRECs is abbreviated as SEXP. In order to invoke functions
defined in R then, we simply need a way to construct the right
SEXPREC representing that invocation, and then have R interpret
that invocation. We will cover how to do so in Section 2.2, but for
now we do need to define in Haskell what a SEXP is:

data SEXPREC
type SEXP = Ptr SEXPREC

2.2 Interoperating scripting languages
R source code is organized as a set of scripts, which are loaded
one by one into the R interpreter. Each statement in a each script
is evaluated in-order and affects the global environment maintained
by the R interpreter, which maps symbols to values. In its simplest
form, H is an interactive environment much like R, with a global
environment altered by the in-order evaluation of statements.

The central and most general mechanism by which H allows
interoperating with R is quasiquotation. A quasiquote is a partial R
script — that is, a script with “holes” in it that stand in for as of yet
undetermined portions. An example quasiquote in Haskell of an R
snippet is:

Jr| function(x) x + 1 K

This quasiquote is ground, in that it does not contain any holes
(called antiquotes), but one can also antiquote inside a quasiquote:

2 2014/9/8

●
●

●

●

●

●

●

●

●

●

2 4 6 8 10

0
20

40
60

80
10

0

c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

c(
1,

 4
, 9

, 1
6,

 2
5,

 3
6,

 4
9,

 6
4,

 8
1,

 1
00

)

Figure 1. Output of Jr| plot(xs_hs, ys_hs) K. The data is gen-
erated from Haskell. R draws the plot.

let y = mkSEXP 1
in Jr| function(x) x + y_hs K

By convention, any symbol with a _hs suffix is treated specially
(see Section 2.5). It is interpreted as a reference to a Haskell
variable defined somewhere in the ambient source code. That is,
any occurrence of a symbol of the form x_hs does not denote a
variable of the object language — it is an antiquote referring to
variable x in the host language. Given any quasiquote, it is possible
to obtain a full R script, with no holes in it, by splicing the value of
the Haskell variables into the quasiquote, in place of the antiquotes.

At a high-level, H is a desugarer for quasiquotes implemented
on top of a Haskell interactive environment, such as GHCi [4]. It
defines how to translate a quasiquotation into a Haskell expression.
Just as R includes an interactive environment, H includes an inter-
active environment, where the input is a sequence of Haskell ex-
pressions including quasiquoted R code snippets, such as in the
following session, where we plot part of the quadratic function, di-
rectly from the Haskell interactive prompt:

H〉 let xs = [1 . . 10] :: [Double]
H〉 let ys = [x2 | x ← xs]
H〉 result← Jr| as.character(ys_hs) K
H〉 H.print result
[1] "1" "4" "9" "16" "25" "36" "49" "64" ...

H〉 Jr| plot(xs_hs, ys_hs) K
〈graphic output (See Figure 1)〉

Now say that we are given a set of random points, roughly
fitted by some non-linear model. For the sake of example, we can
use points generated at random along a non-linear curve by the
following Haskell function:

import System.Random.MWC
import System.Random.MWC.Distributions

generate :: Int32→ IO Double
generate ix =

withSystemRandom ◦ asGenIO $ λgen.
let r = (x − 10) ∗ (x − 20) ∗ (x − 40) ∗ (x − 70)

+ 28 ∗ x ∗ (log x)
in do v← standard gen
return $ r ∗ (1 + 0.15 ∗ v)
where x = fromIntegral ix

As before, take a set of coordinates:

H〉 Jr| xs <- c(1:100) K
H〉 Jr| ys <- mapply(generate_hsfun, xs) K

●●
●●●●

●●●
●●
●
●●●

●●●●

●

●

●●
●●

●
●
●
●

●

●

●

●
●

0 20 40 60 80 100

0.
0e

+
00

6.
0e

+
06

1.
2e

+
07

1:100

ys

Figure 2. Fitting polynomial models of increasing degree (n =
{2, 3, 4}) to a set of points in Haskell. R fits the models.

generate_hsfun is a function splice — just like any other splice,
except that the spliced value is higher-order, i.e. a function. R’s
mapply() applies the Haskell function to each element of xs,
yielding the list ys.

Our goal is to ask R to compute estimates of the parameters
of polynomial models of increasing degree, with models of higher
degree having a higher chance of fitting our dataset well. The R
standard library provides the nls() function to compute the non-
linear least-squares estimate of the parameters of the model. For
example, we can try to fit a model expressing the relation between
ys to xs as a polynomial of degree 3:

H〉 Jr| P3 <- ys ~ a3*xs**3 + a2*xs**2 + a1*xs + a0 K
H〉 Jr| initialPoints <- list(a0=1,a1=1,a2=1,a3=1) K
H〉 Jr| model3 <- nls(P3, start=initialPoints) K

As the degree of the model increases, the residual sum-of-squares
decreases, to the point where in the end we can find a polynomial
that fits the dataset rather well, as depicted in Figure 2, produced
with the following code:

Jr| plot(xs,ys) K
〈graphic output (See Figure 2)〉
Jr| lines(xs,predict(model2), col = 2) K
Jr| lines(xs,predict(model3), col = 3) K
Jr| lines(xs,predict(model4), col = 4) K

2.3 Scripting from compiled modules
While an interactive prompt is extremely useful for exploratory
programming, writing a program as a sequence of inputs for a
prompt is a very imperative style of programming with limited
abstraction facilities. Fortuntaly, H is also a library. Importing the
library brings in scope the necessary definitions in order to embed
quasiquotes such as the above in modules of a compiled program.

Behind the scenes, the H library hosts an embedded instance
of the R interpreter, available at runtime. As in the interactive
environment, this embedded instance is stateful. It is possible to
mutate the global environment maintained by the interpreter, say
by introducing a new top-level definition. Therefore, interaction
with this embedded instance must be sequential. In order to enforce
sequential access to the interpreter, we introduce the R monad and
make all code that ultimately calls into the interpreter actions of

3 2014/9/8

the R monad. As a first approximation, the R monad is a simple
wrapper around the IO monad (but see Section 3.4)1.

newtype R a = R (IO a)

withEmbeddedR :: R a → IO a

withEmbeddedR first spawns an embedded instance, runs the pro-
vided action, then finalizes the embedded instance. There is no
other way to run the R monad.

2.4 Rationale
R is a very dynamic language, allowing many code modifications
during runtime, such as rebinding of top-level definitions, super as-
signment (modifying bindings in parent scopes), (quasi-)quotation
and evaluation of expressions constructed dynamically. The R pro-
gramming language is also so-called ”latently typed” - types are
checked during execution of the code, not ahead of time. Many of
these features are not compiler friendly.

Haskell, by contrast, is designed to be much easier to compile.
This means that not all R constructs and primitives can be readily
mapped to statically generated Haskell code with decent perfor-
mance. In particular, top-level definitions in Haskell are never dy-
namically rebound at runtime: a known function call is hence often
a direct jump, rather than incurring a dynamic lookup in a symbol
table (the environment).

Much of the dynamic flavour of R likely stems from the fact
that it is a scripting language. The content of a script is meant to be
evaluated in sequential order in an interactive R prompt. The effect
of loading multiple R scripts at the prompt is in general different
depending on the order of the scripts.

Central to the design of Haskell, by contrast, is the notion of
separately compilable units of code, called modules. Modules can
be compiled separately and in any order (provided some amount of
metadata about dependencies). Contrary to R scripts, the order in
which modules are loaded into memory is non-deterministic.

For this reason, in keeping to a simple solution to interoperat-
ing with R, we choose to devolve as much processing of R code as
possible to an embedded instance of the R interpreter and retain the
notion of global environment that R provides. This global environ-
ment can readily be manipulated from an interactive environment
such as GHCi [4]. In compiled modules, access to the environment
as well as encapsulation of any effects can be mediated through a
custom monad, the R monad presented in Section 2.3.

2.5 Runtime reconstruction of expressions
Quasiquotes are purely syntactic sugar that are expanded at compile
time. They have no existence at runtime. A quasiquote stands for
an R expression, which at runtime we therefore have to reconstruct.
In other words, the expansion of a quasiquote is code that generates
an R expression. For a ground quasiquote whose content is R
expression S, we construct a Haskell expression E, such that

R Parse(S) = E.

This law falls out as a special case of a more general law about
antiquotation: for any substitution σ instantiating each antiquoted
variable in S with some SEXP, we should have that

R Parse(S)σ = Eσ.

That is, the abstract syntax tree (AST) constructed at runtime (right
hand side) should be equivalent to that returned by R_parse() at
compile time (left hand side). The easiest way to ensure this prop-
erty is to simply use the R parser itself to identify what AST we

1 This definition does not guarantee that R actions will only be executed
when the associated R interpreter instance is extant. See Section 3.4 for a
fix.

need to build. Fortunately, R does export its parser as a standalone
function, making this possible. Note that we only call the parser at
compile time — reconstructing the AST at runtime programmati-
cally is much faster than parsing.

The upside of reusing R’s parser when expanding quasiquotes
is that we get support for all of R’s syntax, for free, and avoid a
potential source of bugs. The flipside is that we cannot reliably
extend R’s syntax with meta-syntactic constructs for antiquotation.
We must fit within R’s existing syntax. It is for this reason that
antiquotation does not have a dedicated syntax, but instead usurps
the syntax of regular R variables.

3. Special topics
3.1 A native view of foreign values
Programming across two languages typically involves a tradeoff:
one can try shipping off an entire dataset and invoking a foreign
function that does all the processing in one go, or keep as much of
the logic in the host language and only call into foreign functions
punctually. For example, mapping an R function frobnicate()
over a list of elements might be done entirely in R, on the whole
list at once,

H〉 ys ← Jr| mapply(frobnicate, xs_hs) K

or elementwise, driven from Haskell,

H〉 ys ← mapM (λx . Jr| frobnicate(x_hs) K) xs

The latter style is often desirable — the more code can be kept in
Haskell the safer, because more code can be type checked statically.

The bane of language interoperability is the perceived cost of
crossing the border between one language to another during exe-
cution. Any significant overhead incurred in passing arguments to
a foreign function and transferring control to it discourages tightly
integrated programs where foreign functions are called frequently,
such as in the last line above. Much of this cost is due to marshalling
values from the native representation of data, to the foreign repre-
sentation, and back.

By default, and in order to avoid having to pay marshalling
and unmarshalling costs for each argument every time one in-
vokes an internal R function, we represent R values in exactly
the same way R does, as a pointer to a SEXPREC structure (de-
fined in R/Rinternals.h). This choice has a downside, however:
Haskell’s pattern matching facilities are not immediately available,
since only algebraic datatypes can be pattern matched.

HExp is R’s SEXP (or *SEXPREC) structure represented as
a (generalized) algebraic datatype. Each SEXPREC comes with a
“type” tag the uniquely identifies the layout (one of primsxp_struct,
symsxp_struct, etc. as seen in Section 2.1). See Figure 3 for an
excerpt of the R documentation enumerating all possible type tags2.
A simplified definition of HExp would go along the lines of Fig-
ure 4. Notice that for each tag in Figure 3, there is a corresponding
constructor in Figure 4.

For the sake of efficiency, we do not use HExp as the basic
datatype that all H generated code expects. That is, we do not
use HExp as the universe of R expressions, merely as a view. We
introduce the following view function to locally convert to a HExp,
given a SEXP from R.

hexp :: SEXP→ HExp

The fact that this conversion is local is crucial for good performance
of the translated code. It means that conversion happens at each use
site, and happens against values with a statically known form. Thus
we expect that the view function can usually be inlined, and the

2 In R 3.1.0, there are 23 possible tags.

4 2014/9/8

NILSXP There is only one object of type NILSXP, R_NilValue,
with no data.

SYMSXP Pointers to the PRINTNAME (a CHARSXP), SYMVALUE and
INTERNAL. (If the symbol’s value is a .Internal function, the
last is a pointer to the appropriate SEXPREC.) Many symbols
have the symbol value set to R_UnboundValue.

LISTSXP Pointers to the CAR, CDR (usually a LISTSXP or NILSXP)
and TAG (a SYMSXP or NILSXP).

CHARSXP LENGTH, TRUELENGTH followed by a block of bytes
(allowing for the nul terminator).

REALSXP LENGTH, TRUELENGTH followed by a block of C dou-
bles.

. . .

Figure 3. Extract from the R documentation enumerating all the
different forms that values can take.

short-lived HExp values that it creates is compiled away by code
simplification rules applied by GHC. Notice how HExp as defined
in Figure 4 is a shallow view — the fields of each constructor are
untranslated SEXP’s, not HExp’s. In other words, a HExp value
corresponds to the one-level unfolding of a SEXP as an algebraic
datatype. The fact that HExp is not a recursive datatype is crucial
for performance. It means that the hexp view function can be
defined non-recursively, and hence is a candidate for inlining3.

In this manner, we get the convenience of pattern matching
that comes with a bona fide algebraic datatype, but without paying
the penalty of allocating long-lived data structures that need to be
converted to and from R internals every time we invoke internal R
functions or C extension functions.

Using an algebraic datatype for viewing R internal functions
further has the advantage that invariants about these structures
can readily be checked and enforced, including invariants that R
itself does not check for (e.g. that types that are special forms of
the list type really do have the right number of elements). The
algebraic type statically guarantees that no ill-formed type will ever
be constructed on the Haskell side and passed to R.

We also define an inverse of the view function:

unhexp :: HExp→ SEXP

3.2 “Types” for R
3.2.1 Of types, classes or forms
Haskell is a statically typed language, whereas R is a dynamically
typed language. However, this apparent mismatch does not cause
any particular problem in practice. This is because the distinction
between ”statically typed” languages and ”dynamically typed” lan-
guages is largely artificial, stemming from the conflation of two
distinct concepts: that of a class and that of a type [5].

The prototypical example of a type with multiple classes of
values is that of complex numbers. There is one type of complex
numbers, but two (interchangeable) classes of complex numbers:
those in rectangular coordinates and those in polar coordinates.
Both classes represent values of the same type. Harper further
points out:

Crucially, the distinction between the two classes of
complex number is dynamic in that a given computation
may result in a number of either class, according to conve-
nience or convention. A program may test whether a com-
plex number is in polar or rectangular form, and we can

3 The GHC optimizer never inlines recursive functions.

data HExp
= Nil -- NILSXP
| Symbol SEXP SEXP SEXP -- SYMSXP
| List SEXP SEXP SEXP -- LISTSXP
| Char Int32 (Vector Word8) -- CHARSXP
| Real Int32 (Vector Double) -- REALSXP
| ...

Figure 4. Untyped HExp view.

form data structures such as sets of complex numbers in
which individual elements can be of either form.

Hence what R calls ”types” are better thought of as ”classes” in
the above sense. They correspond to variants (or constructors) of a
single type in the Haskell sense. R is really a unityped language.

We call the type of all the classes that exist in R the universe
(See Section 3.1). Each variant of the union field in the SEXPREC
structure defined in Section 2.1 corresponds to a class in the above
sense. The SEXPREC structure is the universe.

Because ”class” is already an overloaded term in both R and in
Haskell, in the following we use the term form to refer to what the
above calls a ”class”.

Some R functions expect a large number of arguments. It is
not always clear what the usage of those functions is. It is all
too easy to pass a value of the wrong form as an argument, or
provide too many arguments, or too few. R itself cannot detect such
conditions until runtime, nor is it practical to create a static analysis
for R to detect them earlier, given the permissive semantics of the
language. However, some information about the expected forms
for arguments is given in R’s documentation for practically every
function in the standard library. It is often useful to encode that
information from the documentation in machine checkable form,
in such a way that the Haskell compiler can bring to bear its own
existing static analyses to check for mismatches between formal
parameters and actual arguments.

3.2.2 Form indexed values
To this end, in H we have form indexed SEXPs. The actual defini-
tion of a SEXP in H is:

newtype SEXP s (a :: SEXPTYPE)
= SEXP (PTR SEXPREC)

The a parameter refers to the form of a SEXP (See Section 3.4
for the meaning of the s type parameter). In this way, a SEXP
of form REALSXP (meaning a vector of reals), can be ascribed the
type SEXP s R.Real, distinct from SEXP s R.Closure, the type
of closures. These types are all of kind SEXPTYPE, a datatype
promoted to a kind4. Each inhabitant of the SEXPTYPE kind
corresponds to a type tag as seen in Figure 3.

When some given function is used frequently throughout the
code, it is sometimes useful to introduce a wrapper for it in Haskell,
ascribing to it a particular type. For example, the function that
parses source files can be written as5:

import qualified Foreign.R.Type as R

parse :: SEXP s ′R.String -- Filename of source
→ SEXP s ′R.Int -- Number of expressions to parse
→ SEXP s ′R.String -- Source text

4 Using GHC’s -XDataKind language extension.
5 The ′ is an artifact of the -XDataKinds extension, useful for disambigua-
tion. It is not strictly necessary, but it is good practice to use it.

5 2014/9/8

→ R s (SEXP s ′R.Expr)
parse file n txt = Jr| parse(file_hs, n_hs, txt_hs) K

Now that we have a Haskell function for parsing R source files, with
a Haskell type signature, the Haskell compiler can check that all
calls to parse() are well-formed. We found this feature immensely
useful to document in the source code itself how to call various R
functions, without having to constantly look up this information in
the R documentation.

Of course, while form indexing SEXP can in practice be a
useful enough surrogate for a real type system, it does not replace
a real type system. A reasonable property for any adequate type
system is type preservation, also called subject reduction. That is,
we ought to have that:

If Γ `M : T and M ⇓ V then Γ ` V : T

whereM is an expression, T is a type and V is the value ofM . The
crude form of indexing presented here does not enjoy this property.
In particular, given some arbitrary expression, in general the form
of the value of this expression is unknown. We have the following
type of SEXP’s of unknown form:

data SomeSEXP s = ∀a.SomeSEXP (SEXP s a)

Because the form of a value is in general unknown, the type of eval
is:

eval :: SEXP s a → R s (SomeSEXP s)

That is, for any SEXP of any form a , the result is a SEXP of some
(unknown) form.

3.2.3 Casts and coercions
SEXP’s of unknown form aren’t terribly useful. For example, they
cannot be passed as-is to the successor function on integers, defined
as:

succ :: SEXP s ′R.Int→ R s SomeSEXP
succ x = Jr| x_hs + 1 K

Therefore, H provides casting functions, which introduce a dy-
namic form check. The user is allowed to coerce the type in Haskell
of a SEXP given that the dynamic check passes. cast is defined as:

cast :: SSEXPTYPE a → SomeSEXP s → SEXP s a
cast ty s
| fromSing ty ≡ R.typeOf s = unsafeCoerce s
| otherwise = error "cast: Dynamic type cast failed."

where SSEXPTYPE is a singleton type reflecting at the type level
the value of the first argument of cast. The use of a singleton type
here allows us to to write a precise specification for cast: that the
type of the return value is not just any type, but uniquely determined
by the value of the first argument ty.

Now, Jr| 1 + 1 K stands for the value of the R expression
“1 + 1”. That is,

two = Jr| 1 + 1 K :: SomeSEXP s

In order to compute the successor of two, we need to cast the result:

three :: R s SomeSEXP
three = succ (two ‘cast‘ R.Int)

3.3 R values are (usually) vectors
An idiosyncratic feature of R is that scalars and vectors are treated
uniformly, and in fact represented uniformly. This means that pro-
vided an interface to manipulate vectors alone, we can handle all
scalars as well as all vectors. H exports a library of vector manipula-
tion routines, that mirrors the API of the standard vector package.

The advantage of keeping data represented as R vectors throughout
a program is that no marshalling or unmarshalling costs need be in-
curred when passing the data to an R function. Because we provide
the exact same API as for any other (non-R) vector representations,
it is just as easy to manipulate R vectors instead, throughout.

3.4 Memory management
One tricky aspect of bridging two languages with automatic mem-
ory management such as R and Haskell is that we must be careful
that the garbage collectors (GC) of both languages see eye-to-eye.
The embedded R instance manages objects in its own heap, sepa-
rate from the heap that the GHC runtime manages. However, ob-
jects from one heap can reference objects in the other heap and the
other way around. This can make garbage collection unsafe because
neither GC has a global view of the object graph, only a partial view
corresponding to the objects in the heaps of each GC.

3.4.1 Memory protection
Fortunately, R provides a mechanism to ”protect” objects from
garbage collection until they are unprotected. We can use this
mechanism to prevent R’s GC from deallocating objects that are
still referenced by at least one object in the Haskell heap.

One particular difficulty with protection is that one must not
forget to unprotect objects that have been protected, in order to
avoid memory leaks. H uses ”regions” for pinning an object in
memory and guaranteeing unprotection when the control flow exits
a region.

3.4.2 Memory regions
There is currently one global region for R values, but in the future
H will have support for multiple (nested) regions. A region is
opened with the runRegion action, which creates a new region and
executes the given action in the scope of that region. All allocation
of R values during the course of the execution of the given action
will happen within this new region. All such values will remain
protected (i.e. pinned in memory) within the region. Once the
action returns, all allocated R values are marked as deallocatable
garbage all at once.

runRegion :: (∀s.R s a)→ IO a

Regions are transactions, in that protection prevails during the
transaction and ceases after transaction closure.

3.4.3 Automatic memory management
Nested regions work well as a memory management discipline for
simple scenarios when the lifetime of an object can easily be made
to fit within nested scopes. For more complex scenarios, it is often
much easier to let memory be managed completely automatically,
though at the cost of some memory overhead and performance
penalty. H provides a mechanism to attach finalizers to R values.
This mechanism piggybacks Haskell’s GC to notify R’s GC when
it is safe to deallocate a value.

automatic :: MonadR m⇒ R.SEXP s a → m (R.SEXP G a)

In this way, values may be deallocated far earlier than reaching the
end of a region: As soon as Haskell’s GC recognizes a value to no
longer be reachable, and if the R GC agrees, the value is prone to be
deallocated. Because automatic values have a lifetime independent
of the scope of the current region, they are tagged with the global
region G (a type synonym for GlobalRegion).

For example:

do x ← Jr| 1:1000 K
y ← Jr| 2 K
return $ automatic Jr| x_hs * y_hs K

6 2014/9/8

fib tree
0

0.5

1
1
.0

0

1
.0

0

1
.0

0

0
.7

2

R
un

tim
e

(m
s)

accessors views

Figure 5. Normalized comparison of runtimes between views and
accessor functions.

Automatic values can be mixed freely with other values.

4. Benchmarks
As explained in Section 3.1, there are essentially two ways to
deconstruct a SEXP value returned from R: using accessor function
provided by R’s C extension API, or construct a view of the SEXP
as an algebraic datatype and perform case analysis on that. The
latter approach is more convenient, but potentially slower, because
it nominally implies allocating a view data structure. However, as
argued in Section 3.1, through careful engineering of the view, we
expect the compiler to optimize away any extra allocation. In this
section, we test this hypothesis experimentally.

To compare the performance cost of using a view function,
we implement two micro benchmarks. The fib benchmark mea-
sures the performance of a naive implementation in Haskell of
the Fibonacci series over R integers. Likewise, the tree bench-
mark concerns a binary tree traversal function implemented in
Haskell, where the tree is represented using generic R vectors. The
results6 are provided in Figure 4. They were obtained using the
Criterion benchmarking tool [10] using the default settings on a
lightly loaded machine. Where the standard deviations are signifi-
cant (≮ 1%), we indicate them with error bars.

As expected, using a view does not significantly impact per-
formance. In fact, as can be seen in the tree benchmark, views
can even be faster than using accessor functions. The reason is
that a view function can be completely inlined, yielding code that
makes direct memory accesses to statically known offsets in mem-
ory, given a pointer to a SEXPREC structure. Accessors, on the
other hand, are C functions that are opaque to the compiler — they
cannot be inlined, meaning that the overhead of calling a C func-
tion, using the standard calling convention, must be incurred at each
field access.

5. Related Work
TODO

6. Conclusion
Given modern extensions to the Haskell programming language,
the language turns out to support surprisingly easy interoperability
with other languages, with opt-in static guarantees on what argu-
ments get passed to a function, but without the hassle of elabo-
rate bindings. The enabling ingredient here is the existence of a

6 Benchmarks available at http://github.com/tweag/H.

quasiquotation mechanism, which makes it easy to express calls
to foreign language functions in the foreign language itself, in a
way that matches up the foreign documentation for that function.
Many of the ideas in this paper can be transposed to any other func-
tional language provided an equivalent quasiquotation mechanism
exists (e.g. Camlp4 [8] or extension points in OCaml, or SML quo-
tation [11]). In a multistage language but without quasiquotation,
the strategy for avoiding marshalling costs would still apply, but
constructing foreign calls would likely turn out rather less conve-
nient.

Interacting with a latently typed language necessarily induces
some number of runtime checks. While foreign functions can be
selectively typed in the host language, this in practice requires a
pervasive use of casts and coercions. Casts are runtime checks that
have a cost, but moreover a cast failure is not very informative as
to why it happened. A future direction could include integrating a
notion of blame [3] into H, in order to better pinpoint the true cause
of a dynamic check failure.

References
[1] M. M. Chakravarty. C −→ HASKELL, or yet another interfacing

tool. In Implementation of Functional Languages, pages 131–148.
Springer, 2000.

[2] M. M. Chakravarty, S. Finne, F. Henderson, M. Kowalczyk, D. Leijen,
S. Marlow, E. Meijer, S. Panne, S. P. Jones, A. Reid, et al. The Haskell
98 foreign function interface 1.0. An Addendum to the Haskell Report.

[3] R. B. Findler and M. Felleisen. Contracts for higher-order functions.
In ACM SIGPLAN Notices, volume 37, pages 48–59. ACM, 2002.

[4] GHC Team. The Glorious Glasgow Haskell Compilation System
User’s Guide, Version 7.8.3.

[5] R. Harper. Practical foundations for programming languages. Cam-
bridge University Press, 2012.

[6] O. Kiselyov and C.-c. Shan. Lightweight monadic regions. In ACM
Sigplan Notices, volume 44, pages 1–12. ACM, 2008.

[7] G. Mainland. Why it’s nice to be quoted: quasiquoting for Haskell. In
Proceedings of the ACM SIGPLAN workshop on Haskell workshop,
pages 73–82. ACM, 2007.

[8] M. Mauny and D. de Rauglaudre. A complete and realistic implemen-
tation of quotations for ml. In Proc. 1994 Workshop on ML and its
applications, pages 70–78, 1994.

[9] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of
Standard ML, revised edition. MIT Press, 1(2):2–3, 1997.

[10] B. O’Sullivan. Criterion, 2014. URL http://www.serpentine.
com/criterion/.

[11] K. Slind. Object language embedding in standard ml of new jersey. In
Proceedings of the Second ML Workshop, CMU SCS Technical Report.
Carnegie Mellon University, Pittsburgh, Pennsylvania, 1991.

7 2014/9/8

Submission for IFL 2014 pre-proceedings

Type-Directed Elaboration of Quasiquotations
A High-Level Syntax for Low-Level Reflection

David Raymond Christiansen
IT University of Copenhagen

drc@itu.dk

Abstract
Idris’s reflection features allow Idris metaprograms to manipulate
a representation of Idris’s core language as a datatype, but these
reflected terms were designed for ease of type checking and are
therefore exceedingly verbose and tedious to work with. A sim-
pler notation would make these programs both easier to read and
easier to write. We describe a variation of quasiquotation that uses
the language’s compiler to translate high-level programs with holes
into their corresponding reflected representation, both in pattern-
matching and expression contexts. This provides a notation for re-
flected language that matches the notation used to write programs,
allowing readable metaprograms.

Categories and Subject Descriptors CR-number [subcategory]:
third-level

Keywords quasiquotation; proof automation; metaprogramming

1. Introduction
Idris [3] is a programming language with dependent types in the tra-
dition of Agda [16] and Cayenne [1]. An important design goal for
the Idris team is to enable the construction of embedded languages
that can make strong guarantees about the safety of the programs
written in them, rather than requiring users of these embedded lan-
guages to write proofs themselves. If this goal is to succeed, Idris
will require good tools that library authors can use to automate the
construction of proofs.

One such tool is reflection, in which an Idris program can
construct a proof object by inspecting the AST of a the goal type
and generating an AST for the proof term. This allows developers
of proof automation to write functions that might otherwise be
difficult, because eliminating types through pattern matching is
unsound.

Idris has a well-defined core language, called TT, and all con-
structions in the high-level Idris language are given their semantics
by defining their translation to TT. This translation process is re-
ferred to as elaboration. Terms in TT are exceedingly verbose: ev-
ery binder has a fully explicit type annotation, every name is fully-
qualified, and there are no implicit arguments. This verbosity dras-
tically simplifies type checking. The intention is that one need only

[Copyright notice will appear here once ’preprint’ option is removed.]

trust this simple type checker to be able to trust the rest of the sys-
tem.

Because Idris reflection works directly with TT terms, it can
quickly become overwhelming. Furthermore, the correspondence
between high-level Idris terms and their corresponding TT terms
are not always obvious to non-expert users of the language. What
appears to be a simple function application at the level of Idris code
might turn out to have very complicated type-level structure or non-
trivial implicit arguments. In the normal course of programming, it
is good to hide this complexity and allow the user to focus on her
or his programming task, rather than being overwhelmed by minu-
tiae. However, when writing metaprograms using reflection, this
becomes an unfortunate trade-off, because the core language can
be difficult to connect to user-visible terms. This difficulty is espe-
cially unpleasant when using Idris’s error reflection [5], in which
Idris code can be used to rewrite the compiler’s error messages be-
fore they are presented to the user. In fact, it was practical experi-
ence with error reflection that motivated the work described in this
paper.

We augment the high-level Idris language with quasiquotations,
in which the Idris elaborator is invoked to transform high-level
Idris into reflected TT terms using the same translation that pro-
duces TT terms for the type checker. Within quasiquoted terms,
antiquotations allow other reflected terms to be spliced into the
quotation. In a pattern context, antiquotations become patterns to be
matched by the reflected term at the corresponding position. These
quasiquotations allow the best of both worlds: high-level syntax for
the uninteresting parts, with details filled in by type-directed elab-
oration, along with control over the details of term construction
when and if it matters.

Contribution
The contributions of this paper are:

• a novel adaptation of quasiquotations to the context of dependently-
typed programming with reflection that allows the use of high-
level language syntax to construct and manipulate the corre-
sponding terms in a core language;

• a description of an implementation technique for these quasiquo-
tations in Idris, as an extension of the type-driven elaboration
described in Brady’s 2013 paper [3]; and

• demonstrations of the utility of these quasiquotations for proof
automation and error message rewriting.

Furthermore, this paper can serve as a demonstration of how to ex-
tend a tactic-based elaborator to support a new high-level language
feature.

1 2014/9/24

2. Related Work
2.1 A Brief History of Quasiquotation
The notion of quasiquotation was invented by Quine in his 1940
book Mathematical Logic [12, pp. 33–37]. While ordinary quota-
tions allow one to mention a phrase rather than using it, quasiquota-
tions allow these quoted expressions to contain variables that stand
for other expressions, just as mathematical expressions can contain
variables that stand for values. In other words, a specific class of
subexpression is treated as a use within a context that is mentioned.
Quine used Greek letters to represent variables in quasiquotations.

The paradigmatic instance of quasiquotation in programming
languages is that found in the Lisp family. Bawden’s 1999 pa-
per [2] summarizes the history and semantics of the quasiquota-
tion mechanism found in both the Scheme family of languages and
in Common Lisp. In the Lisp family, program code is represented
in a uniform manner, using lists that contain either atomic data,
such as symbols, strings, and numbers, or further lists. In Lisp par-
lance, these structures are referred to as “S-expressions”. Because
S-expressions are simply ordinary data, it makes sense to quote
them, yielding a structure that can easily be manipulated. Addition-
ally, most Lisps have a quasiquotation system, in which specially
marked subexpressions of a quotation are evaluated, with the result
substituted into the quotation. Unlike Quine’s quasiquotation, the
Lisp family of languages allow arbitrary expressions to be inserted
into quasiquotations.

Languages outside of the Lisp family have also used quasiquo-
tation to implement language extension. Because these languages’
syntaxes do not have the regular format of Lisp S-expressions.
The Camlp4 system [6] provides quasiquotation for the OCaml lan-
guage, among other extensions. In Camlp4, quasiquotations consist
of arbitrary strings that are transformed by a quotation expander
to either a string representing valid concrete syntax or to an ab-
stract syntax tree. These quotations support antiquotation, which
invokes the parser to read an OCaml expression or pattern inside of
the quotation. Template Haskell’s quasiquotations [9] work on sim-
ilar principles. Both systems fully expand all quotations at compile
time, and both check that the generated code is well-typed.

The MetaML family of metaprogramming facilities [15], in-
cluding MetaOCaml[17] and F# [14], implement a style of quota-
tion in which the type of quoted expressions is parameterized over
the type that would be inhabited by the the quoted expression if it
were reified. These features are intended for use in staged computa-
tion. In addition to representing the types of the quoted expressions,
these staging annotations feature static scope, so a quotation that
contains a name contains the version of that name from the scope
in which the quotation was generated.

Scala quasiquotations [13] are very much like Lisp quasiquota-
tions. While their syntax resembles that of strings, this is a con-
sequence of their implementation using Scala’s string interpola-
tors and they are in fact expanded to ASTs at compile time. The
quasiquotations were initially intended to serve as an implementa-
tion technique for Scala macros [4], but they are also useful for both
runtime code generation as well as generating program text. Scala
macros closely resemble Lisp macros, in that they do not intend
to allow arbitrary strings to be used as syntax, but instead imple-
ment transformations from one valid parse tree to another. Unlike
Lisp, Scala programs that contain macros are type checked after
macro expansion, and they are represented by a conventional AST
that macros manipulate. Quasiquotations are a means of construct-
ing and destructuring these trees using the syntax of the high-level
Scala language.

Like Scala, C# is an object-oriented language with a notion of
quotation [11]. In C#, quotation can be applied to an anonymous
function by annotating it with the Expression type, which causes

a datatype representing the function’s AST to be generated instead
of the function itself. However, this feature cannot properly be con-
sidered quasiquotation, as there is no mechanism for escaping the
quotation and inserting a sub-tree that has been generated else-
where.

2.2 Reflection, Proof Automation, and Tactic Languages
The ML language was originally developed as a metalanguage for
the Edinburgh LCF proof assistant [8]. In fact, this is where the
name ML is derived from. An abstract datatype was used to repre-
sent rules of inference in the underlying logic, and ML functions
could then be used to construct these proofs. Higher-order func-
tions could then be used to represent strategies for combining these
functions. ML served as an expressive language for automating the
construction of proofs.

Agda [16] has a notion of reflection, described by van der Walt
and Swierstra. Agda reflection is a form a compile-time metapro-
gramming, where quoted terms are used to construct proof terms
that are then reified and type checked at compile time. These terms
are constructed through direct manipulation of the term AST, which
is a simple untyped lambda calculus. Agda metaprograms can get
access to reflected representations of the type that is expected at
a particular source location as well as its lexical environment, and
they can then use this information to construct a term matching the
expected type. However, users of reflection in Agda must program
with a notation matching the reflected term datatype, rather than
with ordinary Agda syntax.

Coq is perhaps the best-known system that is designed to facil-
itate automating the construction of proofs. Early versions of Coq
required that users extend the built-in collection of tactics using
OCaml. LTac [7] is a domain-specific language for writing new tac-
tics that works at a higher level of abstraction that OCaml. It pro-
vides facilities for pattern matching the syntax of arbitrary terms
from Coq’s term language Gallina, without these terms having been
reduced to applications of constructors. Likewise, it can instantiate
lower-level tactics and tacticals, which may contain Gallina terms,
using portions of syntax extracted from the matched goals. Thus,
LTac pattern matching can be considered a form of quasiquotation.

More recently, Ziliani et al. developed the MTac tactic lan-
guage [19]. Like Agda’s reflection mechanism and unlike LTac,
MTac is implemented in Coq’s term language, rather than being an
external language. However, unlike Agda’s reflection, MTac tactics
use Coq’s type system to classify the terms produced by tactics,
and the type system can therefore catch errors in tactics. Due to
the elimination restrictions and impredicativity of the Prop uni-
verse, one can pattern match over the structure of arbitrary terms in
MTac, rather than just terms in canonical form. MTac required only
minimal extensions to Coq, namely a primitive to run MTac tactics.

3. Reflection in Idris
Idris’s reflection system is very similar to that of Agda. Elements of
a datatype representing terms in a lambda calculus can be generated
from the compiler’s internal representation of TT, after which Idris
programs can manipulate them or use them as input to procedures
that generate new reflected terms. In addition to generating new
terms, Idris allows the generation of tactic scripts through reflec-
tion, by providing a collection of base tactics as a datatype along
with a primitive tactic that allows functions from an environment
and a goal to a reflected tactic to be used as tactics themselves.
Naturally, the tactic that applies an Idris function as a tactic is itself
reflected.

Unlike Agda, the terms that are available through Idris’s re-
flection mechanism are fully annotated with their types. Addition-
ally, they include features of a development calculus in the style
of McBride’s OLEG [10], including special binding forms for holes

2 2014/9/24

and guesses. This representation is more complicated and more ac-
curate than Agda’s, as it maintains typing information.

4. Idris Quasiquotations
TT is a minimalist dependently-typed λ-calculus with inductive-
recursive families of types and operators defined by pattern match-
ing. The full details of TT are available in Brady’s 2013 article [3].

Our quasiquotations extend the Idris− language, which is a
version of Idris in which purely syntactic transformations such as
the translation of do-notation and idiom brackets to their underlying
functions have been performed and user-defined syntax extensions
have been expanded. We extend the expression language with three
new productions:
e, t ::= . . .

| ‘(e) (quasiquotation of e)
| ‘(e : t) (quasiquotation of e with type t)
| ~ e (antiquotation of e)

The parts of a term between a quotation but not within an
antiquotation are said to be quoted. Antiquotations that are not
quoted, and quoted quasiquotations, are static errors. The quoted
regions of a term are elaborated in the same way as any other Idris
expression. However, instead of being used directly, the elaborated
TT terms are first reflected. Non-quoted regions are elaborated
directly into reflected terms, which are inserted as usual.

Names occurring in the quoted portion of a term do not obey
the typical lexical scoping rules of names in Idris. This is because
quoted terms are intended to be used in places other than where
they are constructed, and their reification site may have completely
different bindings for the same names. Therefore, all names in
the quoted portion are taken to refer to the global scope. Because
antiquotations are ordinary terms, they obey the ordinary scoping
rules of the language.

Idris supports type-driven disambiguation of overloaded names.
This feature is used for everything from literal syntax for number-
and list-like structures to providing consistent naming across re-
lated libraries. This is also used to allow “punning” between some
types and their constructors. For instance, () represents both the
unit type and its constructor in Idris, and (Int, String) can rep-
resent either a pair type or a pair of types. In ordinary Idris pro-
grams, all top-level definitions are required to have type annota-
tions, so type information is available to aid in disambiguation. In
quasiquoted terms, however, this information is not available. Thus,
the second variant of quasiquotation above allows a goal type to be
provided. Like quoted terms, it is elaborated in the global environ-
ment. Because the goal type does not occur in the final reflected
term and simply exists as a shorthand to avoid explicitly annotating
names, goal types may not contain antiquotations.

A particularly instructive example that demonstrates the need
for goal types is the unit and product types. Following Haskell,
Idris uses a “pun” on its notation for products. Both the unit
type and its constructor are written (), and (2, "two") is an
inhabitant of (Int, String). Additionally, because a pair of
types is a perfectly valid construct in a dependently-typed system,
(Int, String) could represent either a pair of types or a pair type
— respectively, a member of (Type, Type) or member of Type.
In the context of a quasiquotation, defaulting rules would need to
be used to disambiguate () and (Int, String), and whichever
version was not the default would become very difficult to use. The
distinction between ‘(() : ()) and ‘(() : Type), however, is
easy to see and easy to remember.

5. Elaboration
The Idris elaborator, described in detail in Brady’s 2013 paper [3],
uses proof tactics to translate desugared Idris to the core type theory

TT. A full presentation of this process is far outside the scope
of this paper; however, enough details are repeated to make the
elaboration of quasiquotes understandable.

5.1 The Elaboration Monad
The Idris elaborator is built on top of a library for manipulating
terms in type theory. The elaborator is defined inside of a monad
with state that consists of a hole queue, a focused hole or guess,
and a collection of unsolved unification problems. The hole queue
contains goals that are yet to be solved - at the beginning of elabora-
tion, it will contain a single hole, but later operations can introduce
new holes. The focused hole represents the current goal. Addition-
ally, the elaboration monad contains errors and error handling.

A number of meta-operations, or tactics, are defined in the
elaboration monad. These tactics resemble the built-in proof tactics
of a system like Coq. In this paper, we use the following subset of
Brady’s [3] meta-operations:

• CHECK, which type checks a complete term;
• CLAIM, which introduces a new hole with a particular type,

placing it at the rear of the hole queue;
• GET, which binds the proof state to a variable;
• FILL, which adds a guess for the focused hole, solving the

imposed unification constraints;
• NEWPROOF, which obliterates the proof state and establishes a

new goal;
• PUT, which replaces the proof state with a new one;
• SOLVE, which causes a guess to be substituted for its hole;
• TERM, which returns the current term;
• UNFOCUS, which moves the focused hole to the end of the hole

queue;

As a notational convention, we follow Brady [3] in letting the
notation for names in the meta-language and names in the object
language coincide, deferring to the reader to see which is being
used. Names that occur in both contexts are metalanguage names
referring to coinciding object language names. Additionally, un-
bound variables are taken to be fresh. When operations and their
arguments occur under an arrow (e.g. ~CLAIM ~a), it means that the
operation is repeated on all the arguments in the sequence. This is
similar to mapM in Haskell.

The meta-operations EJ·K and PJ·K, which run relative to a
proof state, respectively elaborate expressions and patterns. These
operations usually coincide; however, they treat unresolved free
variables differently. Following EJ·K, unresolved holes or variables
trigger an error, while unresolved names in patterns (that is, follow-
ing PJ·K) are bound to pattern variables. Otherwise, constructors
with implicit arguments (such as the length argument to the (::)
case of Vect) would not be able to be pattern-matched.

Elaboration is type-directed, in the sense that the elaborator
always has a goal type available and can make decisions based on
this fact. However, sometimes the type will be either unknown or
partially known. In these cases, unification constraints imposed by
the elaboration of the term can cause the type to be solved.

In addition to the meta-operations described by Brady [3], we
define four additional operations:

• ANYTHING, which introduces a hole whose type must be in-
ferred;

• EXTRACTANTIQUOTES, which replaces antiquotations in a
quasiquoted Idris− term with references to fresh names, re-
turning the modified term and the mapping from these fresh
names to their corresponding antiquotation terms;

3 2014/9/24

• REFLECT, which returns a term corresponding to the reflection
of its argument; and

• REFLECTP, which returns a pattern corresponding to the reflec-
tion of its argument.

The operation ANYTHING n can be defined as follows:

ANYTHING n = do CLAIM (n ′ : Type)
CLAIM (n : n ′)

This represents type inference because it hides the fresh name
n ′ that is introduced for the type of n . Thus, the type must
be later solved through unification with other elaborated terms.
EXTRACTANTIQUOTES is a straightforward traversal of an Idris−

term, replacing antiquotations with variables and accumulating a
mapping from these fresh variables to the corresponding replaced
subterms. The names alone are accessed by the operation names .
REFLECT and REFLECTP each take a term and a collection of
names of antiquotations (see Section 5.2) and return a quoted ver-
sion of the term. Antiquotation names, however, are not quoted.
Additionally, REFLECTP inserts universal patterns in certain cases
— see Section 5.4

5.2 Elaborating Quasiquotations
We implement quasiquotations by extending the elaboration pro-
cedures for expressions and patterns, respectively EJ·K and PJ·K.
Elaborating the quoted term proceeds through five steps, each of
which is described in detail below:

1. Replace all antiquotations by fresh variables, keeping track of
the antiquoted terms and their assigned names

2. Elaborate the resulting term in a fresh proof state, to avoid
variable capture

3. If RHS, quote the term, leaving antiquotation variables free

4. If LHS, quote with strategically placed universal patterns for
things like unused names

5. Restore local environment and elaborate antiquotations

Replace antiquotations We replace antiquotations with fresh
variables because they will need to be treated differently than the
rest of the term. Additionally, the expected types of the antiquota-
tions must be inferable from the context in which they are found,
because the quotations that will fill them provide no type informa-
tion. We remember the association between the antiquoted terms
and the names that they were replaced by so that the result of elab-
orating them can later be inserted.

Elaborate in a fresh proof state Quotations can occur in any Idris
expression. However, names that are defined in quotations are re-
solved in the global scope, for reasons discussed in Section 4. Be-
cause the scopes of local variables are propagated using hole con-
texts in the proof state, it is sufficient to elaborate the quoted term
in a fresh state. The replacement of antiquotations with references
to fresh names means that there is no risk of elaborating the con-
tents of the antiquotations too early. However, when the elaborator
reaches these names, it will fail, because they are unknown. To fix
this problem, we first use the ANYTHING meta-operation that was
defined above to introduce holes for both these names and their
types. Because this stage of elaboration occurs in term mode, rather
than pattern mode, the elaboration will fail if the holes containing
types don’t get solved through unification.

Quote the term Quotation is the first step that differs between
terms and patterns. In both cases, the term resulting from elabora-
tion is quoted, with the names that were assigned to antiquotations
left unquoted. However, if the term being elaborated is a pattern,

EJ‘(e)K = do (e ′, ~a) ← EXTRACTANTIQUOTES e (1)

st ← GET (2)
NEWPROOF T
CLAIM (T : Type)

~ANYTHING (names ~a)
EJe ′K
qt ← TERM
CHECK qt
PUT st

~CLAIM (names ~a : ~Term) (3)
r ← REFLECT qt ~a
FILL r
SOLVE

~ELABANTIQUOTE ~a (5)

Figure 1. Elaboration of quasiquotations

then some aspects of the term are not quoted faithfully. See Sec-
tion 5.4 for more information.

Elaborate the antiquotations The quoted term from the previous
step is ready to be spliced into the original hole. What remains is
to solve the variables introduced for antiquotations in the previous
step. This is done by first introducing each name as a hole expecting
a quoted term, and then elaborating them straightforwardly into
their respective holes.

Figure 1 describes this elaboration procedure in Brady’s nota-
tion. The individual tactics that correspond to each of the steps
1–5 above are numbered. Antiquotations are replaced in the first
line of the tactic script, using the previously-described operation
EXTRACTANTIQUOTES (1). Then, the ordinary state monad oper-
ations GET and PUT are used to save and restore the original proof
state. The region (2) bracketed by these operations corresponds
to step 2 above — namely, elaboration of the quoted term in the
global context, which is achieved using a fresh proof state intro-
duced by NEWPROOF. Initially, the goal of the new proof is an un-
bound variable, but this variable is then bound as a hole expecting a
type using the CLAIM meta-operation. The quoted term is provided
with hole bindings for each of the fresh antiquotation names by the
ANYTHING meta-operation. Then, the quoted term is elaborated
into the main hole. If this process is successful, it will result in the
hole T being filled out with a concrete type as well. The result of
elaboration is saved in the variable qt , and then type checked one
final time with CHECK to ensure that no errors occurred.

After the original proof state is restored with PUT, the actual
quoting must be performed and the antiquotations must be spliced
into the result (3). Each antiquotation name is now established as
a hole of type Term, the datatype representing reflected terms, be-
cause the elaborated form must be a quotation. Now that the holes
for the antiquotations are established, it is possible to insert the
reflected term into the initial hole. The operation REFLECT is in-
voked, which quotes the term, leaving references to the antiquota-
tion variables intact as references to the just-introduce holes. This
quoted term is then filled in as a guess, and SOLVE is used to dis-
patch the proof obligation.

Finally, the antiquotations can be elaborated (5). This is done
by focusing on their holes and elaborating the corresponding term
into that hole. In the above script, this is represented by the tactic
ELABANTIQUOTE, which can be defined as follows:

ELABANTIQUOTE (n, t) = do FOCUS n
EJtK

4 2014/9/24

EJ‘(e : t)K = do
...

CLAIM (T : Type)
FOCUS T
EJtK

~ANYTHING (names ~a)
...

Figure 2. Elaborating quasiquotations with goal types

A specific elaboration procedure for antiquotations is not necessary,
because programs with antiquotations outside of quasiquotations
are rejected prior to elaboration.

5.3 Elaborating Goal Types
Elaborating a quasiquotation with an explicit goal type is a straight-
forward extension of the procedure in the previous section. After
introducing a hole for the type of the term that will be elaborated
prior to the actual quotation, the goal type is elaborated into this
hole. Because this is occurring immediately after the establishment
of a fresh proof state, names in the goal type will be resolved in the
global scope, as intended.

The formal procedure is largely identical, with only the small
addition shown in Figure 2. Thus, the lines immediately before and
immediately after are included to show where the additions have
occurred. This seemingly-simple change has far-reaching effects,
because type information is now available to the subsequent elabo-
ration of e ′. This type information can, for instance, enable implicit
arguments to be solved due to unification constraints induced by the
elaboration of t .

5.4 Elaborating Quasiquotation Patterns
Quasiquotations can also be used as patterns. Recall that the oper-
ation PJ·K is a variation of EJ·K that is used on the left-hand side of
definitions in order to elaborate patterns. The primary difference is
that PJ·K does not fail when the elaborated term contains unknown
variables. Instead, it inserts pattern variable bindings for these.

It is tempting, then, to simply use the pattern elaborator in the
recursive elaboration clauses of the quasiquote elaboration pro-
cedures. However, this would not work. REFLECT would simply
quote these new pattern variables, leading to terms that contain ex-
plicitly quoted fresh pattern variables. Pattern elaboration must in-
stead invoke ordinary expression elaboration when generating the
term to be quoted, but then use pattern elaboration for the antiquo-
tations.

For practical reasons, pattern elaboration must use a specialized
reflection procedure REFLECTP that introduces some universal
patterns in strategic places. For example, ordinary non-dependent
function types are represented in TT as dependent functions in
which the bound name is not free in the type on the right hand side.
These names are chosen by the compiler, and they are difficult to
predict. Therefore, they are represented as universal patterns (_)
rather than their names. Additionally, universe level variables and
internal type and constructor tag values are replaced with universal
patterns. There is no solid theoretical basis for the current selec-
tion of universal pattern addition heuristics. Rather, it is a result of
experimentation with the system and writing practical programs.

Figure 3 demonstrates the formal procedure for elaboration
of quasiquotation patterns. This procedure uses two variations on
previously-seen meta-operations: REFLECTP, like REFLECT, is a
traversal of the resulting tree structure that implements step 4 ab-
vove, and ELABANTIQUOTEP is defined as follows:

PJ‘(e)K = do (e ′, ~a) ← EXTRACTANTIQUOTES e (1)

st ← GET (2)
NEWPROOF T
CLAIM (T : Type)

~ANYTHING (names ~a)
EJe ′K
qt ← TERM
CHECK qt
PUT st

~CLAIM (names ~a : ~Term) (4)
r ← REFLECTP qt ~a
FILL r
SOLVE

~ELABANTIQUOTEP ~a (5)

Figure 3. Elaborating quasiquote patterns

ELABANTIQUOTEP (n, t) = do FOCUS n
PJtK

The modifications necessary to elaborate a quasiquotation pattern
with a goal type are identical to the non-pattern case. In the real
implementation, of course, quasiquote elaboration with or without
goal types and in pattern mode or expression mode is handled by
one code path, with conditionals expressing the four possibilities.
They are presented as four separate procedures here for reasons of
clarity.

6. Examples
This section demonstrates the usefulness of quasiquotations through
a number of examples, showing how the high-level notation of Idris
quasiquotation simplifies their expression and reduces the need for
the user to comprehend all of the details of elaboration.

6.1 Custom Tactics
In Idris, a custom tactic is a function from a proof context and goal
to a reflected tactic expression. Reflected tactics are represented
by the Tactic datatype, which has constructors such as Exact
for solving the goal with some proof term, Refine for applying a
name to solve the goal, leaving holes for the remaining arguments,
and Skip which does nothing, along with tactics such as Seq for
sequential composition and Try to provide a fallback in case of
errors. These tactics correspond to the elaborator tactics described
in Section 5.

The native tactic applyTactic runs a custom tactic in the scope
of the current proof. In other words, its argument should be an
expression of type:

List (TTName, Binder TT) -> TT -> Tactic

This construction allows Idris to be its own metalanguage for pur-
poses of proof automation.

6.1.1 Trivial Goals
When writing proofs, it may be the case that a particular goal is
completely trivial. Either the goal type is one such as () or the
equality type that have only a single constructor, or we have a
premise available with precisely the type that we desire. Idris al-
ready has a built-in tactic to solve these kinds of goals, called
trivial. However, this built-in tactic is not extensible with sup-
port for new trivial types.

Figure 4 demonstrates an implementation of a trivial tactic that
uses our newly-introduced quasiquotations. The first case checks

5 2014/9/24

triv : List (TTName, Binder TT) -> TT -> Tactic
triv ctxt ‘(() : Type) =

Exact ‘(() : ())
triv ctxt ‘((=) {A=~A} {B=~B} ~x ~y) =

Exact ‘(the ((=) {A=~A} {B=~B} ~x ~y) refl)
triv ((n, b)::ctxt) goal =

if binderTy b == goal
then Exact (P Bound n Erased)
else triv ctxt goal

triv [] _ =
Fail [TextPart "Decidedly nontrivial!"]

Figure 4. A tactic for trivial goals

rewrite_plusSuccRightSucc : TT -> Maybe Tactic
rewrite_plusSuccRightSucc ‘(plus ~n (S ~m)) =

Just (Rewrite ‘(plusSuccRightSucc ~n ~m))
rewrite_plusSuccRightSucc _ = Nothing

rewrite_plusZeroRightNeutral : TT -> Maybe Tactic
rewrite_plusZeroRightNeutral ‘(plus ~n Z) =

Just (Rewrite ‘(sym (plusZeroRightNeutral ~n)))
rewrite_plusZeroRightNeutral _ = Nothing

Figure 5. Rewriters for addition

whether the goal is the unit type. The goal annotation is necessary
because of Idris’s defaulting rules, which prioritize the unit con-
structor during disambiguation. The second case checks whether
the goal is an identity type. The explicit provision of both A and
B is necessary because Idris uses heterogeneous equality, and the
elaborator is unable to guess what these types are. The third case
provides for a traversal of the context, checking whether a proof
is already available. Finally, the fourth case causes an error to be
thrown if the proof was not trivial.

6.1.2 Simplifying Arithmetic Expressions
The function plus that implements natural number addition is
defined by recursion on its first argument. This means that cer-
tain equalities that users may consider to be trivial, such as n +
Succ(m) = Succ(n+m), exist as lemmas in the library that must
be explicitly applied. This process is entirely tedious and can be
automated. However, a general-purpose search mechanism that at-
tempted to use the entire standard library to rewrite equalities to
something easily provable would very likely be too slow and frag-
ile to use. This is an excellent use for a custom tactic.

Indeed, a family of such tactics can be defined using a simple
combinator language. In this example, we define rewriters for arith-
metic expressions involving addition, zero, and successors, but the
approach can easily be extended to cover more equalities.

Let a rewriter be a function in TT -> Maybe Tactic. A
rewriter, when passed a goal, should either return a tactic that sim-
plifies the goal or Nothing. Figure 5 demonstrates two rewriters
for addition. The first uses the library proof plusSuccRightSucc,
which expresses the identity n + Succ(m) = Succ(n +m). The
second uses the proof plusZeroRightNeutral, which expresses
that zero is a right-identity of addition. Quasiquotes provide a con-
venient notation for both pattern-matching the goal terms and con-
structing the proof objects to rewrite with. Without quasiquotes,
the first example would be much longer, as can be seen in Figure 6.

It is important to point out that this is a particularly easy case
to translate. The function is monomorphic, with no implicit argu-
ments to be solved. The types in question are first-order, with no pa-

rewrite_plusSuccRightSucc : TT -> Maybe Tactic
rewrite_plusSuccRightSucc
(App

(App
(P Ref (NS (UN "plus") ["Nat", "Prelude"]) _)
n)

(App
(P (DCon 1 _)

(NS (UN "S") ["Nat", "Prelude"])
_)

m)) =
Just (Rewrite

(App (App (P Ref
(NS (UN "plusSuccRightSucc")

["Nat", "Prelude"])
_)

n)
m))

rewrite_plusSuccRightSucc _ = Nothing

Figure 6. A rewriter, without quasiquotes

rameters or indices. In many realistic programs, especially those in
which implicit arguments must be solved, the relationship between
the term to be rewritten and its low-level reflected representation
might be much more difficult to discern.

Returning to the rewriting library, we can define a few simple
combinators:

(<||>) : (TT -> Maybe Tactic) ->
(TT -> Maybe Tactic) ->
TT -> Maybe Tactic

rewrite_eq : (TT -> Maybe Tactic) ->
TT -> Maybe Tactic

rewrite_nat : (TT -> Maybe Tactic) ->
TT -> Maybe Tactic

The (<||>) operator attempts to rewrite using its left-hand rewriter.
If this fails, it will attempt to rewrite with its right-hand operator.
The operators rewrite_eq and rewrite_nat recurse over the
structure of the goal, attempting to apply rewrite rules at each step.
They apply to equality types and natural number expressions, re-
spectively.

It is possible to derive a rewriter for equalities of expressions
involving natural numbers and addition as follows:

rewrite_eq
(rewrite_nat

(rewrite_plusSuccRightSucc <||>
rewrite_plusZeroRightNeutral))

This rewriter can be used in a custom tactic to repeatedly rewrite
until a normal form has been reached.

6.2 Error Reflection
As described in the introduction and in a previous paper [5], Idris’s
error reflection allows programmatic rewriting of error messages.
This can be used to provide domain-specific errors for embedded
domain-specific languages, but most type errors are of the form
“Can’t unify t1 with t2”, where t1 and t2 can be arbitrarily large
terms. Additionally, dependent types often lead to a lot of redun-
dant information being retained on terms in order to propagate type
information - and much of this information is collected on implicit
arguments that need to be inferred by the elaborator anyway. With-
out quasiquotation, pattern-matching on these terms inside of re-
flected error messages is extremely verbose and error-prone.

6 2014/9/24

%error_handler
vectRewrite : Err -> Maybe (List ErrorReportPart)
vectRewrite (CantUnify x

‘(Vect ~n ~a)
‘(Vect ~m ~b)
_ _ _) =

if n /= m
then Just [TextPart "Mismatching lengths."]
else Nothing

vectRewrite _ = Nothing

Figure 7. Error rewriter for vector lengths

As a simple example, Figure 7 demonstrates an error message
rewriter provides a hint to users who attempt to use a vector whose
length does not match the expected length. This code will cause
unification errors between two vector types, when their lengths
are not identical, to be replaced by the message “Mismatching
lengths”. For reasons of space, this is a very simple example. The
equivalent of just one of the patterns, ‘(Vect ~n ~a), is:

App (App (P (TCon _ 2)
(NS (UN "Vect") ["Vect", "Prelude"])
(Bind _

(Pi (P (TCon _ 0)
(NS (UN "Nat")

["Nat", "Prelude"])
Erased))

(Bind _
(Pi (TType _))
(TType _)))

n)
a

where the universal patterns are a result of the special quoting rules
that are applied in a pattern context.

This example was very simple. Many realistic error rewriting
rules are much more complicated. Without quasiquotes, the error
reflection feature would be worthless, because the effort required
to manually elaborate terms would be far too great.

7. Conclusion and Future Work
This paper introduced a quasiquotation feature in the Idris lan-
guage. These quotations can decrease the verbosity of reflection
and allow the use of the implicit argument resolution mechanisms
and type-driven overloading when constructing reflected terms.
Idris’s type-driven elaboration mechanism [3] needed only a small
amount of new code in order to handle this unforeseen extension,
providing evidence that the approach can scale to new features.

The present implementation of quasiquotation has one major
limitation: the elaboration of some terms in the high-level Idris lan-
guage results in auxiliary definitions, which are then referenced
in the elaborated TT terms. This is because, in TT, all pattern
matching must occur at the top level. As an example, case blocks
and pattern-matching lets are elaborated into top-level functions.
Presently, the quotations of these terms simply refer to names of
definitions that do not exist. Potential solutions to this problem in-
clude rejecting terms with this kind of side effect or tracking the
original syntax that results in auxiliary definitions, so that two quo-
tations of the same high-level term will refer to the same auxiliary
name. Neither potential solution is entirely satisfactory.

Presently, the elaboration of quasiquote patterns introduces a
number of universal patterns in invisible parts of the term where
the user would not be able to predict or control the contents, such
as machine-generated unused names. However, the locations at

which these patterns are inserted is currently not well founded
in experience, and it may match too many terms. It would be
useful to have a means of being more precise, or possibly even
using dependent pattern matching to ensure a kind of restricted α-
equivalence between the term being destructured and the quoted
term in the pattern.

Acknowledgments
I would like to thank Edwin Brady for his assistance with the
Idris implementation. Additionally, I would like to thank my
Ph.D. advisor Peter Sestoft for his comments on drafts of this
paper and Eugene Burmako and Denys Shabalin for correcting
my misunderstandings of Scala’s quasiquotes. This work was
funded by the Danish National Advanced Technology Foundation
(Højteknologifonden) grant 017-2010-3.

References
[1] L. Augustsson. Cayenne — a language with dependent types. In

Proceedings of the Third ACM SIGPLAN International Conference on
Functional Programming, ICFP ’98, pages 239–250, New York, NY,
USA, 1998. ACM. .

[2] A. Bawden. Quasiquotation in Lisp. In O. Danvy, editor, Proceedings
of the 1999 ACM SIGPLAN Workshop on Partial Evaluation and
Semantics-Based Program Manipulation, pages 4–12, 1999.

[3] E. Brady. Idris, a general purpose dependently typed programming
language: Design and implementation. Journal of Functional Pro-
gramming, 23:552–593, 9 2013.

[4] E. Burmako. Scala macros: Let our powers combine!: On how rich
syntax and static types work with metaprogramming. In Proceedings
of the 4th Workshop on Scala, SCALA ’13. ACM, 2013.

[5] D. R. Christiansen. Reflect on your mistakes! Lightweight domain-
specific errors. Unpublished manuscript, 2014.

[6] D. de Rauglaudre. Camlp4 reference manual, 2003. URL http:
//pauillac.inria.fr/camlp4/manual/.

[7] D. Delahaye. A tactic language for the system coq. In Proceedings
of Logic for Programming and Automated Reasoning (LPAR), volume
1955 of Lecture Notes in Computer Science, November 2000.

[8] M. Gordon. From LCF to HOL: a short history. In G. Plotkin,
C. Stirling, and M. Tofte, editors, Proof, Language, and Interaction:
Essays in Honour of Robin Milner, pages 169–186. MIT Press, 2000.

[9] G. Mainland. Why it’s nice to be quoted: Quasiquoting for Haskell.
In Proceedings of the ACM SIGPLAN Workshop on Haskell, Haskell
’07, pages 73–82. ACM, 2007.

[10] C. McBride. Dependently Typed Functional Programs and their
Proofs. PhD thesis, University of Edinburgh, 1999.

[11] Microsoft. Expression trees (c# and visual basic), accessed August,
2014. URL http://msdn.microsoft.com/en-us/library/
bb397951.aspx.

[12] W. v. O. Quine. Mathematical Logic. Harvard University Press,
revised edition, 1981.

[13] D. Shabalin, E. Burmako, and M. Odersky. Quasiquotes for Scala.
Technical Report 185242, École polytechnique fédérale de Lausanne,
2013.

[14] D. Syme. Leveraging .NET meta-programming components from
F#: integrated queries and interoperable heterogeneous execution. In
Proceedings of the 2006 workshop on ML, pages 43–54. ACM, 2006.

[15] W. Taha and T. Sheard. Metaml and multi-stage programming with
explicit annotations. Theoretical computer science, 248(1):211–242,
2000.

[16] The Agda Team. The Agda Wiki, accessed 2014. URL http:
//wiki.portal.chalmers.se/agda/.

[17] The MetaOCaml Team. MetaOCaml, accessed 2014. URL http:
//www.cs.rice.edu/~taha/MetaOCaml/.

7 2014/9/24

http://pauillac.inria.fr/camlp4/manual/
http://pauillac.inria.fr/camlp4/manual/
http://msdn.microsoft.com/en-us/library/bb397951.aspx
http://msdn.microsoft.com/en-us/library/bb397951.aspx
http://wiki.portal.chalmers.se/agda/
http://wiki.portal.chalmers.se/agda/
http://www.cs.rice.edu/~taha/MetaOCaml/
http://www.cs.rice.edu/~taha/MetaOCaml/

[18] P. van der Walt and W. Swierstra. Engineering proof by reflection
in Agda. In R. Hinze, editor, Implementation and Application of
Functional Languages, Lecture Notes in Computer Science, pages
157–173. Springer Berlin Heidelberg, 2013. ISBN 978-3-642-41581-
4. .

[19] B. Ziliani, D. Dreyer, N. R. Krishnaswami, A. Nanevski, and
V. Vafeiadis. Mtac: A monad for typed tactic programming in Coq.
In Proceedings of the 18th ACM SIGPLAN International Conference
on Functional Programming, ICFP ’13, pages 87–100. ACM, 2013.

8 2014/9/24

FEDELE: A Mechanism for Exending
the Syntax and Semantics for the Hybrid

Functional-Object-Oriented Scripting Language FOBS

James Gil de Lamadrid
Bowie State University, 14000 Jericho Pk Rd, Bowie, MD. 20715

jgildelamadrid@bowiestate.edu

Abstract
A language FOBS-X (Extensible FOBS) is described. This lan-
guage is an interpreted language, intended as a universal scripting
language. An interesting feature of the language is its ability to be
extended, allowing it to be adapted to new scripting environments.
The interpretation process is structured as a core-language parser
back-end, and a macro processor front-end. The macro processor
allows the language syntax to be modified. A configurable library
is used to help modify the semantics of the language, allowing the
addition of the required capabilities for interacting in a new script-
ing environment. This paper focuses on the semantic extension of
the language. A tool called FEDELE has been developed, allowing
the user to add library modules to the FOBS-X library. In this way
the semantics of the language can be enhanced, and the language
can be adapted to new scripting environments.

Keywords functional, object-oriented, programming language

1. Introduction
The object-oriented programming paradigm and the functional
paradigm both offer valuable tools to the programmer. Many prob-
lems lend themselves to elegant functional solutions. Others are
better expressed in terms of communicating objects. FOBS-X is a
single language with the expressive power of both paradigms allow-
ing the user to tackle both types of problems, with fluency in only
one language. FOBS-X is a modification to the FOBS language
described in Gil de Lamadrid & Zimmerman [4]. The modification
involves simplifications to the pointers used in the scoping rules.

FOBS-X has a distinctly functional flavor. In particular, it is
characterized by the following features:

• A single, simple, elegant data type called a FOB, that functions
both as a function and an object.

• Stateless programming. In the runtime environment, mutable
objects are not allowed. Mutation is accomplished, as in func-
tional languages, by the creation of new objects with the re-
quired changes.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IFL ’14, October 1–3, 2014, Boston, MA, USA.
Copyright © ACM [to be supplied]. . . $15.00.
http://dx.doi.org/10.1145/

• A simple form of inheritance. A sub-FOB is built from another
super-FOB, inheriting all attributes from the super-FOB in the
process.

• A form of scoping that supports attribute overriding in inheri-
tance. This allows a sub-FOB to replace data or behaviors in-
herited from a super-FOB.

• A macro expansion capability, enabling the user to introduce
new syntax.

• A tool for easily writing new library modules, allowing the
semantics of FOBS-X to be modified to fit differing scripting
requirements.

As with many scripting languages FOBS is weakly typed, a condi-
tion necessitated by the fact that it only has one data type. However,
with interpreted languages the line between parsing and execution
is more blurred than with compiled languages, and the necessity
to perform extensive type checking before execution becomes less
important.

Several researchers have built hybrid language systems, in an
attempt to combine the functional and object-oriented paradigms,
but have sacrificed referential transparency in the process. Yau
et al. [11] present a language called PROOF. PROOF tries to fit
objects into the functional paradigm with little modification to take
into account the functional programming style. The language D by
Alexandrescu [1] is a rework of the language C transforming it into
a more natural scripting language similar to Ruby and Javascript.

Scala by Odersky et al. [12] is a language compiled to the Java
Virtual Machine, which claims to implement a hybrid of functional
and object-oriented paradigms, but tends toward the imperative lan-
guage end of the spectrum. A class based language that is proposed
as a tool to write web-servers, Scala is implemented as a small core
language, and many of its capabilities are implemented in the li-
brary. FOBS has this same structure, allowing the capabilities of
the language to be easily extended.

Two languages that seek to preserve functional features are FLC
by Beaven et al. [2], and FOOPS by Goguen and Mesegner [6].
FOOPS is built around the addition of ADTs to functional features.
We feel that the approach of FLC is conceptually simpler. In FLC,
classes are represented as functions. This is the basis for FOBS
also. In FOBS we have, however, removed the concept of the class.
In a stateless environment, the job of the class as a ”factory” of
individual objects, each with their own state, is not applicable. In
stateless systems a class of similar objects is better represented as a
single prototype object that can be copied with slight modifications
to produce variants.

Another language that implements object-orientation while
maintaining a mostly functional approach is OCAML[8]. Built
around ML, OCAML has added elements enabling imperative and
object orient programming. A record structure supports the cre-
ation of objects, and mutable objects support stateful programming.
Later in the paper we discuss the importance of mutation in object-
orientation. And, although important, we felt that mutation should
be isolated and controlled, to help preserve the overriding com-
putation model of FOBS, which prominently features referential
transparency. In OCAML, mutable objects are tightly integrated
into the computational model, giving it a distinct non-declarative
nature.

Scripting languages have tended to shy away from the func-
tional paradigm. Several object-oriented scripting languages such
as Python [3] are available. Although mostly object-oriented, its
support for functional programming is decent, and includes LISP
characteristics such as anonymous functions and dynamic typing.
However, Python lacks referential transparency. We consider this as
one of the important advantages of FOBS. In the design of FOBS,
we also felt that a simpler data structure could be used to implement
objects and the inheritance concept, than was used in this popular
language. FOBS combines object orientation and functional pro-
gramming into one elegant hybrid, making both tools available to
the user. Unlike languages like Python or FOOPS, this is not done
by adding in features from both paradigms, but rather by search-
ing for a single structure that embodies both paradigms, and unifies
them.

2. Language Description
FOBS-X is built around a core language, core-FOBS-X. Core-
FOBS-X has only one type of data: the FOB. A simple FOB is
a quadruplet,

[m i -> e ^ ρ]

The FOB has two tasks. Its first task is to bind an identifier, i, to an
expression, e. The e-expression is unevaluated until the identifier is
accessed. Its second task is to supply a return value when invoked
as a function. ρ (the ρ-expression) is an unevaluated expression that
is evaluated and returned upon invocation.

The FOB also includes a modifier,m. This modifier indicates the
visibility of the identifier. The possible values are: ”‘+”, indicating
public access, ”‘~”, indicating protected access, and ”‘$”, indicat-
ing argument access. Identifiers that are protected are visible only
in the FOB, or any FOB inheriting from it. An argument identifier
is one that will be used as a formal argument, when the FOB is in-
voked as a function. All argument identifiers are also accessible as
public.

As an example, the FOB

[‘+x -> 3 ^ 6]

is a FOB that binds the variable x to the value 3. The variable x is
considered to be public, and if the FOB is used as a function, it will
return the value 6.

Primitive data is defined in the FOBS library. The types Boolean,
Char, Real, and String have constants with forms close to their
equivalent C types. The Vector type is a container type, with con-
stants of a form close to that of the ML list. For example, the vector

["abc", 3, true]

represents an ordered list of a string, an integer, and a Boolean
value. Semantically, a vector is more like the Java type of the same
name. It can be accessed as a standard list, using the usual car, cdr,

and cons operations, or as an array using indexes. It is implemented
as a Perl list structure. Unlike the Java type, the FOBS-X type is
immutable. The best approximation to the mutate operation is the
creation of a brand new modified vector.

There are three operations that can be performed on any FOB.
These are called access, invoke, and combine. An access operation
accesses a variable inside a FOB, provided that the variable has
been given a public or argument modifier. As an example, in the
expression

[‘+x -> 3 ^ 6].x

the operator ”.” indicates an access, and is followed by the identifier
being accessed. The expression would evaluate to the value of x,
which is 3.

An invoke operation invokes a FOB as a function, and is indi-
cated by writing two adjacent FOBs. In the following example

[‘$y -> _ ^ y.+[1]] [3]

a FOB is defined that binds the variable y to the empty FOB and
returns the result of the expression y + 1, when used as a function.
When the example is used as a function, since y is an argument
variable, the binding of the variable y to the empty FOB is consid-
ered only a default binding. This binding is replaced by a binding
to the actual argument, 3. To do the addition, y is accessed for the
FOB bound to the identifier +, and this FOB is invoked with 1 as
its actual argument. The result of the invocation is 4.

In an invocation, it is assumed that the second operand is a vector.
This explains why the second operand in the above example is
enclosed in square braces. Invocation involves binding the actual
argument to the argument variable in the FOB, and then evaluating
the ρ-expression, giving the return value.

A combine operation is indicated with the operator ”;”. It is used
to implement inheritance. In the following example

[‘+x -> 3 ^ _] ; [‘$y -> _ ^ x.+[y]] (1)

two FOBs are combined. The super-FOB defines a public vari-
able x. The sub-FOB defines an argument variable y, and a ρ-
expression. Notice that the sub-FOB has unrestricted access to the
super-FOB, and is allowed access to the variable x, whether modi-
fied as public, argument or protected.

The FOB resulting from Expression (1) can be accessed, in-
voked, or further combined. For example the code

([‘+x -> 3 ^ _] ; [‘$y -> _ ^ x.+[y]]).x

evaluates to 3, and the code

([‘+x -> 3 ^ _] ; [‘$y -> _ ^ x.+[y]]) [5]

evaluates to 8.

Multiple combine operations result in FOB stacks, which are
compound FOBs. For example, the following code creates a FOB
with an attribute x and a two argument function that multiplies its
arguments together. The code then uses the FOB to multiply 9 by
2.

([‘+x -> 5 ^ _] ; [‘$a -> _ ^ _] ;
[‘$b -> _ ^ a.*[b]]) [9, 2]

In the invocation, the arguments are substituted in the order from
top to bottom of the FOB stack, so that the formal argument a
would be bound to the actual argument 2, and the formal argument
b would be bound to 9.

Figure 1. Class structure of Example (2)

In addition to the three FOBS operations, many operations on
primitive data are defined in the FOBS library. These operations
include the usual arithmetic, logic, and string manipulation oper-
ations. In addition, conversion functions provide conversion from
one primitive type to another, when appropriate.

Example (2) presents a larger example to demonstrate how
FOBS code might be used to solve more complex programming
problems. In this example we define a FOB that implements a
standard up-counter. The FOB structure is shown in Figure 1, us-
ing UML. The outermost FOB implements the UML class called
CounterMaker, that copies a prototype to create new counters. The
counters are known as the class Counter in Figure 1. CounterMaker
creates a new Counter when its function makeCounter is called.
The argument to makeCounter, val, becomes the initial value of the
counter. The counter contains an instance variable, count, that con-
tains the current count value, and a function inc that ”increments”
the counter. Since FOBS is stateless, what inc actually does is cre-
ate a new Counter object with the incremented count variable.

Implementation of a standard up-counter
([‘+makeCounter ->

[‘$val -> 0 ^
[‘~count -> val ^_];
[‘+inc ->

[‘~_ -> _^ makeCounter[
count.+[1]]]

^_];
[‘~_ -> _ ^ count]

]
^_]
test it

.makeCounter[6].inc[].inc[])[]
#.
#!

(2)

Since UML is designed to model object-oriented systems, it is
no surprise that using it to model a FOB requires extra notation to
handle the ability to invoke a FOB as a function. In Figure 1. the
notation rv is used to represent the operation of invoking the FOB
as a function. The use of rv (return value) in the diagram indicates
that, when the FOB Counter is invoked, it returns the current value
of the variable count.

Larger examples, and a more complete definition of the FOBS
language are given by Gil de Lamadrid and Zimmerman [4].

3. Core-FOBS Design Topics
Expression evaluation in FOBS-X is fairly straight forward. Three
issues, however, need some clarification. These issues are: the se-
mantics of the redefinition of a variable, the semantics of a FOB
invocation, and the interaction between dynamic and static scop-
ing.

3.1 Variable overriding
A FOB stack may contain several definitions of the same identifier,
resulting in overriding. For example, in the following FOB

[‘$m -> ’a’ ^ m.toInt[]] ; [‘+m -> 3 ^ m]

the variable m has two definitions; in the super-FOB it is defined
as an argument variable, and in the sub-FOB another definition is
stacked on top with m defined as a public variable. The conse-
quence of stacking on a new variable definition is that it completely
overrides any definition of the same variable already in the FOB
stack, including the modifier. In addition, the new return value be-
comes the return value at the top of the full FOB stack.

3.2 Argument substitution
As mentioned earlier, the invoke operator creates bindings between
formal and actual arguments, and then evaluates the ρ-expression
of the FOB being invoked. At this point we give a more detailed
description of the process.

Consider the following FOB that adds together two arguments,
and is being invoked with values 10 and 6.

([‘$r -> 5 ^ _] ; [‘$s -> 3 ^ r.+[s]]) [10, 6]

The result of this invocation is the creation of the following FOB
stack

[‘$r -> 5 ^ _] ;
[‘$s -> 3 ^ r.+[s]] ;
[‘+r -> 6 ^ r.+[s]] ;
[‘+s -> 10 ^ r.+[s]]

In this new FOB the formal arguments are now public variables
bound to the actual arguments, and the return value of the invoked
FOB has been copied up to the top of the FOB stack. The return
value of the original FOB can now be computed easily with this
new FOB by doing a standard evaluation of its ρ-expression, yield-
ing a value of 16.

3.3 Variable scope, and expression evaluation
Scoping rules in FOBS-X are, by nature, more complex than scop-
ing used in most functional languages. Newer functional languages,
such as Haskell and ML, typically use lexical scoping. Dynamic
scoping is often associated with older dialects of LISP.

Pure lexical scoping does not cope well with variable overriding,
as understood in the object-oriented sense, which typically involves
dynamic message binding. To address this issue, FOBS-X uses a
hybrid scoping system which combines lexical and dynamic scop-
ing. Consider the following FOB expression.

[‘~y -> 1^_] ;
[‘~x ->

[‘+n -> y.+[m] ^ n] ;
[‘~m -> 2 ^_]

^_] ;
[‘~z -> 3 ^x.n]

(3)

This expression defines a FOB stack that is three deep, containing
declarations for a protected variable y, with value 1, a protected
variable x with a FOB stack as its value, and a protected variable z
with the value 3 as its value. The stack that is the value of x consists
of two FOBs, one defining a public variable n, and one defining a
protected variable m.

We are currently mostly interested in the FOB stack structure
of Expression (3), and can represent it graphically with the stack
graph, given in Figure 2. In the stack graph each node represents a
simple FOB, and is labeled with the variable defined in the FOB.

Figure 2. Stack graph of Example (3)

Three types of edges are used to connect nodes: the s-pointer, the t-
pointer, and the γ-pointer. The s-pointer describes the lexical nested
block structure of one FOB defined inside of another. The s-pointer
for each node points to the FOB in which it is defined. For example
m is defined inside of the FOB x.

The t-pointer for each node points to the super-FOB of a FOB.
It describes the FOB stack structure of the graph. In Figure 2 there
are basically two stacks: the top level stack consisting of nodes z,
x, and y, and the nested stack consisting of nodes m, and n.

The γ-pointer is a back pointer, that points up the FOB stack to
the top. This provides an easy efficient mechanism for finding the
top of a stack from any of the nodes in the stack.

If the FOB z were invoked, it would access the FOB n for the
value of n. This would cause the expression y+m to be evaluated, a
process that demonstrates the use of all three pointers. The process
of resolving a reference in FOBS-X first examines the current FOB
stack. The top of the current stack is reached by following the γ-
pointer. Then the t-pointers are used to search the stack from top
to bottom. If the reference is still unresolved, the s-pointer is used
to find the FOB stack enclosing the current stack. This enclosing
stack now becomes the current stack, and is now searched in the
same fashion, from top to bottom, using the γ-pointer to find the
top of the stack, and the t-pointers to descend to the bottom.

To summarize this procedure for the example, to locate the defi-
nition of the variable y, referenced in the FOB n, the γ-pointer for
n is followed up to the FOB m, this FOB is examined, and then
its t-pointer is followed down to the FOB n, which is also exam-
ined. Not having found a definition for the variable y, the s-point
for FOB n is followed out to the FOB x, and then the γ-pointer is
followed up to the FOB z. FOB z is examined, and its t-pointer is
traversed to FOB x, which is also examined. Then the t-point for
FOB x is finally followed down to the FOB y, which supplies the
definition of y needed in the FOB n.

As mentioned above, the scoping for FOBS-X is a combination
of lexical and dynamic scoping. S-pointers are lexical in nature,
since the nesting of FOBs is a static property. T-pointers and γ-
pointers are dynamic. These pointers must be created as new FOB
stacks are created during execution.

4. The FOBS Library
As FOBS-X can be extended by adding new primitive FOBs to the
library, we use the term native primitive FOBs to denote the prim-
itive FOBs that are part of core-FOBS. The FOBS library contains

Libary FOB Operation Description
Boolean b.if[x, y] If Boolean value b is

true, return x, other-
wise return y

b.&[x] Return the boolean
value of the expression
b
∧
x

b.|[x] Return the boolean
value of the expression
b
∨
x

b.![] Return the boolean
value of the expression
¬b

Table 1. Operations for the Boolean FOB

Figure 3. Interface for the Boolean FOB

definitions of all native primitive FOBs. The native primitive FOBs
are Int, Char, Real, Boolean, Vector, String, and FOBS. In addi-
tion a set of ”mix-in” FOBs are contained in the library, that serve
the same purpose as mix-in classes described by Page-Jones [9],
providing general capabilities to primitive FOBs. For example the
Boolean FOB uses the mix-in FOBs Eq, and Printable to supply
operations to compare Boolean values for equality, and the ability
to be printed, respectively.

The native primitive FOBs mostly implement the native data
types of the FOBS language. Each data type provides the wrapper
for the data, along with a set of operations, used to manipulate the
data. As an example, Table 1. shows the operations provided by
the Boolean FOB. This operation structure is shown in the UML
diagram of Figure 3. The operations for the Boolean FOB are
implication, logical and, logical or, and logical not. The Boolean
FOB inherits the operations of equals, and not-equals form the mix-
in FOB Eq, and it inherits the toString function, that generates a
print-string, from the FOB Printable.

The primitive FOB FOBS is the one primitive FOB that does
not implement a data type. This FOB is, initially, largely empty. It,
however, provides the mechanism for extending the FOBS-X lan-
guage, allowing it to be adapted to differing scripting environments.
The user of the FOBS-X language extends the language by adding
modules to the FOBS FOB, one for each extension to the language.

5. Extensions
FOBS is a language that is designed to be extensible, both in terms
of syntax, and semantics. To extend the language the user designs
an extension. An extension is defined by an extension module,
which is composed of two pieces: a macro file, and a collection
of library modules.

5.1 Macro files
FOBS-X allows the syntax of the language to be changed in a
limited fashion. The mechanism used to modify the syntax is macro
expansion. Before a FOBS expression is parsed, a macro processor
is used to expand macros used in the code. In this way, the user
can alter the syntax of FOBS expression by writing and loading the
appropriate macros to handle the changes.

Many programming languages have macro capabilities. These
range from the fairly simple mechanisms in the programming
language C, to the the relatively more sophisticated mechanisms
of LISP. It was felt that these simple systems were inadequate
for FOBS. In particular, to implement a fair degree of flexibility,
we felt that the ability to modify syntax should be more exten-
sive than these types of systems offer, including a limited ability
to change delimiter symbols. The language MetaML [13] pro-
vides much more sophisticated macro capabilities. It is built for
the manipulation of macro type code, and implements multi-stage
meta-programming. The macro capability of FOBS is much lighter
weight than that of MetaML, but ideas from MetaML have found
their way into FOBS-X. In particular, we found the staging of
macro expansion useful. The staging in our case is used to imple-
ment macro operator precedence.

Macro definitions are quadruples, which are described in detail
by Gil de Lamadrd [5]. Example (4) gives a simple demonstration
the form of macro definitions.

the array mutate operation
#defleft

#?x [#*i] <- #?y
#as

(#?x) . -+ [#*i , #*y]
#level

3
#end

(4)

The macro quadruple, < S1 → S2 : P, d >, is composed of the
following parts.

• S1: the search string, which includes wild-card tokens
• S2: the replacement string, which includes wild-card tokens.
• P : the priority of the macro, with priority 19 being highest

priority, and priority 0 being the lowest.
• d: the direction of the scan, with right indicating right-to-left,

and left indicating left-to-right.

In the FOBS notation of Example (4) the parts of the quadruple are
specified using either the #defleft, or the #defright directive.
Firstly, the directive specifies the direction d, depending on whether
#defleft or #defright is used. Then the search string S1, the
replacement string S2, and the priority P are specified, in order,
separated by the two delimiters #as, and #level, and terminated
by the #end directive.

The strings S1, and S2 are strings of FOBS lexicons, and wild-
card tokens. Wild card tokens are all tokens that begin withe either
the sequence ”#?” or ”#*”, indicating a single wild card token, or
a mutiple wild card token. A single wild card matches a single
atom, and a multiple wild card matches a string of atoms. An
atom is either a single FOBS token, or a balanced bracketed string,

using one of the usual bracketing characters such as parentheses or
braces.

Wild cards are named, so that the match in S1 can be referred to
in S2. In Example (4), for example, the wild cards #?x, #?y, and
#*i are matched in S1, and their values are used in S2.

The direction, d, and the priority of a macro, P , are used to con-
trol the associativity of the operator defined by the macro, and the
precedence of the operator, respectively. To control associativity,
macros defined with direction left are expanded left-to-right, re-
sulting in the definition of a left-associative operator, and macros
defined with a direction of right are expanded right-to-left, result-
ing in a right-associative operator. To control precedence, macros
with higher priority are expanded before macros with lower prior-
ity, resulting in operators with different precedences.

5.2 The standard extension
The syntax in core-FOBS-X is a little cumbersome. It has been
designed with minimalistic notation, allowing a concise formal
description, given by Gil de Lamadrid & Zimmerman [4]. It is not
necessarily attractive to the programmer. Standard extension (SE)
FOBS-X attempts to rectify this situation. In particular, SE-FOBS-
X includes constructs to enable the following.

• Allow infix notation for most operators.
• Eliminate the cumbersome syntax associated with declaring a

FOB.
• Introduce English keywords to replace some of the more cryptic

notation.
• Allow some parts of the syntax to be optionally omitted.

SE-FOBS-X is a language defined entirely using the macro proces-
sor. It demonstrates the flexibility of the FOBS-X macro capability
to almost entirely rework the syntax of the language, without touch-
ing the back-end of the interpreter.

To help demonstrate the changes in syntax allowed by SE-FOBS,
we rewrite the counter of Example (2) to in SE-FOBS.

#use #SE
Implementation of a standard up-counter
(fob{

public makeCounter
val{

fob{
argument val
ret{

fob{
count val{val} \
public inc
val{

fob{
ret{makeCounter

[count + 1]}
\}

} \
ret{count}

\}
}

\}
}

\}
test it

.makeCounter[6].inc[].inc[])[]
#.
#!

(5)

The #use directive loads the standard extension macro file. This
file makes available the syntax used in the remainder of the code.
The most salient syntax feature of the code is the fob structure,
used to define FOB-stacks. Each FOB in the stack is listed in the
fob construct, and terminated by the ”\” delimiter.

A FOB declaration contains a modifier, the identifier, a val struc-
ture, and a ret structure. The val structure defines the e-expression
for the FOB, and the ret structure gives the ρ-expression for the
FOB. Any of the parts of the FOB declaration may be omitted,
resulting in the use of appropriate default values. Modifiers in SE-
FOBS are the keywords public, private, and argument, instead of
the cryptic symbols ”‘+”, ”‘~” , and ”‘$”.

A final feature present in Example (5) is the use of the infix
version of the addition operator. All common binary operators in
SE-FOBS are available in their infix version, relieving the user
from using the normal core-FOBS access and invoke notation.

5.3 Extension library modules
Macro files extend the syntax of the FOBS language. To extend the
semantics, you must add modules to the FOBS library. The FOBS
library is written in Perl, and so to add modules you simply write
Perl modules, and add them into the appropriate library directory
structure. This process initially may sound simple. On further re-
flection, it becomes obvious that to do this

• One needs to be fairly familiar with the structure of the FOBS
library.

• One must be familiar with how to manipulate FOBs in Perl.

While it is reasonable to expect a user requiring complex semantic
changes to learn the required material to develop library modules
from scratch, it is an unreasonable burden to impose on the user
that desires to make only minor changes to the semantics of FOBS.
To make small changes it is more appropriate for the user to do
so using a tool that simplifies the process. The tool that we have
developed is the FOBS Extension Definition Language Extension
(FEDELE).

When designing FEDELE, we first thought of a meta-language
that was implemented as an external tool. However, since FOBS is
a scripting language, and designed for just such work, we rapidly
realized that it made sense to implement FEDELE as a FOBS
extension. FEDELE is, therefor, a FOBS extension that helps the
user create other FOBS extensions.

6. FEDELE Operating Environment
The standard extension is unusual in that it is an extension with
only one component: the macro file. No semantic changes are made
to FOBS; only syntactic changes. Most extensions contain both a
macro file and library modules. FEDELE is a more usual extension.
Library modules provide the capabilities of the package, and a
macro file provides more convenient syntax for using it.

The FEDELE extension provides a simpler way of writing the
library modules necessary for implementing an extension. The
FEDELE language allows the user to specify the structure of the
extension much in the same way that YACC (see Johnson [7]) al-
lows a programming language designer to specify the structure of
a new programming language. The specification is translated into
a set of Perl modules implementing the extension. The modules
are then placed in a directory, and the directory path is placed on
the Perl include path @INC, extending the directories searched for
library modules. This summarizes the process of extending the li-
brary, but to continue our discussion of FEDELE, we will need to
examine the structure of the FOBS library in more detail.

6.1 The FOBS library implementation
The FOBS library is composed of a collection of primitive and
utility FOBS. As explained previously primitive FOBs use utility
FOBs to mix-in general capabilities. However, from the standpoint
of structure, there is no difference between a primitive and a utility
FOB. In this discussion we will therefor consider only the structure
of a primitive FOB.

To illustrate the structure of a primitive FOB, we take as example
the FOB Boolean. The Boolean FOB can be represented in UML as
shown in Figure 3. It contains an instance variable val that contains
the actual Boolean value, represented as a character string. It also
contains the common Boolean operations of and, ”&”, or, ”|”, and
not, ”!”. In addition it contains the operator if that implements the
implication operator. The FOB Boolean inherits operations from
the FOBs Eq, and Printable. From Eq it inherits the operations
equals, ”=”, and not-equals, ”!=”. From Printable it inherits the
operation toString, that converts a Boolean value into a printable
string.

It should be noted that the term ”inhertitance” for primitive
FOBs is only loosely applied. In fact, the mechanism is more of
a message-forwarding mechanism. That is to say that, for example,
if a Boolean FOB receives an equals access request, the request is
forwarded to its parent Eq FOB.

Implementing the Boolean FOB in Perl is done with two struc-
tures: a hash table, containing the data of the primitive FOB, and a
Perl module, Boolean, that contains code for all of the operations
in the primitive FOB.

6.2 Primitive FOB hash table structure
The hash-table representing the data in a primitive FOB stores
information in attribute-value pairs. The attributes of interest are
the following.

• type - This attribute gives the type of the FOB. A primitive
FOB is of type ”omega”, using the notation described by Gil
de Lamadrid & Zimmerman [4].

• code - This attribute stores the name of the primitive FOB.
For the FOB Boolean, the code attribute would have the value
”Boolean”.

• Super-FOBs - This is a collection of attributes, one per parent
FOB. Each of these attributes stores an instance of one of
the parent FOBs. For the FOB Boolean there are two such
attributes. superEq stores an instance of the primitive FOB Eq,
and superPrintable stores an instance of the primitive FOB
Printable.

In adition to the above standard attributes, the primitive FOB hash-
table contains attributes that are specific to the particular primitive
FOB. For the Boolean primitive FOB, there is only one more
attribute: the attribute val, that holds the boolean value of the FOB,
stored as a character string.

6.3 Primitive FOB module structure
The main library module for a primitive FOB has the same name
as the primitive FOB. For example, for the primitive FOB Boolean
there is a Perl module called Boolean. This module has four stan-
dard functions in it.

• construct - This function constructs the hash table representing
an instance of the primitive FOB.

• constructConstant - This function is an extension of the func-
tion construct. It constructs the instance, using construct, and
then initializes it by filling in any instance variables.

• alpha - This is the function α that is described by Gil de
Lamadrid & Zimmerman [4]. It takes a single argument, a
character string, and accesses the primitive FOB for the value
of the identifier specified by the argument.

• iota - This is the function ι described by Gil de Lamadrid &
Zimmerman [4]. It takes a single argument, a Vector FOB, and
invokes the primitive FOB using the vector to supply its actual
arguments.

6.4 Operation modules
The main module of a primitive FOB is not the only module needed
to define the FOB. To understand why this is so, consider the
following FOBS code, and the semantics of invocation.

false.&[true] (6)

In this expression, the Boolean FOB false is being accessed for
its and operation. The operation is then being invoked, with the
argument true. However, the question arises, when we say that the
operation is invoked, what is an operation? The simple answer is
that if an operation is invoked, then it must be a FOB, because only
FOBs are invoked. This observation becomes trivially clear when
we look at an example that does not involve a primitive FOB.

[‘+ & -> [‘~_ -> _ ^ false] ^ _] . & [true] (7)

In this example, as in Example (6), a FOB is accessed for an ”&”
operation, and the operation is invoked with the Boolean FOB true.
The difference is that in Example(7) the FOB being accessed is not
a primitive FOB. What is produced by the access operation is a
FOB, in this case, that always returns the value false. We observe
that the same must be true of Example (6). That is to say that an
access operation always produces a FOB, whether the FOB being
accessed is a primitive FOB or not.

What the above discussion points out is that when we access
an operator in a primitive FOB, what is produced is a FOB. That
FOB, when invoked would perform the particular operation. Every
operator in a primitive FOB must have defined a FOB that will
perform the given operation. For a library FOB such as Boolean
each of its operators is defined as a primitive FOB. For example
the and operator for the FOB Boolean is defined as a primitive
library FOB called Boolean and. We refer to library modules for
the operations of a primitive FOB, as primitive operation modules.

To summarize, a primitive FOB is represented as a set of li-
brary modules. These consist of the main library module, described
above, and a set of operation modules, one per operation. An oper-
ation module contains the same functions as the main module. That
is to say that the operation module will have a construct function,
a constructConstant function, an alpha function, and an iota func-
tion, each with the same role as in he main module. Each of these
functions would perform actions appropriate to the operator. That is
to say that the alpha function would always return an empty FOB,
and the iota function would perform the operation of the operation
module.

6.5 Extension access
Once the user has defined an extension, the language FOBS must
be able to allow the user to use the extension. This section describes
the mechanism used to allow FOBS code to use an extension.

The modules of the extension can be placed at any location in
the directory hierarchy of the operating system. The author of the
extension then must inform FOBS where the extension is located.
As discussed previously, this is done by ensuring that the extension
directory is on the list of include directories for Perl, @INC. This

is easily done by seting the environment variable PERL5LIB to the
extension path.

Recall that the two components of an extension are the macro
file, and the library modules. We discuss how the FOBS interpreter
locates both of these components in this section. We begin with
how the macro file is located. A macro file is loaded with the #use
directive. An example might be

#use Count

This directive tells the FOBS interpreter to look for a file called
Count.fobs containing the macros of the extension. What the FOBS
interpreter does then is to search Perl include directories, listed in
the array @INC. There are two exceptions to the procedure, as
illustrated in the following #use invocations.

#use #SE
#use #FEDELE

The extensions #SE, the standard extension, and #FEDELE are
considered part of the FOBS language, and as such are located in a
separate default FOBS include directory.

We now turn to the location of library modules. The standard
mechanism for accessing the library in FOBS is a reference to a
constant. For example, if a FOBS expression contains a reference
to the constant true, the FOBS interpreter observes that this is a
Boolean constant. The interpreter then goes to the default library
directory, locates the main Boolean module, and invokes its con-
structConstant constructor function to create the hash-table. Con-
structConstant also links the main module to the hash-table, a Perl
mechanism called blessing, effectively making the hash table an
object, in the object-oriented sense, which is to say that the hash
table can be sent messages corresponding to any of the functions
defined in the main Boolean module.

When the user defines their own library module, the above pro-
cedure cannot be used, because there is no FOBS constant for the
new primitive FOB that would trigger the FOB construction. In-
stead, the construction of a FOB is triggered using the FOB FOBS.
This is illustrated in the following FOBS expression.

FOBS.Count.new[5] (8)

The FOB FOBS is a primitive FOB in the FOBS library used to
present links to extensions to the user. In Example (8), the user is
attempting to access the identifier Count, which is the name of an
extension. This identifier is not explicitly defined in the FOB FOBS.
However, the FOBS interpreter will consider it implicitly defined,
and, when referenced, will attempt to load the main module for the
extension from the list of Perl include directories.

If we assume that the Count FOB is defined along the lines of
the UML diagram in Figure 1, the Count FOB has one operation,
inc, explicitly defined. For every extension, generated by FEDELE
or not, the primitive FOB must also contain a new operation. This
operation, when called, generates a new instance of the FOB, and
calls the constructConstant constructor for the FOB. In Example
(8), the new operator is called to construct a primitive Count FOB,
initialized to the value 5.

7. The FEDELE Extension
This section describes the components of the FEDELE extension.
FEDELE has both a macro file, extending the syntax of FOBS to
more easily specify extension components, and library modules,
providing the operators required to specify the contents of the
library modules of the new extension, and write the module out.
We begin by describing the FEDELE operations.

Figure 4. Interface for FEDELE

7.1 The FEDELE primitive FOB
The primitive FOB FOBS.FEDELE is a very uncomplicated FOB
that has no accessible identifiers in it, and can only be invoked.
The result of an invocation is a FEDELE module FOB. The
FEDELE module is a data structure used to collect information
on the new FOB being described. Figure 4 is the UML diagram
showing the two FOBS: FEDELE, and FEDELE module.

The FEDELE module FOB contains variables for storing the
following items

• mixIn: a list of primitive mix-in FOBs.
• makeID: a list of identifiers that will be included in the hash-

table representing the FOB.
• element: a list of operations that will be included in the FOB.

Each operation is represented as a pair consisting of the opera-
tion name, and a snippet of Perl code that will become the body
of the iota function for the operation.

• invokeValue: a snippet of Perl code that will become the body
of the iota function for the new FOB itself.

• modulePath: the directory on to which the files of the library
module will be written.

In addition to the above variables, the FEDELE module also con-
tains operators for adding items to its data structures. Each opera-
tion adds an item and returns the modified FEDELE module.

7.2 FEDELE macros
The second part of the FEDELE extension is a macro file that
defines the FEDELE language, and allows easier specification of
a primitive FOB. This FEDELE language is a structured language.
The structures of the language are listed in Table 2.

A FEDELE specification, at the outer level is an extension struc-
ture. This structure would contain clauses; each clause being either
a mixIn, a make, an element, or an invoke structure. This is illus-
trated more clearly in the next section. FEDELE translates the ex-
tension structure into FOBS code that creates a FEDELE module.
The clause structures are translated into FEDELE module opera-

Structure Description
extension " xtnd "
{ clauses } to path

Defines an extension with
name xtnd, to be written
to the given directory path.
It contains clauses giving
the content of the extension
xtnd.

mixIn mixinFOB A clause indicating that the
FOB mixinFOB from the li-
brary is a super-FOB for
this FOB. This clause can
be repeated to include sev-
eral super-FOBs.

make { idList } Describes the constant
constructor for the FOB.
The constructor will be
available as the function
FOBS.xtnd.new. New
takes an argument for each
identifier listed, and stores
the argument as the value
of the identifier. The idList
is given as a list of strings,
separated by commas.

element " id
" as " perlScript "

Gives the name of an el-
ement, or operator, of the
FOB available through the
access operator. The in-
cluded Perl script gives the
value returned if the opera-
tor is invoked.

invoke " perlScript " The Perl script gives the re-
sult of an invoke operation
on the FOB itself.

Table 2. FEDELE macro operations

tions that add the appropriate elements to the module. For exam-
ple, the make clause would translate into an invocation of the ad-
dMakeId operator shown in Figure 4.

8. A FEDELE Example
We now present an example to illustrate how FEDELE is used. Sup-
pose that the user wished to add a primitive FOB to the library that
is similar to the counter FOB of Example (2). Remember that this
example is illustrated in UML in Figure 1. The new library FOB,
however, will be mutable. That is to say that a counter will have
state, and each time the counter is incremented it will change its
state, rather than produce a new counter with the modified state.
This new counter will also support two new syntactic constructs:
one to easily construct a counter, and one to increment the counter.
The syntax of these operations is illustrated in the following exam-
ple.

++(%C(5))

This example uses the ”%C” operator to create a counter initialized
to 5. The second operator illustrated, ”++”, is used to increment a
counter.

Our new counter will also allow the user to increment it by any
value, as opposed to just an increment of one. An increment of
more than one will not be supported by the macros, but can still be
accomplished by using the inc function itself, as in

c.inc[3]

that increases the value of the counter c by 3. Figure 5 shows the
new FOB structure in UML.

8.1 The counter FEDELE specification
The extension specification for our new counter consists of a
FEDELE specification describing the library modules, and a macro
file defining the syntax of the constructor operator, and the in-
crement operator. We begin by presenting the FEDELE code to
generate the library modules.

FEDELE specification to generate
the example counter
#use #FEDELE

extension "Count" {
mixIn "Printable"
make {"count"}
element "inc" as "

$args = lib::PrimitiveFobs->
thunkDown($args->[0]);

if($args eq $undef){
return(lib::PrimitiveFobs::

getEmpty())
};
if($args->{type} eq \"omega\" &&

$args->{code} eq \"Int\"){
$it->{count}->{val} +=

$args->{val};
return($it);

}
return(lib::PrimitiveFobs::

getEmpty());
"
element "toString" as "

my $v = $it->{count}->{val};
return(lib::FEDELE::

evalString(\"\\\"%C:\\\"
.+[$v .toString[]]\"));

"
invoke "

return($it->{count});
"

} to "e:/fobs-x/code/Count"
#.
#!

(9)

Considering the overall structure of Example (9), it is , in fact,
faithful to the UML description of Figure 5. It specifies a mix-
in FOB Printable, an identifier count, two operations, inc, and
toString, and a return value when invoked.

The code sections illustrate several issues concerned with the
interface between FOBS and Perl. The first issue is how to enable
a Perl segment to access the arguments of the function call. This is
accomplished through the use of several special variables.

• $it - The FOB being operated on. That is to say that $it is the
target of the invoke operation.

• $args - A Vector FOB containing the arguments of the invoke
operation.

The variable $it contains all the identifiers declared in the FEDELE
declaration as hash attributes. For instance, in the Count FOB, the
sequence $it->{count} is the count identifier.

Figure 5. The mutable counter FOB

To access the arguments in the variable $arg a helper function
is necessary. The arguments to FOBs are stored in thunks. To be
used, the FOB inside the argument thunk must be unwrapped and
evaluated. The function lib::PrimitiveFobs->thunkdown can
be used for this purpose, as demonstrated in the definition of the
operator inc.

There are a couple of other useful Perl functions used in Example
(9). The function lib::PrimitiveFobs::getEmpty can be used
to create an instance of the empty FOB, a FOB often used to signal
an exception. Another function lib::FEDELE::evalString is
used to evaluate FOBS expressions within the Perl code. This is
a useful feature. Often it is easier to perform certain actions in
FOBS, than in Perl. EvalString provides the ability to mix Perl
with FOBS code, allowing the user to choose the more efficient
implementation.

8.2 The counter macro file
The second component of the extension is the macro file that
introduces more compact syntactic notation for the new counter
operations. The contents of the file are shown in Example (10).

macros for the Counter example FOB
#defleft

% C (#?op)
#as

(FOBS . Count . new [#?op])
#level

9
#end

#defleft
++ #?op

#as
#?op . inc [1]

#level
8

#end
#!

(10)

The macro file contains the definitions of two macros. The first
one implements the constructor structure with the ”%C” notation. It
matches a string beginning with the character sequence ”% C”, and
followed by a single atom enclosed in parentheses. This sequence
is replaced by an invocation of FOBS.Count.new with the matched
atom as an argument.

The second macro is for the increment operator. It matches
the operator ”++” followed by an atom, and replaces it with an
invocation of the inc operation of the atom with argument 1.

8.3 Stateful and stateless programing
Example (10) demonstrates rather graphically one of the issues
concerning the hybrid paradigm of FOBS. There is a dichotomy be-
tween functional programming and object-oriented programming.
The object-oriented paradigm clearly involves the explicit main-
tenance of state. In fact we often refer to the bindings of instance
variables as the state of the object. On the other hand, although state
does exist in functional languages, and is usually maintained by the
system stack, it is not manipulated explicitly, in the sense that the
program does not change the state directly as is the case in impera-
tive and object-oriented programs, but rather indirectly by invoking
functions. But, this difference between the two paradigms often be-
comes significant, and produces awkward situations in FOBS.

One of the defining characteristics of FOBS is referential trans-
parency. This puts FOBS squarely in the camp of stateless program-
ming. This is seen when we observe, for example, that identifiers
can be bound to a value only once. Mutable objects are not an op-
tion in this style of programming.

On the other hand, mutable objects are a staple of object-oriented
programming. Also, state is often an integral part of scripting envi-
ronments. For example, operating systems scripting often involves
manipulating the state, represented as environment variables. To
accommodate these situations in a language that advertises itself as
an universal scripting language, it is not unreasonable for the user
to wish to introduce state into FOBS. This is not difficult; the li-
brary can be extended to include mutable FOBS, as for example
the Count FOB. However, it is still a stretch to use the language
FOBS to manipulate these new mutable FOBS. In particular, what
is needed to handle mutable FOBs is the ability to define operators
whose return values are not used, but rather they are invoked for
their side-effects on the state.

The problem of doing this type of stateful programming in a
functional paradigm has been well researched, and has resulted in
a body of literature on monadic programming (see Peyton Jones &
Wadler [10], for example). Related to these results is a technique
that has long been used in the object-oriented paradigm, called
method chaining. This technique is used to pass multiple messages
to the same object, as in the example

recipient.doX(xArg).doY(yArg)
in which the mutable object recipient is being first sent the message
doX with the argument xArg, followed by the message doY with the
argument yArg. Although the operations doX, and doY,naturally,
might be thought of as returning no value, with the chaining tech-
nique they would instead return the object being operated on, recip-
ient. In this way the next message in the chain is sent to the same
recipient. One can think of the operators as passing the state along
the chain from one operator to the next.

The technique of chaining is used in FOBS to handle mutable
objects. Its effects can be observed in the code snippets of Ex-
ample (9). The operator inc is defined to return the variable $it,
which is the target FOB, and this allows FOBS expressions such as
++(++ %C(5)), with a chain of increment operation being applied
to the same FOB.

9. FOBS and Scripting
The intended use of FOBS is as a universal scripting language.
Scripting languages are used to automate processes in a variety
of environments. One of the most prevalent uses is in operating

system interface. Scripting languages have also become very useful
in creating dynamic web pages, and handling the collection of data
using forms. They are also used in application programs, such as
spreadsheets to automate calculations or procedures. In each of
these applications the runtime system has two major components:
an interpreter to execute scripts, and an interface that allows the
script to interact with the environment. In FOBS-X, the library FOB
FOBS is the interface to the environment. To adapt FOBS-X to a
particular environment, an extension is created in the FOB FOBS.
This extension contains all operations required for the interface,
defined as FOBs.

As seen in the previous section, we have somewhat automated
the process of creating these extensions. The user supplies a
FEDELE description of an extension, and it is translated into a
Perl definition. We have commenced the construction of a UNIX
extension. We present an example of how this extension might be
used in scripting.

A simple UNIX C-shell script follows that takes a command line
argument, and prints out all files in the current directory containing
that string.

#!/bin/csh
if ($#argv == 0) then

echo Usage: $0 name
exit 1

else
set user_input = $argv[1]
ls | grep i $user_input

endif
exit 0

Assuming that an extension UNIX has been created, the above code
could be translated into SE-FOBS-X as follows.

#use #SE
#use UNIX

if {unix.args.length[] = 0} then {
execute echo and exit in sequence,
using the UNIX extension operation
=>, (sequence)
unix.echo["Usage: " + unix.args[0] +

" name"] =>
unix.exit[1]

} else {
fob {

userInput
val { unix.args[1] }
ret {

use the UNIX package
operator || to perform
the UNIX pipe operation
on ls and grep, and use
the sequence operator to
follow this with an exit.
unix.ls[] || unix.grep["i",

userInput]
=>

unix.exit[0]
} \

}[]
}

#.
#!

This script begins with two directives that inform the FOBS prepro-
cessor that the standard and UNIX extensions are being used. The
UNIX extension makes available the keyword unix, that is a con-

venience definition that allows the user to use this simple keyword,
rather than the full specification, FOBS.UNIX.

Another notation defined in the UNIX extension is the opera-
tor ”=>”, which might be called the sequence operation. This op-
erator is used to interact with UNIX, which is stateful, using the
FOBS computational model, which is stateless. In UNIX, opera-
tions are performed in sequence, and although they return values,
they are usually performed for their side effects. The sequence op-
erator takes as operands two FOBs representing UNIX commands,
performs them in sequence, alters the UNIX environment, and re-
turns the return value of the last command as a FOB. The operator
implements the chaining technique, discussed in Section 8.3.

A last notation used in the example is the operation ”||”. This is
also part of the UNIX extension, and implements the UNIX pipe
operation.

As a universal scripting language, FOBS will often be required to
interact with stateful environments. The FOBS library gives FOBS
that ability, although such interaction diminishes the referential
transparency of the language. To ameliorate the situation, the li-
brary is structured to isolate all operations with side effects in the
FOB FOBS.

10. Conclusion
We have briefly described a core FOBS-X language. This language
is designed as the basis of a universal scripting language. It has a
simple syntax and semantics.

FOBS-X is a hybrid language, which combines the tools and
features of object oriented languages with the tools and features of
functional languages. In fact, the defining data structure of FOBS is
a combination of an object and a function. The language provides
the advantages of referential transparency, as well as the ability
to easily build structures that encapsulate data and behavior. This
provides the user the choice of paradigms.

Core-FOBS-X is the core of an extended language, SE-FOBS-
X, in which programs are translated into the core by a macro
processor. This allows for a language with syntactic sugar, that still
has the simple semantics of our core-FOBS-X language.

Because of the ability to be extended, which is utilized by SE-
FOBS-X, the FOBS-X language gains the flexibility that enables it
to be a universal scripting language. The language can be adapted
syntactically, using the macro capability, to new scripting applica-
tions. The Extension FEDELE allows the semantics of the language
to be adapted to new applications. FEDELE makes the process of
extending the library easier, by automatically generating new li-
brary modules from a high-level specification language.

We are currently working on developing extensions for various
scripting environments. Our next project is to produce a UNIX
extension. Further in the future we plan to investigate using FOBS
for web scripting applications.

References
[1] A. Alexandrescu The D Programming Language. Adison Wesley. 2010
[2] M. Beaven, R. Stansifer, D. Wetlow, : A Functional Language with

Classes. In: Lecture Notices in Computer Science, Springer Verlag, 507.
1991

[3] D. Beazley, G. Van Rossum: Python; Essential Reference. New Riders
Publishing, Thousand Oaks, CA. 1999

[4] J. Gil de Lamadrid, J. Zimmerman. Core FOBS: A Hybrid Functional
and Object-Oriented Language. In: Computer Languages, Systems &
Structures, 38. 2012

[5] J. Gil de Lamadrid. Combining the Functional and Object-Oriented
Paradigms in the FOBS-X Scripting Language. In: International Journal
of Programming Languages and Applications, AIRCC, Vol. 3, No. 2,
Oct. 2013

[6] J. A. Goguen, J. Mesegner. Unifying Functional, Object-Oriented,
and Relational Programming with Logical Semantics. In: Research
Directions in Object-Oriented Programming, MIT Press, pp. 417-478.
1987

[7] S. C, Johnson. Yacc: Yet Another Compiler-Compiler. AT&T Bell
Laboratories. 2014

[8] X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Remy, J. Vouillon. The
OCaml System Release 4.00: Documentation and Users Manual. Institut
National de Recherche en Informatique et en Automatique. 2012

[9] M. Page-Jones. Fundamentals of Object-Oriented Design in UML.
Addison Wesley, pp. 327-336. 2000

[10] S. L. Peyton Jones, P. Wadler. Imperative Functional Programming.
POPL, Charleston, Jan, 1993

[11] S. S. Yau, X. Jia, D. H. Bae. Proof: A Parallel Object-Oriented
Functional Computation Model. In: Journal of Parallel Distributed
Computing, 12. 1991

[12] M. Odersky, L. Spoon, B. Venners. Programming in Scala , Artima,
Inc. 2008

[13] T. Walid, T Sheard. MetML and Multi-stage Programming with
Explicit Annotations, In: Proceedings of ACM SIGPLAN Symposium
on Partial Evaluation and Semantic Based Program Manipulation, pp.
203-217, Amsterdam, NL. 1997

Source-to-Source Compilation in Racket
You Want it in Which Language?

Tero Hasu
BLDL and University of Bergen

tero@ii.uib.no

Matthew Flatt
PLT and University of Utah

mflatt@cs.utah.edu

Abstract
Racket’s macro system enables language extension and definition
primarily for programs that are run on the Racket virtual machine,
but macro facilities are also useful for implementing languages and
compilers that target different platforms. Even when the core of
a new language differs significantly from Racket’s core, macros
offer a maintainable approach to implementing a larger language
by desugaring into the core. Users of the language gain the bene-
fits of Racket’s programming environment, its build management,
and even its macro support (if macros are exposed to programmers
of the new language), while Racket’s syntax objects and submod-
ules provide convenient mechanisms for recording and extracting
program information for use by an external compiler. We illustrate
this technique with Magnolisp, a programming language that runs
within Racket for testing purposes, but that compiles to C++ (with
no dependency on Racket) for deployment.

Categories and Subject Descriptors D.2.13 [Software Engineer-
ing]: Reusable Software; D.3.4 [Programming Languages]: Pro-
cessors

General Terms Design, Languages

Keywords Compiler frameworks, language embedding, macro
systems, module systems, syntactic extensibility

1. Introduction
The Racket programming language (Flatt and PLT 2010) builds
on the Lisp tradition of language extension through compile-time
transformation functions, a.k.a. macros. Racket macros not only
support language extension, where the existing base language is
enriched with new syntactic forms, but also language definition,
where a completely new language is implemented though macros
while hiding or adapting the syntactic forms of the base language.

Racket-based languages normally target the Racket virtual ma-
chine (VM), where macros expand to a core Racket language, core
Racket is compiled into bytecode form, and then the bytecode form
is run:

Racket
macroexpand

core Racket

Racket VM
run

bytecode

compile

The macro-expansion step of this chain is an example of a
source-to-source compiler (or transcompiler for short), i.e., a trans-
lator that takes the source code in one language and outputs source
code of another language. Transcompilers have potential bene-
fits compared with compilation to machine code, such as more

economical cross-platform application development by targeting
widely supported languages, which enables the building of executa-
bles with various platform-vendor-provided toolchains.

A Racket-based language can also benefit by avoiding a run-
time dependency on the Racket VM. Breaking the dependency can
sometimes ease deployment, as the Racket VM is not well sup-
ported in every environment. Furthermore, for a mobile “app” to
be distributed in an “app store,” for example, it is desirable to keep
startup times short and in-transit and in-memory footprints low;
even in a stripped-down form, Racket can add significantly to the
size of an otherwise small installation package. Factors relating to
app-store terms and conditions and submission review process may
also mean that avoiding linking in additional runtimes may be sen-
sible or even necessary.

One example of an existing source-to-source compiler that
avoids the Racket VM is Whalesong (Yoo and Krishnamurthi
2013), which compiles Racket to JavaScript via Racket bytecode:

Racket
macroexpand

core Racket

Racket VM
run

bytecode

compile

JavaScript

Whalesong

In this approach, a number of optimizations (such as inlining)
are performed for bytecode by the normal Racket compiler, making
it a sensible starting point for transcompilers that aim to implement
variants of Racket efficiently.

Compiling via Racket bytecode may be less appropriate when
the language being compiled is not Racket or when optimizing for
properties other than efficiency. Racket’s bytecode does not retain
all of the original (core) syntax, making it less suitable for imple-
menting semantics-retaining compilation that happens primarily at
the level of abstract syntax.

Thus, depending on the context, it may make more sense to
compile from macro-expanded core language instead of bytecode.1

Scheme-to-C compilers (e.g., CHICKEN and Gambit-C) typically
work that way, as does the old mzc compiler for Racket:

1 In Racket, one can acquire core language for a Racket source file by
read-syntaxing the file contents and then invoking expand on the read
(top-level) forms.

C

Racket
macroexpand

core Racket

Racket VM
run

bytecode

compile

mzc

To try out a different Racket-exploiting transcompilation pipe-
line, we implemented a to-C++ compiler for a small programming
language named Magnolisp. Conceptually, the Magnolisp imple-
mentation is like a Scheme-to-C compiler, but instead of handling
all of Racket, it handles only a particular subset of Racket that cor-
responds to the expansion of the Magnolisp macros (although the
“subset” includes additional macro-introduced annotations to guide
compilation to C++). A traditional compilation pipeline for mglc
(the Magnolisp compiler) would be the following, with the smaller
box representing the part of the program to be transcompiled (addi-
tionally, there can be macro definitions, for example, which are not
relevant when transcompiling):

C++

Magnolisp
macroexpand

core Racket

Racket VM
run

bytecode

compile

mglc

However, directly manipulating core Racket S-expression syn-
tax is not especially convenient from outside of the Racket pipeline.
Racket’s strength is in support for the macro-expansion phase, es-
pecially its support for multiple modules and separate compilation
at the module level. It can be useful to be able to do back-end-
specific work in macro expansion. In the Magnolisp case, such
work includes recording type annotations and catching syntax er-
rors early, for the benefit of mglc.

Magnolisp demonstrates a source-to-source compilation ap-
proach that takes advantage of the macro-expansion phase to pre-
pare for “transcompile time.”2 More precisely, Magnolisp arranges
for macro expansion to embed into the Racket program the in-
formation that the Magnolisp compiler needs. The compiler ex-
tracts the information by running the program in a mode in which
transcompile-time code is evaluated. This results in the following,
distinctly non-traditional compilation pipeline; here, the smaller
boxes still correspond to the part of the program that is transcom-
piled, but they now denote code that encodes the relevant informa-
tion about the program, and only gets run in the transcompile-time
mode (as depicted by the longer arrow of the “run” step):

2 Our use of the word “time” here refers to the idea behind Racket’s sub-
modules (Flatt 2013), which is to make it possible for programmers to de-
fine new execution phases beyond the macro-expansion and run-time phases
that are built into the language model. In our case we want to introduce a
transcompile-time phase, and designate some of the code generated during
macro expansion as belonging to that phase. In practice, this is done by
putting said code into a separately loadable module within a module, i.e. a
submodule of a known name within the module whose transcompile-time
code it is.

Magnolisp
macroexpand

core Racket

Racket VM
run

bytecode

compile

C++

mglc

In essence, this strategy works because Racket is already able to
preserve syntactic information in bytecode, so that Racket can im-
plement separately compiled macros. Recent generalizations to the
Racket syntax system—notably, the addition of submodules (Flatt
2013)—let us conveniently exploit that support for Magnolisp com-
pilation.

The information that Magnolisp makes available (via a submod-
ule) for compilation consists of abstract syntax trees (which incor-
porate any compilation-guiding annotations), along with some aux-
iliary data structures. As the particular abstract syntax is only for
compilation, it need not conform to the Racket core language se-
mantics; indeed, Magnolisp deviates from Racket semantics where
deemed useful for efficient and straightforward translation into
C++.

Even for a language that is primarily designed to support
transcompilation, it can be useful to also have an evaluator. We
envision direct evaluation being useful for simulating the effects
of compiled programs, probably with “mock” implementations
of primitives requiring functionality that is not available locally.
The idea is to gain some confidence that programs (or parts
thereof) work as intended before actually compiling them. Cross-
compilation and testing on embedded devices can be particularly
time consuming; compilation times generally pale in comparison
to the time used to transfer, install, and launch a program.

The usual way of getting a Racket-hosted language to evaluate
is to macro transform its constructs into the Racket core language,
for execution in the Racket VM. Having macro-expansion gener-
ate separately loadable transcompile-time code does mean that it
could not also generate evaluatable Racket run-time definitions.
Magnolisp demonstrates this by supporting both transcompilation
and Racket-VM-based evaluation.

1.1 Motivation for Racket-Hosted Transcompiled Languages
Hosting a language via macros offers the potential for extensibil-
ity in the hosted language. This means leveraging the host lan-
guage both to provide a language extension mechanism and a lan-
guage for programming any extensions. While a basic language
extension mechanism (such as the C preprocessor or a traditional
Lisp macro system) may be implementable with reasonable effort,
safer and more expressive mechanisms require substantial effort to
implement from scratch. Furthermore, supporting programmable
(rather than merely substitution based) language extensions calls
for a compile-time language evaluator, which may not be readily
available for a transcompiled language.

Hosting in Racket offers safety and composability of language
extensions through lexical scope and phase separation respecting
macro expansion. Racket macros’ hygiene and referential trans-
parency help protect the programmer from inadvertent “capturing”
of identifiers, making it more likely that constructs defined modu-
larly (or even independently) compose successfully. Phase separa-
tion (Flatt 2002) means that compile time and run time have distinct
bindings and state. The separation in the time dimension is partic-
ularly crucial for a transcompiler, as it must be possible to parse
code without executing it. The separation of bindings, in turn, helps
achieve language separation, in that one can have Racket bindings

in scope for compile-time code, and hosted-language bindings for
run-time code.

Racket’s handling of modules can also be leveraged to support
modules in the hosted language, with Racket’s raco make tool
for rebuilding bytecode then automatically serving as a build tool
for multi-module programs in the language. The main constraint is
that Racket does not allow cycles among module dependencies.

Particularly for new languages it can be beneficial to reuse
existing language infrastructure. With a Racket embedding one is in
the position to reuse Racket infrastructure on the front-end side, and
the target language’s infrastructure (typically libraries) on the back-
end side. Reusable front-end side language tools might include
IDEs (Findler et al. 2002), documentation tools (Flatt et al. 2009),
macro debuggers (Culpepper and Felleisen 2007), etc. Although
some tools might not be fully usable with programs that cannot
be executed as Racket, the run vs. compile time phase separation
means that a tool whose functionality does not entail running a
program should function fully.

Racket’s language extension and definition machinery may be
useful not only for users, but also for language implementors.
Its macros have actually become a compiler front end API that
is sufficient for implementing many general-purpose abstraction
mechanisms in a way that is indistinguishable from built-in fea-
tures (Culpepper and Felleisen 2006). In particular, a basic “sug-
ary” construct is convenient to implement as a macro, as both sur-
face syntax and semantics can be specified in one place.

1.2 Contributions
The main contributions of this paper are:

• we describe a generic approach to replacing the runtime lan-
guage of Racket in such a manner that information about code
in the language can be processed at macro-expansion time, and
selectively made available for separate loading for purposes of
source-to-source compilation to another high-level language;

• we show that the core language and hence the execution seman-
tics of such a source-to-source compiled language can differ
from Racket’s;

• we suggest that it may be useful to also make a transcompiled
language executable as Racket, and show that this is possible at
least for our proof-of-concept language implementation; and

• we show that this approach to language implementation allows
Racket’s expressive macro and module systems to be reused to
make the implemented language user extensible, and to make
the scope of language extensions user controllable.

Some of the presented language embedding techniques have
been previously used in the implementation of Dracula, to allow for
compilation of Racket-hosted programs to the ACL2 programming
language; they have remained largely undocumented, however.

The significance of the reported approach beyond the Racket
ecosystem is that it supports transcompiler implementation for lan-
guages that have all three of the following properties:

• the language is extensible from within itself;
• the scope of each language extension can be controlled sepa-
rately, also from within the language; and

• there are some guarantees of independently defined extensions
composing safely.3

3 In the case of Racket, macros that do not explicitly capture free variables
are safe to compose in the limited sense that they preserve the meaning
of variable bindings and references during macro expansion (Eastlund and
Felleisen 2010).

2. Magnolisp
Magnolisp is a proof-of-concept implementation of a Racket-
hosted transcompiled language, and the running example that we
use to discuss the associated implementation techniques. As a lan-
guage, Magnolisp is not exceptional in being suitable for hosting;
the techniques described in this paper constitute a general method
for hosting a transcompiled language in Racket.

Code and documentation for Magnolisp is available at:

https://www.ii.uib.no/~tero/magnolisp-ifl-2014/

2.1 The Magnolisp Language
To help understand the Magnolisp-based examples given later, we
give some idea of the syntax and constructs of the language. We
assume some familiarity with Racket macro syntax.

Magnolisp is significantly different from Racket in that its over-
riding design goal is to be amenable to static reasoning; Racket
compatibility, for better reuse of Racket’s facilities, is secondary.
Magnolisp disallows many forms of runtime-resolved dispatch of
control that would make reasoning about code harder. Unlike in
Racket, all data types and function invocations appearing in pro-
grams are resolvable to specific implementations at compile time.

Requiring fully, statically typed Magnolisp programs facilitates
compilation to C++, as the static types can be mapped directly to
their C++ counterparts. To reduce syntactic clutter due to annota-
tions, and hence to help retain Racket’s untyped “look and feel,”
Magnolisp features whole-program type inference à la Hindley-
Milner.

Magnolisp reuses Racket’s module system for managing names
internally within programs (or libraries), both for run-time names
and macros. The exported C++ interface is defined separately
through export annotations appearing in function definitions;
only exported functions are declared in the generated C++
header file.

The presented language hosting approach involves the definition
of a Racket language for the hosted language. The Racket language
for Magnolisp is named magnolisp. At the top-level of a module
written in magnolisp, one can declare functions, for exam-
ple. A function may be marked foreign, in which case it is as-
sumed to be implemented in C++; such a function may also have a
Racket implementation, given as the body expression, to also allow
for running in the Racket VM. Types can only be defined in C++,
and hence are always foreign, and typedef can be used to give
the corresponding Magnolisp declarations. The type annotation is
used to specify types for functions and variables, and the type ex-
pressions appearing within may refer to declared type names. The
#:annos keyword is used to specify the set of annotations for a
definition.

In this example, get-last-known-location is a Magno-
lisp function of type (fn Loc), i.e., a function that returns a value
of type Loc. The (rkt.get-last-known-location) ex-
pression in the function body might be a call to a Racket function
from module "positioning.rkt", simulating position infor-
mation retrieval:

#lang magnolisp
(require (prefix-in rkt. "positioning.rkt"))

(typedef Loc (#:annos foreign))

(function (get-last-known-location)
(#:annos foreign [type (fn Loc)])
(rkt.get-last-known-location))

No C++ code is generated for the above definitions, as they are
both declared as foreign. For an example that does have a C++
translation, consider the following code, which introduces Magno-

lisp’s predefined predicate type for boolean values, variable
declarations, if expressions and statements, and do and return
constructs. The latter two are an example of language that does not
directly map into Racket core language; the do expression contains
a sequence of statements, with any executed return statement de-
termining the value of the overall expression. Magnolisp syntax is
not particularly concise, but shorthands can readily be defined, as is
here demonstrated by the declare-List-op macro for declar-
ing primitives that accept a List argument:
#lang magnolisp
; list and element data types (defined in C++)
(typedef List (#:annos foreign))
(typedef Elem (#:annos foreign))

(define-syntax-rule (declare-List-op [n t] ...)
(begin (function (n lst)

(#:annos [type (fn List t)] foreign))
...))

; list and element primitives (implemented in C++)
(declare-List-op [empty? predicate]

[head Elem]
[tail List])

(function (zero)
(#:annos [type (fn Elem)] foreign))

(function (add x y)
(#:annos [type (fn Elem Elem Elem)] foreign))

; sum of first two list elements
; (or fewer for shorter lists)
(function (sum-2 lst) (#:annos export)
(if (empty? lst)

(zero)
(do (var h (head lst))

(var t (tail lst))
(if (empty? t)

(return h)
(return (add h (head t)))))))

The transcompiler-generated C++ implementation for the sum-
2 function is the following (but hand-formatted for readability).
The translation is verbose, and could be simplified with additional
optimizations; its redeeming quality is that it closely reflects the
structure of the original code, which was made possible by our
use of GCC-specific C++ language extensions (e.g., “statement
expressions”):
MGL_API_FUNC Elem sum_2(List const& lst)
{

return (is_empty(lst)) ? (zero ()) :
(({ __label__ b;

Elem r;
{

Elem h = head(lst);
{

List t = tail(lst);
if (is_empty(t))

{ r = h; goto b; }
else

{ r = add(h, head(t));
goto b; }

}
}
b: r;

}));
}

2.2 Magnolisp Implementation
The collection of techniques for embedding a transcompiled lan-
guage within Racket, as described in this paper, only concern the
front end of a transcompiler. Wildly differing designs for the rest of

the compilation pipeline are possible; we merely sketch the struc-
ture of our Magnolisp-to-C++ compiler as a concrete example.

Magnolisp is implemented in Racket, and in a way there are two
implementations of the language: one targeting the Racket VM, and
one targeting C++. The magnolisp Racket language has the dual
role of defining execution semantics for the Racket VM, and also
effectively being the front end for the transcompiler.

Figure 1 shows an overview of the transcompiler architecture,
including both the magnolisp-defined front end, and the mglc-
driven middle and back ends. One detail omitted from the figure is
that the macro-expanded "a.rkt" module gets compiled before
it or any of its submodules are evaluated; if this is not done ahead
of time, with the result serialized into a file as bytecode, it will
get done on demand by Racket when the for-transcompile-time
submodule is accessed.

Figure 2 illustrates the forms of data running through the com-
pilation pipeline. The "a.rkt" module’s transcompile-time code
gets run when its magnolisp-s2s submodule gets instantiated,
which means that variables are created for module-level definitions.
Transcompilation triggers instantiation by invoking dynamic-
require to fetch values for said variables (e.g., def-lst); the
values describe "a.rkt", and are already in the compiler’s inter-
nal data format. Any referenced dependencies of "a.rkt" (e.g.,
"num-types.rkt") are processed in the same manner, and the
relevant definitions are incorporated into the compilation result
(i.e., "a.cpp" and "a.hpp").

The middle and back ends may be accessed via the mglc
command-line tool, or programmatically via the underlying API.
The expected input for these is a set of modules for transcom-
piling to C++. The compiler loads any transcompile-time code in
the modules and their dependencies. Dependencies are determined
by inspecting binding information for appearing identifiers, as re-
solved by Racket during macro expansion. Any modules with a
magnolisp-s2s submodule are assumed to be Magnolisp, but
other Racket-based languages may also be used for macro program-
ming or simulation. The Magnolisp compiler effectively ignores
any code that is not run-time code in a Magnolisp module.

The program transformations performed by the compiler are
generally expressed in terms of term rewriting strategies. These
are implemented based on a custom strategy combinator library in-
spired by Stratego (Bravenboer et al. 2008). The syntax trees pre-
pared for the transcompilation phase use data types supporting the
primitive strategy combinators that the combinator library expects.

The compiler middle end implements whole-program optimiza-
tion (by dropping unused definitions), type inference, and some
simplifications (e.g., removal of condition checks where the con-
dition is (TRUE) or (FALSE)). The back end implements trans-
lation from Magnolisp core to C++ syntax (including e.g. lambda
lifting), C++-compatible identifier renaming, splitting of code into
sections (e.g.: public declarations, private declarations, and private
implementations), and pretty printing.

3. Hosting a Transcompiled Language in Racket
Building a language in Racket means defining a module or set of
modules to implement the language. The language’s modules de-
fine and export macros to compile the language’s syntactic forms to
core forms. In the case of a transcompiled language, the expansion
of the language’s syntactic forms might produce nested submod-
ules to separate code than can be run directly in the Racket VM
from information that is used to continue compilation to a different
target.

In this section, we describe some of the details of that process
for some transcompiled language L. Where the distinction matters,
we use LR to denote a language intended to also run in the Racket
VM (possibly with mock implementations of some primitives), and

front end
middle end

back end

a.rkt
(Magnolisp
source)

Racket
macro

expander

inputOf

Magnolisp
libraries

refersTo

a.rkt
(core

Racket)

expandsTo

a.rkt
magnolisp-s2s
submodule

contains

module
loader

evaluates

analyses &
optimizations

middle-end
API

invokes invokes

IR

outputs

back-end
API

C++
back-end
driver

invokes

translator

invokes

sectioner

invokes

pretty
printer

invokes

a.cpp

generates

a.hpp

generates

inputOf

mglc
(CLI tool)

invokes

invokes

Figure 1: The overall architecture of the Magnolisp compiler, showing some of the components involved in compiling a Magnolisp source
file "a.rkt" into a C++ implementation file "a.cpp" and a C++ header file "a.hpp". The dotted arrows indicate that the use of the
mglc command-line tool is optional; the middle and back end APIs may also be invoked by other programs. The dashed ‘‘evaluates’’ arrow
indicates a conditional connection between the left and right hand sides of the diagram; the magnolisp-s2s submodule is only loaded
when transcompiling. The ‘‘expandsTo’’ connection is likewise conditional, as "a.rkt" may have been compiled ahead of time, in which
case the module is already available in a macro-expanded form.

a.rkt

#lang magnolisp
(require "num-types.rkt")
(function (int-id x)

(#:annos [type (fn int int)] export)
x)

(module a magnolisp/main
(#%module-begin
(module magnolisp-s2s racket/base

(#%module-begin
....
(define-values (def-lst)

(#%app list
(#%app DefVar)
....))

....))

....
(#%require "num-types.rkt")
(define-values (int-id))))

a.rkt (core) macroexpand

a.rkt magnolisp-s2s (instance)

def-lst

list

DefVar

annos

....

Id

.... int-id

Lambda

....

....

..
..

a.cpp

#include "a.hpp"
MGL_API_FUNC int int_id(int const& x) {
return x;

}

#ifndef __a_hpp__
#include "a_config.hpp"
MGL_API_PROTO int int_id(int const& x);
#endif

a.hpp

translaterun

Figure 2: An illustration of the processing of a Magnolisp module as it passes through the compilation pipeline. Transcompile-time Racket
code is shown in a dashed box.

LC to denote a language that only runs through compilation into a
different language.

3.1 Modules and #lang
All Racket code resides within some module, and each module
starts with a declaration of its language. A module’s language
declaration has the form #lang L as the first line of the module.
The remainder of the module can access only the syntactic forms
and other bindings made available by the language L.

A language is itself implemented as a module.4 A language
module is connected to the name L—so that it will be used by
#lang L—by putting the module in a particular place in the
filesystem or by appropriately registering the module’s parent di-
rectory.

In general, a language’s module provides a reader that gets
complete control over the module’s text after the #lang line. A
reader produces a syntax object, which is kind of S-expression
(that combines lists, symbols, etc.) that is enriched with source
locations and other lexical context. We restrict our attention here
to a language that uses the default reader, which parses module
content directly as S-expressions, adding source locations and an
initially empty lexical context.

For example, to start the implementation of L such that it uses
the default reader, we might create a "main.rkt" module in an
"L" directory, and add a reader submodule that points back to
L/main as implementing the rest of L:
#lang racket
(module reader syntax/module-reader L/main)

The S-expression produced by a language’s reader serves as
input to the macro-expansion phase. A language’s module provides
syntactic forms and other bindings for use in the expansion phase
by exporting macros and variables. A language L can re-export all
of the bindings of some other language, in which case L acts as an
extension of that language, or it can export an arbitrarily restrictive
set of bindings.

For example, if "main.rkt" re-exports all of racket, then
#lang L is just the same as #lang racket:
#lang racket
(module reader syntax/module-reader L/main)
(provide (all-from-out racket))

A language must at least export a macro named #%module-
begin, because said macro implicitly wraps the body of a module.
Most languages simply use #%module-begin from racket,
which treats the module body as a sequence of require importing
forms, provide exporting forms, definitions, expressions, and
nested modules, where a macro use in the module body can expand
to any of the expected forms. A language might restrict the body
of modules by either providing an alternative #%module-begin
or by withholding other forms. A language might also provide a
#%module-begin that explicitly expands all forms within the
module body, and then applies constraints or collects information
in terms of the core forms of the language.

For example, the following "main.rkt" re-exports all of
racket except require (and the related core language name
#%require), which means that modules in the language L cannot
import other modules. It also supplies an alternate #%module-
begin macro to pre-process the module body in some way:
#lang racket
(module reader syntax/module-reader L/main)
(provide

(except-out (all-from-out racket)

4 Some language must be predefined, of course. For practical purposes,
assume that the racket module is predefined.

require #%require #%module-begin)
(rename-out [L-module-begin #%module-begin]))

(define-syntax L-module-begin)

The language definition facilities described so far are gen-
eral, and useful regardless of whether the language is transcom-
piled or not. We now proceed to provide the specifics of this pa-
per’s transcompiled language implementation approach. In it, the
#%module-beginmacro in particular plays a key role, and over-
all, a Racket language L that is intended for transcompilation is
defined as follows:

• Have the language’s module export bindings that define the
surface syntax of the language. The provided bindings should
expand only to transcompiler-supported run-time forms. We
describe this step further in section 3.2

• Where applicable, have macros record additional metadata that
is required for transcompilation. We describe this step further
in section 3.3

• Have the #%module-begin macro fully expand all the
macros in the module body, so that the rest of the transcompiler
pipeline need not implement macro expansion. We describe this
step further in section 3.4

• After full macro expansion, have #%module-begin add ex-
ternally loadable information about the expanded module into
the module. We describe this step further in section 3.5

• Provide any run-time support for running programs alongside
the macros that define the syntax of the language. We describe
this step further in section 3.6

The export bindings of L may include variables, and the pres-
ence of transcompilation introduces some nuances into their mean-
ing. When the meaning of a variable in L is defined in L, we say
that it is a non-primitive. When its meaning is defined in the exe-
cution language, we say that it is a primitive. When the meaning
of its appearances is defined by a compiler of L, we say that it is a
built-in. As different execution targets may have different compil-
ers, what is a built-in for one target may be a primitive for another.
It is typically not useful to have built-ins for the Racket VM target,
for which the #%module-begin macro may be considered to be
the “compiler.”

3.2 Defining Surface Syntax
To define the surface syntax of a language L, its implementation
module’s exports should ideally name a variable of L, a core lan-
guage construct of L, or a macro that expands only to those con-
structs. Where the core language is a subset of Racket’s, it should
be ensured that only the transcompiler-supported set appears in an
expansion. Where the core of L is a superset of Racket, the ad-
ditional constructs should be encoded in terms of Racket’s core
forms.

Possible strategies for encoding foreign code forms include:

• E1. Use a variable binding to identify a core-language form.
Use it in application position to allow other forms to appear
within the application form. Subexpressions within the form
can be delayed with suitable lambda wrappers, if necessary.

• E2. Attach information to a syntax object through its syntax
property table; macros that manipulate syntax objects must
propagate properties correctly.

• E3. Store information about a form in a compile-time table that
is external to the module’s syntax objects.

• E4. Use Racket core forms that are not in L (not under their
original meaning), or combinations of forms involving such
forms.

A caveat for E2 and E3 is that both syntax properties and
compile-time tables are transient, and they generally become un-
available after a module is fully expanded, so any information to
be preserved must be reflected as generated code in the expansion
of the module; we describe this step further in section 3.5. Another
caveat of such “out-of-band” storage locations is that where the
stored data includes identifiers, one must beware of extracting iden-
tifiers out of syntax objects too early; if the identifier is in the scope
of a binding form, then the binding form must be first expanded so
that the identifier will include information about the binding.

In the case of LR there are additional constraints to encoding
foreign core forms, since the result of a macro-expansion should be
compatible with both the transcompiler and the Racket evaluator.
The necessary duality can be achieved if the surface syntax defin-
ing macros can adhere to these constraints: (C1) exclude Racket
core form uses that are not supported by the compiler; (C2) add
any compilation hints to Racket core forms in a way that does not
affect evaluation (e.g., as custom syntax properties); and (C3) en-
code any transcompilation-specific syntax in terms of Racket core
forms which only appear in places where they do not affect Racket
execution semantics.

Where the constraints C1–C3 are troublesome, the fallback op-
tion is to have #%module-begin rewrite either the run-time
code, transcompile-time code, or both, to make the program con-
form to expected core language. Such rewriting may still be con-
strained by the presence of binding forms, however.

The principal constraint on encoding a language’s form is that a
binding form in L should be encoded as a binding form in Racket,
because bindings are significant to the process of hygienic macro
expansion. Operations on a fully expanded module’s syntax ob-
jects, furthermore, can reflect the accumulated binding information,
so that a transcompiler may possibly avoid having to implement its
own management of bindings. For the cases where a language’s
forms do not map neatly to a Racket binding construct, Racket’s
macro API supports explicit definition contexts (Flatt et al. 2012),
which enable the implementation of custom binding forms that co-
operate with macro expansion.

For an example of foreign core form encoding strategy E1, con-
sider an LC with a parallel construct that evaluates two forms in
parallel. Said construct might be defined simply as a “dummy” con-
stant, recognized by the transcompiler as a specific built-in by its
identifier, translating any appearances of (parallel e1 e2)
“function applications” appropriately:
(define parallel #f)

Alternatively, as an example of strategy E2, LC’s (parallel
e1 e2) form might simply expand to (list e1 e2), but with
a ’parallel syntax property on the list call to indicate that
the argument expressions are intended to run in parallel:
(define-syntax (parallel stx)
(syntax-case stx ()

[(parallel e1 e2)
(syntax-property #’(list e1 e2)

’parallel #t)]))

For LR, parallel might instead be implemented as a simple
pattern-based macro that wraps the two expressions in lambda
and passes them to a call-in-parallel runtime function,
again in accordance to strategy E1. The call-in-parallel
variable could then be treated as a built-in by the transcompiler,
and implemented as a primitive for running in the Racket VM:
(define-syntax-rule (parallel e1 e2)
(call-in-parallel (lambda () e1) (lambda () e2)))

An example of adhering to constraint C3 is the definition of
Magnolisp’s typedef form, for declaring an abstract type. A de-
clared type t is bound as a variable to allow Racket to resolve type

references; these bindings also exist for evaluation as Racket, but
they are never referenced at run time. The #%magnolisp built-
in is used to encode the meaning of the variable, but as #%mag-
nolisp has no useful definition in Racket, the evaluation of any
(#%magnolisp) expressions is prevented. The CORE
macro is a convenience for wrapping (#%magnolisp)
expressions in an (if #f #f) form to “short-circuit” the
overall expression so as to make it obvious to the Racket bytecode
optimizer that the enclosed expression is never evaluated as Racket.
The let/annotate form is a macro that stores the annotations
a ..., which might e.g. include the name of t’s C++ definition.

(define #%magnolisp #f)
(define-syntax-rule (CORE kind arg ...)

(if #f (#%magnolisp kind arg ...) #f))

(define-syntax-rule (typedef t (#:annos a ...))
(define t

(let/annotate (a ...)
(CORE ’foreign-type))))

Using a macro system for syntax definition offers several ad-
vantages compared to parsing in a more traditional way:5

• Where it is sufficient to define custom syntactic forms as
macros, parsing is almost “for free.” At the same time, the
ability to customize a language’s reader makes it possible for
surface syntax not to be in Lisp’s parenthesized prefix notation.

• Macros and the macro API provide a convenient implementa-
tion for “desugaring” and other rewriting-based program trans-
formations. Such transformations can be written in a modular
and composable way.

• For making L macro extensible, its implementation can simply
expose a selection of relevant Racket constructs (directly or
through macro adapters) to enable the inclusion of compile-
time code within L modules.

3.3 Storing Metadata
We use the term metadata to mean data that describes a syntax
object, but is not itself a core syntactic construct in the imple-
mented language. Such data may encode information (e.g., opti-
mization hints) that is meaningful to a transcompiler or other kinds
of external tools. Some metadata may be collected automatically
by the language infrastructure (e.g., source locations in Racket),
some might be inferred by L’s macros at expansion time, and some
might be specified as explicit annotations in source code (e.g., the
export annotation of Magnolisp functions, or the weak modifier
of variables in the Vala language).

There is no major difference between encoding foreign syntax
in terms of Racket core language, or encoding metadata; the strate-
giesE1–E4 apply for both. The main way in which metadata differs
is that it does not tend to appear as a node of its own in a syntax tree.
Any annotations in L do have surface syntax, but no core syntax,
and hence they disappear during macro expansion; they do appear
explicitly in unexpanded code, but such code cannot in general be
directly analyzed, as unexpanded L code cannot be parsed. A more
workable strategy is to have L’s syntactic forms store any necessary
metadata during macro expansion.

For metadata, storage in syntax properties is a typical choice.
Typed Racket, for example, stores its type annotations in the a
custom ’type-annotation syntax property (Tobin-Hochstadt
et al. 2011).

5 A macro’s process of validating and destructuring its input syntax can also
be regarded as parsing, even though the input is syntax objects rather than
raw program text or token streams (Culpepper 2012).

Compile-time tables are another likely option for metadata stor-
age. For storing data for a named definition, one might use an iden-
tifier table, which is a dictionary data structure where each entry is
keyed by an identifier. An identifier, in turn, is a syntax object for
a symbol. Such a table is suitable for both local and top-level bind-
ings, because the syntax object’s lexical context can distinguish dif-
ferent bindings that have the same symbolic name. Magnolispit, a
variant implementation of Magnolisp, uses an identifier table for
metadata storage. Magnolispit exports an anno! macro, which
may be used to annotate an identifier, and is used internally e.g.
by function and typedef. It is strictly a compile-time con-
struct, and has no corresponding core syntax. Its advantage is that
it may be used to post-facto annotate an already declared binding:
#lang magnolisp
(typedef int (#:annos foreign))
; MGL_API_FUNC int id(int const& x) { return x; }
(function (id x) x)
(anno! id [type (fn int int)] export)

It is also possible to encode annotations in the syntax tree
proper, which has the advantage of fully subjecting annotations to
macro expansion. Magnolisp adopts this approach for its annotation
recording, using a special ’annotate-property-flagged let-
values form to contain annotations. Each contained annotation
expression a is encoded as (if #f (#%magnolisp ’anno
....) #f) to prevent evaluation at Racket run time, and e.g.
[type] expands to such a form, via the intermediate CORE
form given in section 3.2:
(define-syntax-rule (type t) (CORE ’anno ’type t))

(define-syntax (let/annotate stx)
(syntax-case stx ()

[(_ (a ...) e)
(syntax-property
(syntax/loc stx
(let-values ([() (begin a (values))] ...)

e))
’annotate #t)]))

The let/annotate-generated let-values forms introduce
no bindings, and their right-hand-side expressions yield no values;
only the expressions themselves matter. Where the annotated ex-
pression e is an initializer expression, the Magnolisp compiler de-
cides which of the annotations are actually associated with the ini-
tialized variable.

3.4 Expanding Macros
One benefit of reusing the Racket macro system with L is to avoid
having to implement an L-specific macro system. When the Racket
macro expander takes care of macro expansion, the remaining
transcompilation pipeline only needs to understand L’s core syn-
tax (and any related metadata). Racket includes two features that
make it possible to expand all the macros in a module body, and
afterwards process the resulting syntax, all within the language.

The first of these features is the #%module-begin macro,
which can transform the entire body of a module. The second is
the local-expand (Flatt et al. 2012) function, which may be
used to fully expand all the #%module-begin sub-forms. Using
the two features together is demonstrated by the following macro
skeleton, which might be exported as the #%module-begin of a
language:
(define-syntax (module-begin stx)
(syntax-case stx ()

[(module-begin form ...)
(let ([ast (local-expand

#’(#%module-begin form ...)
’module-begin null)])

(do-some-processing-of ast))]))

The local-expand operation also supports partial sub-form
expansion, as it takes a “stop list” of identifiers that prevent de-
scending into sub-expressions with a listed name. At first glance
one might imagine exploiting this feature to allow foreign core syn-
tax to appear in a syntax tree, and simply prevent Racket from pro-
ceeding into such forms. The main problem with this strategy is
that foreign binding forms would not be accounted for in Racket’s
binding resolution. That problem is compounded if foreign syn-
tactic forms can include Racket syntax sub-forms; the sub-forms
need to be expanded along with enclosing binding forms. To pre-
vent these problems, a stop list is automatically expanded to in-
clude all Racket core forms if it includes any form so that partial
expansion is constrained to the consistent case that stays outside of
binding forms.

3.5 Exporting Information to External Tools
After the #%module-begin macro has fully expanded the con-
tent of a module, it can gather information about the expanded con-
tent to make it available for transcompilation. The gathered infor-
mation can be turned into an expression that reconstructs the in-
formation, and that expression can be added to the overall module
body that is produced by #%module-begin.

The expression to reconstruct the information should not be
added to the module as a run-time expression, because extract-
ing the information for transcompilation would then require run-
ning the program (in the Racket VM). Instead, the information is
better added as compile-time code. The compile-time code is then
available from the module while compiling other L modules, which
might require extra compile-time information about a module that
is imported into another L module. More generally, the information
can be extracted by running only the compile-time portions of the
module, instead of running the module normally.

As a further generalization of the compile-time versus run-time
split, the information can be placed into a separate submodule
within the module (Flatt 2013). A submodule can have a dynamic
extent (i.e., run time) that is unrelated to the dynamic extent of its
enclosing module, and its bytecode may even be loaded separately
from the enclosing module’s bytecode. As long as a compile-
time connection is acceptable, a submodule can include syntax-
quoted data that refers to bindings in the enclosing module, so that
information can be easily correlated with bindings that are exported
from the module.

For example, suppose that L implements definitions by produc-
ing a normal Racket definition for running within the Racket virtual
machine, but also needs a syntax-quoted version of the expanded
definition to compile to a different target. The module+ form can
be used to incrementally build up a to-compile submodule that
houses definitions of the syntax-quoted expressions:
(define-syntax (L-define stx)

(syntax-case stx ()
[(L-define id rhs)
(with-syntax ([rhs2 (local-expand #’rhs

’expression null)])
#’(begin

(define id rhs2)
(begin-for-syntax
(module+ to-compile

(define id #’rhs2)))))]))

Wrapping (module+ to-compile ...)with begin-for-
syntax makes the to-compile submodule reside at compi-
lation time relative to the enclosing module, which means that
loading the submodule will not run the enclosing module. Within
to-compile, the expanded right-hand side is quoted as syntax
using #’.

Syntax-quoted code is often a good choice of representation
for code to be compiled again to a different target language, be-

cause lexical-binding information is preserved in a syntax quote.
Certain syntax-quoting forms—such as quote-syntax/keep-
srcloc—additionally preserve source locations for syntax ob-
jects, so that a compiler can report errors or warnings in terms of a
form’s original source location.

Another natural representation choice is to use any custom inter-
mediate representation (IR) of the compiler. Magnolisp, for exam-
ple, processes each Racket syntax tree already within the module
where macro expansion happens, turning them into its IR format,
which also incorporates metadata. The IR uses Racket struct in-
stances to represent abstract syntax tree (AST) nodes, while still re-
taining some of the original Racket syntax objects as metadata, for
purposes of transcompile-time reporting of semantic errors. Mag-
nolisp programs are parsed at least twice, first from text to Racket
syntax objects by the reader, and then from syntax objects to the IR
by #%module-begin; additionally, any macros effectively parse
syntax objects to syntax objects. As parsing is completed already in
#%module-begin, any Magnolisp syntax errors are discovered
even when just evaluating programs as Racket.

The #%module-begin macro of magnolisp exports the
IR via a submodule named magnolisp-s2s; it contains an ex-
pression that reconstructs the IR, albeit in a somewhat lossy way,
excluding detail that is irrelevant for compilation. The IR is ac-
companied by a table of identifier binding information indexed by
module-locally unique symbols, which the transcompiler uses for
cross-module resolution of top-level bindings, to reconstruct the
identifier binding relationships that would have been preserved by
Racket if exported as syntax-quoted code. As magnolisp-s2s
submodules do not refer to the bindings of the enclosing module,
they are loadable independently.

3.6 Run-Time Support
The modules implementing a Racket language may also define run-
time support for executing programs. For L, such support may be
required for the compilation target environment; for LR, any sup-
port would also be required for the Racket VM. Run-time support
for L is required when the macro expansion of L can produce code
referring to run-time variables, or when L exports bindings to run-
time variables.

Any non-primitive run-time support variables are by definition
defined in L itself, with each definition thus also compilable for the
target. When L includes specific language for declaring primitives,
then it may be convenient to define any variables corresponding
to primitives in L, with any associated annotations; for LR one
would additionally specify any Racket VM implementation, either
in Racket or another Racket-VM-hosted language. For variables
representing built-ins of LC, one might just use dummy initial value
expressions, as the expressions are not evaluated, and the meaning
of the variables is known to the compiler.

The primary constraint in implementing run-time support is that
the Racket module system does not allow cyclic dependencies.
Strictly speaking, then, any runtime library exported by a Racket
module L cannot itself be implemented in L, but must use a smaller
language. The magnolisp language, for example, exports the
magnolisp/preludemodule, which declares all the primitives
of the language; the language of magnolisp/prelude is mag-
nolisp/base, which does not include any runtime library.

The magnolisp language only exports four variables: the
#%magnolisp built-in, and the TRUE, FALSE, and predicate
primitives. The primitives are “semi-built-ins” in that the compiler
knows that conditional expressions must always be of type pred-
icate, and that the nullary operations TRUE and FALSE yield
“true” and “false” values, respectively; this knowledge is useful
during type checking and optimization:
#lang magnolisp/base

(require "surface.rkt")
(provide predicate TRUE FALSE)
(typedef predicate (#:annos [foreign

mgl_predicate]))
(function (TRUE) (#:annos [foreign mgl_TRUE]

[type (fn predicate)])
#t)

(function (FALSE) (#:annos [foreign mgl_FALSE]
[type (fn predicate)])

#f)

4. Evaluation
We believe that the presented Racket-hosted transcompilation ap-
proach is quite generic, in theory capable of accommodating a
large class of languages. In practice, however, we would imag-
ine it mostly being used to host new languages, with suitable de-
sign compromises made to achieve a high degree of reuse of the
Racket infrastructure. Also, while macros are useful for language
implementation alone, we would expect Racket’s support for cre-
ating macro-extensible languages to be a significant motivation for
choosing Racket as the implementation substrate.

Racket hosting should be particularly appropriate for research
languages, as macros facilitate quick experimentation with lan-
guage features, and design constraints should be acceptable if they
do not compromise the researchers’ ability to experiment with the
concepts that are under investigation.

4.1 Language Design Constraints
The two design constraints for enabling effective Racket reuse that
we have discovered are the following: (1) the hosted language’s
name resolution must be compatible with Racket’s; and (2) S-
expression-based syntax must be chosen to directly and effectively
reuse Racket’s default parsing machinery and existing macro pro-
gramming APIs. The compilation requirement, in turn, may intro-
duce constraints to the choice of core language, especially where
one wants to output human-readable code.

Overloading as a language feature, for instance, appears a bad
fit for Racket’s name resolution. To alleviate the issue of naming
clashes being more likely without overloading, Racket provides
good support for renaming, including module system constructs
such as prefix-in and prefix-out for mass renaming.

Defaulting to something S-expression based for surface syn-
tax is advantageous, as then there is no custom reader to imple-
ment. Furthermore, as Racket syntax trees are also (enriched) S-
expressions, and macros operate on them, one can then essentially
use concrete syntax in patterns and templates for matching and
generating code. This is comparable to the language-specific con-
crete syntax support in program transformation toolkits such as
Rascal (Klint et al. 2009) and Spoofax (Kats and Visser 2010).
Still, where important, other kinds of concrete syntaxes can be
adopted for Racket languages, with or without support for ex-
pressing macro patterns in terms of concrete syntax; this has been
demonstrated by implementations of Honu (Rafkind and Flatt
2012) and Python (Ramos and Leitão 2014), respectively.

In choice of core syntax, designing for natural and efficient
mapping into the target language places fewer demands on the so-
phistication of the compiler’s analyses and transformations. Mag-
nolisp, for instance, is intended to map easily into most mainstream
languages. It distinguishes between expressions and statements, for
example, as do many mainstream languages (e.g., C++ and Java);
making this distinction makes translation into said mainstream lan-
guages more direct.

4.2 Example Use Case: A Static Component System
As suggested above, macro-based extensibility might be an im-
portant motivation for implementing a Racket-based language, and

choosing a constrained core language might also be important for
ease of transcompilation. One can reasonably wonder what the lim-
its of macro-based expression then are, if constructs are defined in
terms of their mapping into a limited run-time language. We ad-
dress this question indirectly by considering a relatively advanced
use case for macros as an example, namely that of component sys-
tem implementation.

When organizing a collection of software building blocks, it can
be useful to have a mechanism for “wiring up” and parameterizing
said building blocks to form larger wholes (e.g., individual software
products of a product line). Racket has a component system that in-
cludes such a mechanism; more specifically, the system supports
external linking, i.e., parameterized reference to an arbitrary im-
plementation of an interface (Owens and Flatt 2006). The system’s
units (Culpepper et al. 2005) are first-class, dynamically composed
components.

Magnolisp lacks the run-time support for expressing units, and
in this sense the language is severely constrained by its limited core
language, and our lack of a comprehensive library of primitives
for it. However, at compile time it has access to all of Racket,
and hence enough power to implement a purely static component
system. No such system is included, but to give an idea of how one
might implement one, we provide a complete implementation of a
rudimentary, yet potentially useful “component” system in figure 3.

Existing solutions suggest that it should also be possible to im-
plement a more capable static component system in terms of Racket
macros. Chez Scheme’s modules support static, external linking,
and have been shown to cater for a variety of use cases (Waddell
and Dybvig 1999). Racket’s built-in “packages” system (Flatt et al.
2012) resembles the Chez design, and is implemented in terms of
macros, relying on features such as sub-form expansion, definition
contexts, and compile-time binding. As packages are implemented
statically, they require little from the run-time language.

5. Related Work
While most languages previously implemented on Racket have
been meant for execution only on the Racket virtual machine, a
notable exception is Dracula (Eastlund 2012), which also compiles
macro-expanded programs to ACL2. Dracula’s compilation strat-
egy follows the encoding strategy described in section 3.2 where
syntactic forms expand to a subset of Racket’s core forms, and ap-
plications of certain functions (such as make-generic) are rec-
ognized specially for compilation to ACL2. The part of a Dracula
program that runs in Racket is expanded normally, while the part to
be translated to ACL2 is recorded in a submodule through a combi-
nation of structures and syntax objects, where binding information
in syntax objects helps guide the translation.

Sugar* (Erdweg and Rieger 2013) is a system for turning non-
extensible languages into extensible ones. The resulting languages
are extensible from within themselves, in a modular way, so that
extensions are in scope following their respective module imports.
While the aim of Sugar* is extended language into base language
desugaring, one might also define a Sugar* “base language pro-
cessor” that translates into another language before pretty print-
ing. From among previously reported solutions, Sugar* perhaps
comes closest to being a general solution to the implementation of
transcompiled languages possessing the three characteristics listed
in section 1.2. While Sugar* is liberal with respect to the definition
of language grammars, one might arguably also gain guarantees
of safe composition of language extensions through user-imposed
discipline in defining them. The relative novelty of our solution is
that it is itself based on a language-extension mechanism, whereas
Sugar* is a special-purpose language implementation framework.

Silver (Wyk et al. 2010), like Racket, is a language capable of
specifying extensible languages such that the extensions are mod-

#lang magnolisp
(define-syntax-rule (define<> x f e)

(define-syntax f (cons #’x #’e)))

(define-syntax (use stx)
(syntax-case stx (with as)
[(_ f with new-x as fx)
(let ([v (syntax-local-value #’f)])

(with-syntax ([old-x (car v)] [e (cdr v)])
#’(define fx

(let-syntax ([old-x
(make-rename-transformer #’new-x)])
e))))]))

(typedef int (#:annos foreign))
(typedef long (#:annos foreign))

(function (->long x)
(#:annos [type (fn int long)] foreign))

(define<> T id
(let/annotate ([type (fn T T)])

(lambda (x) x)))

; int int_id(int const& x) { return x; }
(use id with int as int-id)
; long long_id(long const& x) { return x; }
(use id with long as long-id)

; long run(int const& x)
; { return long_id(to_long(int_id(x))); }
(function (run x) (#:annos export)

(long-id (->long (int-id x))))

Figure 3: A primitive ‘‘component’’ system for Magnolisp. The
macro define<> declares a named ‘‘expression template’’ f, and
the macro use specializes such templates for a specific parame-
ter x. Use of the two macros is demonstrated by a C++-inspired
function template id with a type parameter T, also showing how
macros can compensate for the lack of parametric polymorphism
in Magnolisp. Corresponding mglc-generated C++ code is given
in comments.

ular and composable. Silver’s specifications are based on attribute
grammars (Knuth 1968), and the same formalism is used to specify
both the base language and its extensions; therefore, even more so
than with Racket, any extensions are indistinguishable from core
language features. Silver supports safe composition of indepen-
dently defined extensions by providing analyses to check whether
extensions are suitably restricted to be guaranteed to compose;
Racket provides some guarantees of safe composition, and even
without analysis tools it tends to be obvious whether e.g. the “hy-
giene condition” (Kohlbecker et al. 1986) holds for the expansion
of a given macro. While modular specification of syntax is sup-
ported by both Silver and Racket, only the former supports modular
specification of semantic analyses. Such analyses—expressed as at-
tribute grammar rules—may also be used to derive a translation to
another language; Silver has been used to implement an extensible-
C-to-C transcompiler, for example (Williams et al. 2014).

Lightweight Modular Staging (LMS) (Rompf and Odersky
2010) is similar to our technique in goals and overall strategy, but
leveraging Scala’s type system and overloading resolution instead
of a macro system. With LMS, a programmer writes expressions
that resemble Scala expressions, but the type expectations of sur-
rounding code cause the expressions to be interpreted as AST con-
structions instead of expressions to evaluate. The constructed ASTs

can then be compiled to C++, CUDA, JavaScript, other targets, or
to Scala after optimization. AST constructions with LMS benefit
from the same type-checking infrastructure as normal expressions,
so a language implemented with LMS gains the benefit of static
typing in much the same way that a Racket-based language can
gain macro extensibility. LMS has been used for languages with
application to machine learning (Sujeeth et al. 2011), linear trans-
formations (Ofenbeck et al. 2013), fast linear algebra and other
data structure optimizations (Rompf et al. 2012), and more.

The Accelerate framework (Chakravarty et al. 2011; McDonell
et al. 2013) is similar to LMS, but in Haskell with type classes and
overloading. As with LMS, Accelerate programmers benefit from
the use of higher-order features in Haskell to construct a program
for a low-level target language with only first-order abstractions.

Copilot (Pike et al. 2013) is also a Haskell-embedded lan-
guage whose expressions are interpreted as AST constructions.
Like Racket, Copilot has a core language, into which programs
are transformed prior to execution. The Copilot implementation
includes two alternative back ends for generating C source code;
there is also an interpreter, which the authors have employed for
testing. Copilot’s intended domain is the implementation of pro-
grams to monitor the behavior of executing systems in order to
detect and report anomalies. The monitoring is based on periodic
sampling of values from C-language symbols of the monitored,
co-linked program. Since such symbols are not available to the
interpreter, the language comes built-in with a feature that the pro-
grammer may use to specify representative “interpreter values” for
any declared external values (Pike et al. 2012); this is similar to
Magnolisp’s support for “mocking” of foreign functions.

The Terra programming language (DeVito et al. 2013) appears
to take an approach similar to ours, as it adopts an existing language
(Lua) for compile-time manipulation of constructs in the run-time
language (Terra). Like Racket, Terra allows compile-time code to
refer to run-time names in a lexical scope respecting way. Ulti-
mately, however, Terra is not designed to support transcompilation,
and compiles to binaries via Terra as a fixed core language. Another
difference is Terra’s emphasis on supporting code generation at run
time, while ours is on separation of compile and run times.

CGen (Selgrad et al. 2014) is a reformulation of C with an S-
expression-based syntax, integrated into Common Lisp. An AST
for source-to-source compilation is produced by evaluating the
CGen core forms; this differs from our approach, where run-time
Racket core forms are not evaluated. Common Lisp’s defmacro
construct is available to CGen programs for defining language
extensions; Racket’s lexical-scope-respecting macros compose in a
more robust manner. Racket’s macro expansion also tracks source
locations, which would be a useful feature for a CGen-like tool.
CGen uses the Common Lisp package system to implement support
for locally and explicitly switching between CGen and Lisp binding
contexts, so that ambiguous names are shadowed; Racket does not
include a similar facility.

SC (Hiraishi et al. 2007) is another reformulation of C with an
S-expression-based syntax. It supports language extensions defined
by transformation rules written in a separate, Common Lisp based
domain-specific language (DSL). The rules treat SC programs as
data, and thus SC code is not subject to Lisp macro expansion (as
in our solution) or Lisp evaluation (as in CGen). Fully transformed
programs (in the base SC-0 language) are compiled to C source
code. SC programs themselves have access to a C-preprocessor-
style extension mechanism via which there is limited access to
Common Lisp macro functionality.

6. Conclusion
Regardless of the implementation approach of a programming lan-
guage, one might wish to extend it with additional features. Numer-

ous motivating examples of language extensions are documented in
literature (Hiraishi et al. 2007; Selgrad et al. 2014).

There are several technologies that specialize in language im-
plementation (e.g., Rascal and Spoofax), and some of them (e.g.,
Silver) even focus on supporting the implementation and composi-
tion of independently defined language extensions. However, exist-
ing solutions generally lack specific support for the implementation
of languages that are extensible from within themselves, and still
aim to support convenient definition of extensions that compose in
a safe manner. One exception is Racket, which supports the imple-
mentation of languages as libraries (Tobin-Hochstadt et al. 2011),
and aims for safe composition of not only functions, but also syn-
tactic forms. However, Racket-based languages have traditionally
been run on the Racket VM, making Racket an unlikely choice for
hosting transcompiled languages.

We have described a generic approach for having Racket host
the front end of a source-to-source compiler. It involves a “proper”
embedding of the hosted language into Racket, such that Racket’s
usual language definition facilities are not bypassed. Notably, the
macro and module systems are still available, and may be exposed
to the hosted language, to provide a way to implement and manage
language extensions within the language. Furthermore, tools such
as the DrRacket IDE still recognize the hosted language as a Racket
one, are aware of the binding structure of programs written in it,
and can usually trace the origins of macro-transformed code, for
example.

Racket’s macro system is expressive, allowing the syntax and
semantics of a variety of language extensions to be specified in
a robust way; general compile-time bindings for sharing of infor-
mation between macros, for example, are supported. Scoping of
language constructs can be controlled in a fine-grained manner us-
ing Racket’s module system, and it is also possible to define or
import macros for a local scope. With typical macros composing
safely, and scoping control reducing the likelihood of macro nam-
ing clashes and allowing macros to be defined privately, pervasive
use of syntactic abstraction becomes a real alternative to manual or
tools-assisted writing of repetitive code.

The benefits of syntactic abstraction can furthermore be ex-
tended to any program-describing metadata, whether present to
support transcompilation, or for other reasons; this can be done
simply by having “data-as-code,” thus making it subject to macro
expansion.

Racket-hosted base language implementations can likewise
leverage Racket’s syntax manipulation facilities to perform macro-
expansion-based transformations that produce non-Racket code.
The approach indeed requires some macro-expansion time work to
prepare separately loadable information for “transcompile time;”
this does not preclude additional work performed in preparation for
any optional Racket-VM-based run time.

Racket, with its general-purpose features and libraries, and abil-
ity to host program transformation domain specific sub-languages,
may also be an attractive substrate for implementing the rest of a
transcompilation pipeline.

Acknowledgements Carl Eastlund provided information about
the implementation of Dracula. Magne Haveraaen, Anya Helene
Bagge, and the SLE 2014 anonymous referees provided useful
comments on drafts of this paper. This research has in part been
supported by the Research Council of Norway through the project
DMPL—Design of a Mouldable Programming Language.

Bibliography
Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Visser.

Stratego/XT 0.17. A Language and Toolset for Program Transforma-
tion. Science of Computer Programming 72(1-2), pp. 52–70, 2008.

Manuel M. T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. McDonell,
and Vinod Grover. Accelerating Haskell Array Codes with Multicore
GPUs. In Proc. Wksp. Declarative Aspects of Multicore Programming,
2011.

Ryan Culpepper. Fortifying Macros. J. Functional Programming 22, pp.
439–476, 2012.

Ryan Culpepper and Matthias Felleisen. A Stepper for Scheme Macros. In
Proc. Wksp. Scheme and Functional Programming, 2006.

Ryan Culpepper and Matthias Felleisen. Debugging Macros. In Proc. Gen-
erative Programming and Component Engineering, pp. 135–144, 2007.

Ryan Culpepper, Scott Owens, and Matthew Flatt. Syntactic Abstraction in
Component Interfaces. In Proc. Generative Programming and Compo-
nent Engineering, pp. 373–388, 2005.

Zachary DeVito, James Hegarty, Alex Aiken, Pat Hanrahan, and Jan
Vitek. Terra: A Multi-Stage Language for High-Performance Comput-
ing. ACM SIGPLAN Notices 48(6), pp. 105–116, 2013.

Carl Eastlund. Modular Proof Development in ACL2. PhD dissertation,
Northeastern University, 2012.

Carl Eastlund and Matthias Felleisen. Hygienic Macros for ACL2. In Proc.
Sym. Trends in Functional Programming, 2010.

Sebastian Erdweg and Felix Rieger. A Framework for Extensible Lan-
guages. In Proc. Generative Programming and Component Engineer-
ing, pp. 3–12, 2013.

Robert Bruce Findler, John Clements, Cormac Flanagan, Matthew
Flatt, Shriram Krishnamurthi, Paul Steckler, and Matthias Felleisen.
DrScheme: A Programming Environment for Scheme. J. Functional
Programming 12(2), pp. 159–182, 2002.

Matthew Flatt. Composable and Compilable Macros: You Want it When?
In Proc. ACM Intl. Conf. Functional Programming, pp. 72–83, 2002.

Matthew Flatt. Submodules in Racket: You Want it When, Again? In Proc.
Generative Programming and Component Engineering, 2013.

Matthew Flatt, Eli Barzilay, and Robert Bruce Findler. Scribble: Closing
the Book on Ad Hoc Documentation Tools. In Proc. ACM Intl. Conf.
Functional Programming, pp. 109–120, 2009.

Matthew Flatt, Ryan Culpepper, Robert Bruce Findler, and David Darais.
Macros that Work Together: Compile-Time Bindings, Partial Expan-
sion, and Definition Contexts. J. Functional Programming 22(2), pp.
181–216, 2012.

Matthew Flatt and PLT. Reference: Racket. PLT Inc., PLT-TR-2010-1,
2010. http://racket-lang.org/tr1/

Tasuku Hiraishi, Masahiro Yasugi, and Taiichi Yuasa. Experience with SC:
Transformation-based Implementation of Various Language Extensions
to C. In Proc. Intl. Lisp Conference, pp. 103–113, 2007.

Lennart C. L. Kats and Eelco Visser. The Spoofax Language Workbench.
Rules for Declarative Specification of Languages and IDEs. In Proc.
ACM Conf. Object-Oriented Programming, Systems, Languages and
Applications, pp. 444–463, 2010.

Paul Klint, Tijs van der Storm, and Jurgen Vinju. Rascal: A Domain Spe-
cific Language for Source Code Analysis and Manipulation. In Proc.
IEEE Intl. Working Conf. Source Code Analysis and Manipulation, pp.
168–177, 2009.

Donald E. Knuth. Semantics of Context-Free Languages. Mathematical
System Theory 2(2), pp. 127–145, 1968.

Eugene Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce
Duba. Hygienic Macro Expansion. In Proc. Lisp and Functional Pro-
gramming, pp. 151–181, 1986.

Trevor L. McDonell, Manuel M. T. Chakravarty, Gabriele Keller, and Ben
Lippmeier. Optimising Purely Functional GPU Programs. In Proc. ACM
Intl. Conf. Functional Programming, 2013.

Georg Ofenbeck, Tiark Rompf, Alen Stojanov, Martin Odersky, and
Markus Püschel. Spiral in Scala: Towards the Systematic Construction
of Generators for Performance Libraries. In Proc. Generative Program-
ming and Component Engineering, 2013.

Scott Owens and Matthew Flatt. From Structures and Functors to Modules
and Units. In Proc. ACM Intl. Conf. Functional Programming, 2006.

Lee Pike, Nis Wegmann, Sebastian Niller, and Alwyn Goodloe. Experience
Report: A Do-It-Yourself High-Assurance Compiler. In Proc. ACM Intl.
Conf. Functional Programming, 2012.

Lee Pike, Nis Wegmann, Sebastian Niller, and Alwyn Goodloe. Copilot:
Monitoring Embedded Systems. Innovations in Systems and Software
Engineering 9(4), pp. 235–255, 2013.

Jon Rafkind and Matthew Flatt. Honu: Syntactic Extension for Algebraic
Notation Through Enforestation. In Proc. Generative Programming and
Component Engineering, pp. 122–131, 2012.

Pedro Ramos and António Menezes Leitão. An Implementation of Python
for Racket. In Proc. European Lisp Symposium, 2014.

Tiark Rompf and Martin Odersky. Lightweight Modular Staging: A Prag-
matic Approach to Runtime Code Generation and Compiled DSLs. In
Proc. Generative Programming and Component Engineering, pp. 127–
136, 2010.

Tiark Rompf, Arvind K. Sujeeth, Nada Amin, Kevin J. Brown, Vojin Jo-
vanovic, HyoukJoong Lee, Manohar Jonnalagedda, Kunle Olukotun,
and Martin Odersky. Optimizing Data Structures in High-level Pro-
grams: New Directions for Extensible Compilers Based on Staging. In
Proc. ACM Sym. Principles of Programming Languages, 2012.

Kai Selgrad, Alexander Lier, Markus Wittmann, Daniel Lohmann, and
Marc Stamminger. Defmacro for C: Lightweight, Ad Hoc Code Gen-
eration. In Proc. European Lisp Symposium, 2014.

Arvind K. Sujeeth, HyoukJoong Lee, Kevin J. Brown, Tiark Rompf, Has-
san Chafi, Michael Wu, Anand R. Atreya, Martin Odersky, and Kunle
Olukotun. OptiML: An Implicitly Parallel Domain-Specific Language
for Machine Learning. In Proc. Intl. Conf. Machine Learning, 2011.

Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper, Matthew Flatt,
and Matthias Felleisen. Languages as Libraries. SIGPLAN Not. 47(6),
pp. 132–141, 2011.

Oscar Waddell and R. Kent Dybvig. Extending the Scope of Syntactic
Abstraction. In Proc. ACM Sym. Principles of Programming Languages,
1999.

Kevin Williams, Matt Le, Ted Kaminski, and Eric Van Wyk. A Compiler
Extension for Parallel Matrix Programming. In Proc. Intl. Conf. Parallel
Processing (to appear), 2014.

Eric Van Wyk, Derek Bodin, Jimin Gao, and Lijesh Krishnan. Silver: An
Extensible Attribute Grammar System. Science of Computer Program-
ming 75(1-2), pp. 39–54, 2010.

Danny Yoo and Shriram Krishnamurthi. Whalesong: Running Racket in the
Browser. In Proc. Dynamic Languages Symposium, 2013.

Combining Shared State with Speculative
Parallelism in a Functional Language

Matthew Le
Rochester Institute of Technology

ml9951@cs.rit.edu

Matthew Fluet
Rochester Institute of Technology

mtf@cs.rit.edu

Abstract
Purely functional programming languages have proven to be an at-
tractive option for implementing parallel applications. The lack of
mutable state eliminates the possibility for race conditions, which
relieves programmers of reasoning about the exponential interleav-
ings of threads and nondeterministic behavior. Unfortunately, there
are applications that by making use of shared state can achieve sig-
nificant constant factor speedups compared to their purely func-
tional counterparts.

IVars have been proposed as a possible solution, allowing
threads to share information via write-once references, while pre-
serving a deterministic semantics. However, in the presence of
speculative parallelism (cancelation), this determinism guarantee
is lost. In this work we show how to go about combining these
two concepts by proposing a dynamic rollback mechanism for en-
forcing determinism. We have formalized the semantics of a par-
allel functional language extended with IVars, speculative paral-
lelism, and our proposed rollback mechanism using the Coq proof
assistant, and have proven that it preserves determinism. Addition-
ally, we describe a preliminary implementation in the context of the
Manticore project, and give some initial performance results.

1. Introduction
Writing parallel applications is a notoriously difficult task. Pro-
grammers are forced to reason about the nondeterministic behav-
ior arising from an exponential interleaving of threads. One way
of avoiding this difficulty is to use a functional language when de-
veloping parallel applications, since functional languages prohibit
the alteration of shared state. Race conditions and nondeterminism
arise when multiple threads attempt to read from and write to the
same location in memory. Since functional languages do not allow
writes, we avoid race conditions altogether, making determinism an
easy property to enforce. Unfortunately, there are applications that
can be more efficiently or more naturally implemented when shared
state is used. One attempt at addressing this problem is the use of
IVars [ANP89], which are shared references that may only be writ-
ten to once. IVars have been proven to preserve determinism in an
otherwise purely functional parallel language [MNP11, BBC+10],
while allowing threads to communicate intermediate results to one
another via shared memory.

In this work we show that the determinism guarantee for IVars
does not hold in the presence of speculation – a method for paral-
lelizing programs, where unneeded tasks may be canceled. Addi-
tionally this paper makes the following contributions:

• We propose a rollback mechanism that can be used to re-
store deterministic execution in the presence of speculation and
IVars.

• We provide a formal semantics of a parallel language with
IVars, speculative parallelism, and the proposed rollback mech-
anism.
• We give a mechanized proof, using the Coq Proof Assistant, that

the rollback mechanism preserves determinism of the language
that combines IVars and speculative parallelism.
• We describe an implementation that is under development in

the Manticore project and give some preliminary results.

Source code for the Coq formalization can be found at:
http://people.rit.edu/ml9951/research.html.

2. Background
2.1 IVars
IVars are shared memory references that may only be written to
once, originally proposed as part of the parallel functional language
Id [ANP89]. The interesting property about IVars is that they do
not compromise the determinism guarantees that one can make
about an otherwise purely functional parallel language. Meanwhile,
they strictly increase the expressiveness of the language. As an
example, consider an application implementing producer-consumer
parallelism where two threads are running in parallel, one of which
writes data into a shared buffer and the other processes this data
as soon as it becomes available. This sort of pattern cannot be
efficiently implemented in a purely functional language. In such
a language, the producer would be required to produce all of its
elements before the consumer could start processing them. On the
other hand, if we are able to make use of IVars, we could implement
the shared buffer as a linked list giving us the desired behavior.

Informally, the semantics of IVars are as follows. When an IVar
is created it is empty. When it is written to, it becomes full and if
a thread attempts to write to it again, a runtime error is produced
and the program terminates. If a thread tries to read from an IVar
that is empty, it blocks until the contents are filled, after which
it can read from the IVar an arbitrary number of times without
synchronization.

2.2 Speculative Parallelism
Speculation is a method for parallelizing applications, where some
number of parallel tasks are created, and if it turns out that any of
these tasks are unneeded, they are canceled. This sort of pattern
arises frequently in search problems where we want to search
multiple paths in parallel, and then when a solution is found, we
would like to cancel the rest of the search threads so as to free up
resources for future computations. The research literature has given
rise to many examples of speculatively parallel algorithms [PRV10,
Bur85, JLM+09].

1 exception E
2 val i = IVar.new()
3 val _ = (|raise E, IVar.put(i, 10)|)
4 handle E => ((), ())
5 val x = IVar.get i

Figure 1. Nondeterministic Example

2.3 Manticore
Manticore is a compiler for a purely functional subset of Stan-
dard ML which has been extended with parallel features. These
parallel features are given a sequential semantics, allowing pro-
grammers to reason about parallel computations in the same way
they would their sequential counterparts. The most basic parallel
construct in Manticore is the parallel tuple, denoted

(|e1, . . ., en|)

Parallel tuples express fork-join parallelism, where each expres-
sion ei is evaluated in parallel. The result of the entire expression
is a data structure containing the results of each ei.

Additionally, we provide a construct for asynchronously spawn-
ing threads via fork. The fork construct takes an expression that
gets evaluated in a separate thread allowing the main thread to con-
tinue with the execution of the remainder of the program.

In addition to parallelism, Manticore also supports exception
handling. The semantics for a regular sequential tuple is to evalu-
ate each ei in left to right order, so if an exception gets raised, it
will always be the leftmost exception in the tuple that gets propa-
gated. Enforcing the sequential semantics for parallel tuples in the
presence of exceptions works as follows. If expression ei raises an
exception, then the threads evaluating expressions ei+1 through en
are canceled and we wait for the previous i− 1 elements to termi-
nate to check if they raise an exception.

2.4 Determinism
In Manticore we can encode a notion of speculative parallelism us-
ing the parallel constructs and exception handling features while
maintaining the sequential semantics [FRRS08]. Unfortunately, if
we were to incorporate IVars into the language, we would lose this
guarantee due to the cancelation associated with raised exceptions.
As an example, consider the code in Figure 1. In line 2 we create
an empty IVar, and then in parallel raise an exception and write to
this IVar. There are two ways in which this can play out. The can-
celation can go through before the write, leaving the IVar empty,
or the write can go through before the cancelation leaving the IVar
full with the value 10. These two scenarios lead to two different
observable behaviors of our program, either it could block indefi-
nitely due to a read from an empty IVar, or it could terminate with
x bound to the value 10. In order to enjoy the benefits of a deter-
ministic parallel language, we must extend the Manticore runtime
system to avoid these race conditions.

3. Preserving Determinism
In order to preserve a deterministic semantics for parallel tuples in
the presence of exception handling we would like to make it seem
to the programmer as if canceled threads “never happened” in the
first place. Implementing this for a purely functional language is
not too difficult, however, in the presence of shared references such
as IVars, it becomes substantially more complex.

The first step is to “undo” the effects of a thread when it is
being canceled due to a raised exception. With IVars this simply
amounts to resetting the contents of full IVars to empty. However,
it is possible that before the cancelation occurred, other threads
concurrently running were able to read the contents of this IVar.

1 exception E
2 val i = IVar.new()
3 val j = IVar.new()
4 val _ = fork((|raise E, IVar.put(i, 10)|)
5 handle E => ((), ()))
6 val (_, x) = (|IVar.put(j, IVar.get i), IVar.get j|)

Figure 2. Transitive Rollback

x ∈ V ar
Values V ::= x | i | \x.M | return M |M >>= N

| runPar M | fork M | new | put i M
| get i | done M | spec M N
| specRun(M,N) | specJoin(M,N)
| raise M | handle M N

Terms M,N ::= V |M N | · · ·
Heap H ::= H,x 7→ iv | ·

Speculative State s ::= S | C
IVar State iv ::= 〈s〉 | 〈s1, ds, s2,Θ,M〉
Thread ID Θ ::= · | Θ : n n ∈ N

Thread Pool T ::= · | (T1 | T2) | Θ[S1, S2,M]
Action A ::= (R, x,M) | (W,x,M) | (S,M)

| (A, x,M) | (F,Θ,M) | CSpec
Action Queue S ::= · | S : A

Evaluation Context E ::= [·] | E >>= M | specRun(E,M)
| handle E N | specJoin(N,E)

Configuration σ ::= H;T | Error

Figure 3. Speculative Par Monad Syntax

In this case, the runtime system must also rollback these threads to
the point in which they read from the IVar. At this point, we also
need to “undo” any effects that these threads may have done and
rollback any threads that might have read from these IVars. This
rollback continues until we reset all IVars and dependent readers
that are transitively reachable from the effects done by the original
thread that was canceled.

As an example of this transitive closure property, consider the
code in Figure 2. In line 4 we fork a new thread to evaluate a parallel
tuple that raises an exception and writes the value 10 to IVar i.
The thread writing to the IVar is then canceled due to the raised
exception, requiring the contents of i to be reset to empty. In line
6 we read the value written to i and write it into j. If this read
occurs before the cancelation, then we must reset this thread back
to before it performed the read. If we are going to reset this thread
to before it did the read, then we must also “undo” the write to IVar
j. Furthermore, if the second element of the parallel tuple is able to
read from j, then this must also get rolled back to the point before
it performed the read.

4. Formal Semantics
In this section we provide a formal semantics describing a method
for performing the rollback that was alluded to in the previous sec-
tion. The semantics presented in this paper are an extension of the
Par Monad semantics as presented in [MNP11], which helps facil-
itate our proof of determinism described in the next section. Fig-
ure 3 gives the syntax of the language. Relative to [MNP11], We
have added syntax for speculative computations, where specRun
and specJoin are intermediate forms that arise throughout the ex-
ecution of a program, and are not terms available in the surface
language, as is done.

A heap is a finite map from IVar names to IVar states where
an IVar state can be empty or full. If it is empty, we also indicate

RunPar
·; 1[·, ·,M >>= \x.done x]→∗s H ′;T | · : 1[·, S2, done N], N ⇓s V, Finished(T)

runPar M ⇓s V

RunParError
·; 1[·, ·,M >>= \x.done x]→∗s Error

runPar M ⇓s Error
RunParDiverge

·; 1[·, ·,M >>= \x.done x]→∞s
runPar M ⇓s ∞

H;T →s σ

Eval
M 6= V M ⇓s V

H; Θ[S1, S2, E[M]] | T →s H; Θ[S1, S2, E[V]] | T
Bind

H; Θ[S1, S2, E[return N >>= M]] | T →s H; Θ[S1, S2, E[M N]] | T

BindRaise
H; Θ[S1, S2, E[raise M >>= N]] | T →s H; Θ[S1, S2, E[raise M]] | T

Handle
H; Θ[S1, S2, E[handle(raise M)N]] | T →s H; Θ[S1, S2, E[N M]] | T

HandleReturn
H; Θ[S1, S2, E[handle(return M)N]] | T →s H; Θ[S1, S2, E[return M]] | T

Fork
n = numSpawns(s1, s2)

H; Θ[S1, S2, E[fork M]] | T →s H; Θ[(F,Θ : n,E[fork M]) : S1, S2, E[return()]] | Θ : n[CSpec, ·,M] | T

New
H ′ = H[x 7→ 〈S〉] x /∈ Domain(H)

H; Θ[S1, S2, E[new]] | T →s H
′; Θ[(A, x,E[new]) : S1, S2, E[return x]] | T

Get
H(x) = 〈s1, ds, s2,Θ′,M〉, H ′ = H[x 7→ 〈s1,Θ] ds, s2,Θ′,M〉]

H; Θ[S1, S2, E[get x]] | T →s H
′; Θ[(R, x,E[get x]) : S1, S2, E[return M]] | T

Put
H(x) = 〈s〉, H ′ = H[x 7→ 〈s, ∅, S,Θ,M〉]

H; Θ[S1, S2, E[put x M]] | T →s H
′; Θ[(W,x,E[put x M]) : S1, S2, E[return()]] | T

Overwrite

H(x) = 〈s1, ds, S,Θ′, N〉, Θ′[S1 : (W,x,N) : S′1, S
′
2, N

′] ∈ T
rollback(Θ′, S′1, H, T) (H ′, T ′), H ′′ = H ′[x 7→ 〈∅, ·,Θ,M〉]
H; Θ[·, S2, E[put x M]] | T →s H

′′; Θ[·, S2, E[return()]] | T ′
ErrorWrite

H(x) = 〈C, ds,C,Θ′, N〉
H; Θ[·, S2, E[put x M]] | T →s Error

Spec
n = numSpawns(s1, s2)

H; Θ[S1, S2, E[spec M N]] | T →s H; Θ[(F,Θ : n,E[spec M N]) : S1, S2, E[specRun(M,N]] | Θ : n[(S,N) : CSpec, ·, N] | T ′

SpecRB
rollback(Θ : n, ·, H,Θ : n[S′1 : (S,N0), S′2, N] | T) (H ′,Θ : n[·, S′2, N ′] | T ′)

H; Θ[·, S2, E[specRun(raise M,N0]] | Θ : n[S′1 : (S,N0), S′2, N] | T →s H
′; Θ[·, S2, E[raise M]] | T ′

SpecJoin
Θ : n[S′1 : (S,N0), S′2, N] ∈ T

H; Θ[·, S2, E[specRun(return M1, N0)]] | T →s H; Θ : n[adopt(S′1, E, return M1), S′2, E[specJoin(return N1, N)]] | T

SpecDone
H; Θ[·, S2, E[specJoin(return N1, return N2)]] | T →s H;T | Θ[·, S2, E[return(N1, N2)]]

SpecRaise
H; Θ[·, S2, E[specJoin(return N1, raise E)]] | T →s H; Θ[·, S2, E[raise M]] | T

PopRead
H(x) = 〈Θ,C,]ds,C,Θ′,M〉

H; Θ[S1 : (R, x,N ′), S2, N] | T →s H; Θ[S1, (R, x,N
′) : S2, N] | T

PopWrite
H(x) = 〈C, ds, S,Θ,M〉, H ′ = H[x 7→ 〈C, ds,C,Θ,M〉]

H; Θ[S1 : (W,x,N ′), S2, N] | T →s H
′; Θ[S1, (W,x,N

′) : S2, N] | T)

PopNewFull
H(x) = 〈S, ds, S,Θ′,M〉, H ′ = H[x 7→ 〈C, ds, S,Θ′,M〉]

H; Θ[S1 : (A, x,M ′′), S2,M
′] | T →s H

′; Θ[S1, (A, x,M
′′) : S2,M

′] | T

PopNewEmpty
H(x) = 〈S〉, H ′ = H[x 7→ 〈C〉]

H; Θ[S1 : (A, x,M ′), S2,M] | T →s H
′; Θ[S1, (A, x,M

′) : S2,M] | T

PopFork
H; Θ[S1 : (F,Θ′,M ′), S2,M] | Θ′[S′1 : CSpec, S′2, N] | T →s H; Θ[S1, (F,Θ

′,M ′) : S2,M] | Θ : 1[S′1, CSpec : S′2, N] | T

Figure 4. operational Semantics

whether or not is was allocated speculatively. If an IVar is full we
record if it was allocated speculatively, the thread IDs of those who
have read the IVar, whether or not it was written speculatively, the
ID of the writer, and the term written to the IVar. A thread pool
is a multiset of threads, where each thread has a thread ID, a list
(queue) of speculative actions it has performed, a list of actions it
has committed, and a term that it is evaluating. Action queues are a
list of actions, where an action can be a read, write, spec, allocation,
fork, or an action indicating it was created speculatively. Lastly, a
configuration is a heap paired with a thread pool, or the error state.

The overall semantics of the language is described by a big step
relation, which is used to represent the “usual” Haskell semantics.
In this presentation and in [MNP11], we only give the big-step rule
for runPar as the rest is entirely conventional. The RunPar rule
then depends on a small step relation for the Speculative Par Monad
presented in Figure 4. The small step semantics relates a heap H
and a thread pool T to either a new Heap and new thread pool, or
the error state if multiple writes occurred to a single IVar. Rules
Bind, BindRaise, Handle, and HandleReturn are standard monadic
bind and exception handling rules. The Eval rule dispatches back
to the big step semantics for reducing non-monadic terms (such as
beta reduction, creating tuples, projecting tuples, etc...).

The Fork rule spawns a new thread, and records a fork action
on the thread performing the fork along with the thread ID of
the forked thread. we uniquely name threads by adding a number
onto the forking thread’s ID that is equal to the number of threads
that have already been created by this thread. The forked thread is
then created with an action on its stack indicating it was created
speculatively, and not allowing it to commit any actions. When the
forking thread has a fork action at the head of its action queue, it can
commit this action, moving the fork action over to its commit list,
and moving the CSpec action over to the forked thread’s commit
list. The New rule allocates a new IVar, marking it as having been
allocated speculatively. When the allocation action makes its way
to the head of the action queue, it can then change the state of
the IVar from speculative to commit using the PopNewFull or
PopNewEmpty rule. The Get rule is used to read from an IVar, if
the IVar is full, then we add a read action to the threads speculative
action queue, and record the thread’s ID in the IVar indicating that
if this IVar is rolled back, this thread is a dependent reader. The
PopRead rule can then be used to commit this read action assuming
the IVar is now in commit mode. The Put rule is used to write to
an IVar, assuming it is empty, we fill the contents of the IVar and
add a write action to the thread’s action list. This action can then
be committed using the PopWrite rule, which sets the status of the
IVar to commit written.

The Overwrite rule applies when a thread has no speculative
actions (i.e. it is in commit mode) and is attempting to write to
an IVar that is speculatively full. When looking up the IVar in the
heap we see that it previously was written by thread Θ′, which we
then lookup in the pool and split its speculative action queue into
those actions that happened after the write, and those that happened
before the write to this IVar. We then perform a rollback with
respect to thread Θ′, which is described later. For now it suffices
to know that it undoes all actions performed by Θ′, up to S′1, which
correspond to the actions performed before the write to x. We
then update IVar x to contain the value being written by thread Θ.
The ErrorWrite rule is similar to Overwrite, except the IVar being
written is commit full, which corresponds to an error.

The Spec rule begins a speculative computation, which behaves
similarly to the Fork rule with a few differences. First, notice that
we add two actions to the created thread’s speculative action list,
The first is an action indicating it was created speculatively as
is done in the Fork rule, but we also include the (S,N) action
indicating that it is the right branch of a speculative computation

rollback(Θ, S,H, T) (H ′, T ′)

RBDone
rollback(Θ, S,H,Θ[S, S2,M] | T) (H,Θ[S, S2,M] | T)

RBRead

H(x) = 〈s1,Θ′] ds, S, t,M〉,
H′ = H[x 7→ 〈s1, ds, S, t,M〉]

rollback(Θ, S,H′,Θ′[S1, S2,M ′] | T) (H′′, T ′)

rollback(Θ, S,H,Θ′[(R, x,M ′) : S1, S2,M] | T) (H′′, T ′)

RBFork

T = Θ′′[CSpec, S′2,M
′′] | T ′

rollback(Θ, S,H,Θ′[S1, S2,M ′] | T ′) (H′, T ′′)

rollback(Θ, S,H,Θ′[(F,Θ′′,M ′) : S1, S2,M] | T) (H′, T ′′)

RBWrite

H(x) = 〈s, ∅, S,Θ′,M〉, H′ = H[x 7→ 〈s〉]
rollback(Θ, S,H′,Θ′[S1, S2,M ′] | T) (H′′, T ′)

rollback(Θ, S,H,Θ′[(W,x,M ′) : S1, S2,M] | T) (H′′, T ′)

RBNew

H(x) = 〈S〉, H′ = H\x
rollback(Θ, S,H′,Θ′[S1, S2,M ′] | T) (H′′, T ′)

rollback(Θ, S,H,Θ′[(A, x,M ′) : S1, S2,M] | T) (H′′, T ′)

Figure 5. Rollback

with initial termN . When the fork action makes its way to the front
of Θ’s action list, we remove the CSpec action, but the (S,N)
action remains on the speculative list, disallowing this thread from
committing anything until it joins with its corresponding commit
thread in the SpecJoin rule.

The SpecRB rule corresponds to canceling a speculative thread,
where we rollback the canceled thread’s actions similarly to what
is done in the Overwrite rule. The SpecJoin rule is used for join-
ing a speculative computation. When the thread executing the left
branch of a speculative computation is finished, we adopt the term
being evaluated by the speculative thread, and all of its speculative
actions and transition to the specJoin intermediate form. The Spec-
Done and SpecRaise rules are used to finish a speculative compu-
tation when the right branch evaluates to a returned value or raised
exception respectively.

Figure 5 provides the semantics for performing a rollback. The
rollback function takes a thread ID, Θ, to rollback with respect to,
a list of actions, S, such that the rollback stops when thread Θ has
this list of actions S, a heap, and a thread pool. The result of a
rollback is then a new heap and a new thread pool.

The RBDone rule indicates that the rollback is complete when
thread Θ has as its action list S. The RBRead rule is used to undo
a read action. It must be the case that the thread’s ID is present
in the set of dependent readers on the IVar when looked up in
the heap, so we remove the ID from the set, and continue with
the rollback, resetting the thread to the term associated with the
read action. RBFork is applicable when the thread associated with
a fork action has nothing but the created speculative action in its
speculative list, we then proceed with the rollback by throwing
away the forked thread, and reset the forking thread to the term
associated with the action. RBWrite undoes a write action when the
IVar written to has no recorded dependent readers, we then proceed
by resetting the IVar to empty and resetting the writing thread to the
term associative with the write action. RBNew undoes an allocation
action when the IVar being rolled back was speculatively created,
we remove it from the heap and continue after resetting the thread
back to the term associated with the allocation action.

EJH;T K = EJHK; EJT K
EJT1 | T2K = EJT1K | EJT2K

EJΘ[S1 : (R, x,M ′), S2,M]K = M ′

EJΘ[S1 : (W,x,M ′), S2,M]K = M ′

EJΘ[S1 : (A, x,M ′), S2,M]K = M ′

EJΘ[S1 : (F,Θ′,M ′), S2,M]K = M ′

EJΘ[S1 : (S,M ′), S2,M]K = ·
EJΘ[S1 : CSpec, S2,M]K = ·

EJΘ[·, S2,M]K = M
EJH,x 7→ 〈S〉K = EJHK
EJH,x 7→ 〈C〉K = EJHK, x 7→ 〈〉

EJH,x 7→ 〈S, ds, s,Θ,M〉K = EJHK
EJH,x 7→ 〈C, ds, S,Θ,M〉K = EJHK, x 7→ 〈〉
EJH,x 7→ 〈C, ds,C,Θ,M〉K = EJHK, x 7→ 〈M〉

Figure 6. Erasure

5. Proof of Determinism
The overall proof strategy is to first prove an equivalence to the
original Par Monad, which is known to be deterministic [MNP11,
BBC+10], and then deducing determinism for our speculative ex-
tension from this equivalence. For the reader’s convenience, we
have restated the semantics of the original Par Monad in the Ap-
pendix. Those familiar with [MNP11] will notice some slight dif-
ferences between the two presentations. First, we have used an ex-
plicit heap for IVars, where as the original semantics mixes threads
with IVars in the style of the π-calculus. Second, we have added
syntax for speculative computations in Par, however, it is evalu-
ated sequentially and essentially equivalent to a special case of the
bind construct. More concretely, spec M N can be de-sugared to
M >>= \i.(N >>= \j.return(i, j)) where i does not occur
free in N . Lastly, in the original semantics, threads were allowed
to terminate in the middle of a computation when they complete,
where as in our presentation, we keep them around to the end of a
runPar.

Before stating our equivalence theorem, we first introduce an
erasure in Figure 6 that relates speculative program states to non
speculative (Par Monad) program states. Intuitively, the erasure
recursively goes through the program state, and “throws away”
speculative work. If a thread has speculative actions, we reset them
to the term associated with the oldest action in their list for read,
write, allocation, and fork actions. If the oldest action indicates that
it was created speculatively, or it is a thread executing the right
branch of a spec, then we simply throw away the thread as these
threads would not yet have been created in the non speculative
semantics. When erasing the heap, we throw out any IVars that
were speculatively created. If an IVar was commit created, but was
speculatively written, then the erasure simply resets it to empty.

We can now relate the behaviors in one language to the behav-
iors in the other, where behaviors are defined as:

βs[M] = {V | runPar M ⇓s b}
βp[M] = {V | runPar M ⇓p b}

Here the s subscript is used to denote a large step in the specula-
tive semantics and a p subscript is used to denote a large step in the
non speculative (Par) semantics. Also, in this case b represents all
possible outcomes of runPar (i.e. b could be some termM , Error,
or∞).

There is an interesting point to be made about proving an equiv-
alence between diverging programs. In the speculative language it
is possible to have divergent programs that can converge in the non-
specualtive language if care is not taken. As an example consider
the program:

USJH;T K = USJHK;USJT K
USJT1 | T2K = USJT1K | USJT2K

USJΘ[S1 : (R, x,M ′), S2,M]K = Θ[·, S2,M
′]

USJΘ[S1 : (W,x,M ′), S2,M]K = Θ[·, S2,M
′]

USJΘ[S1 : (A, x,M ′), S2,M]K = Θ[·, S2,M
′]

USJΘ[S1 : (F,Θ′,M ′), S2,M]K = Θ[·, S2,M
′]

USJΘ[S1 : (S,M ′), S2,M]K = Θ[· : (S,M ′), S2,M
′]

USJΘ[S1 : CSpec, S2,M]K = ·
USJΘ[·, S2,M]K = Θ[·, S2,M]
USJH,x 7→ 〈S〉K = USJHK
USJH,x 7→ 〈C〉K = USJHK, x 7→ 〈C〉

USJH,x 7→ 〈S, ds, s,Θ,M〉K = USJHK
USJH,x 7→ 〈C, ds, S,Θ,M〉K = USJHK, x 7→ 〈C〉
USJH,x 7→ 〈C, ds,C,Θ,M〉K = USJHK, x 7→ 〈C, ∅,C,Θ,M〉

Figure 7. Unspeculate

runPar (spec (raise M) N)

Where N is a divergent computation. In the speculative lan-
guage, there is nothing that forces us to make progress on the com-
mit portion of a speculative computation, therefore this program
could infinitely take steps on N, despite the fact that if the left
branch of the spec ever got a chance to run it would cancel the
divergent computation. In the non speculative language this is not
an issue as progress cannot be made on the right branch of a spec
until the left branch has been evaluated to a raised exception or
returned value. Typically one would define divergence as:

H;T →s H
′;T ′ H ′;T ′ →∞s

H;T →∞s
However for our purposes we must state a more restrictive

version of divergence:

H;T →∗spec H
′;T ′ H ′;T ′ →commit H

′′;T ′′ H ′′;T ′′ →∞s
H;T →∞s

Where the →commit relation is the same as the step relation
presented in Figure 4 except that we restrict that the thread taking
the step does not have any uncommitted actions and the →spec
relation is the complement of→commit. Essentially we are enforcing
a fairness policy requiring that progress must be made on a commit
thread in order for a program state to be divergent. Note that this
leaves the class of speculatively divergent programs undefined in
our formalism, however, we do not believe this is an issue as those
programs will have a defined behavior in an actual implementation
assuming a fair scheduling policy.

At this point we are able to state our equivalence theorem

Theorem 1 (Equivalence). ∀M,βs[M] = βp[M]

Proof Sketch. We show ∀b ∈ βs[M]⇒ b ∈ βp[M] and
∀b ∈ βp[M] ⇒ b ∈ βs[M]. The most interesting case is showing
V ∈ βs[M]⇒ V ∈ βp[M] where V is the result of a successfully
converging program in the speculative language (i.e. not an error or
divergent program), which follows from Lemma 1

Lemma 1 (Speculative Implies Nonspeculative)
If ·; 1[·, ·,M >>= \x.done x]→∗s Hs;Ts | 1[·, S2, done N] and
Finished(Ts) then
∃Hp Tp, ·;M >>= \x.done x →∗p H;Tp | done N and
EJHs;TsK = Hp;Tp and Finished(Tp)

This is proven with a good amount of infrastructure behind it.
First we define a metafunction in Figure 7 similar to erasure that re-
lates a program state to its “commit frontier” which essential aban-
dons any speculative work that has been done. This unspeculate
function is then used to state a well-formedness property on specu-
lative program states:

USJH;T K→∗s H;T

WF(H;T)

Intuitively, this says that a program state is well formed if we can
abandon all speculative work that has been done and get back to the
exact point we were at before unspeculating. Lemma 1 then follows
from a more general restatement.

Lemma 2 (Speculative Implies Nonspeculative WF)
If WF(Hs;Ts) and Hs;Ts →∗s H ′s;T ′s then
∃H ′p T ′p, EJHs;TsK→∗p H ′p;T ′p and EJH ′s;T ′sK = H ′p;T ′p

Proof Sketch. By induction on the derivation ofHs;Ts →∗s H ′s;T ′s
and case analysis on the first step taken in the derivation. If the
first step is a speculative step (i.e. the thread taking the step has
uncommitted actions), then take zero steps in the non speculative
semantics as EJHs;TsK = EJH ′s;T ′sK. If the first step corresponds
to Eval, Bind, BindRaise, Handle, HandleReturn, Fork, New. Get,
Put, Overwrite, ErrorWrite, Spec, SpecRB, SpecJoin, SpecDone,
or SpecRaise, and the thread taking the step does not have any un-
committed actions, then we take the one corresponding step in the
non speculative semantics. If the first step corresponds to PopRead,
PopWrite, PopNewFull, PopNewEmpty, or PopFork, then the spec-
ulative program must “catch up” by performing the action being
committed and all of the pure steps between the action being com-
mitted and the next uncommitted action if any. Fortunately, the se-
quence of steps necessary to catch up is given to us by the well-
formedness derivation.

Once we have established the equivalence, we can deduce de-
terminism easily assuming that the non speculative language is de-
terministic

Theorem 1 (Par Monad Deterministic)
If runPar M ⇓p V1 and runPar M ⇓p V2, then V1 = V2

Proof Sketch. This is assumed based on previous work

Theorem 2 (Speculative Par Monad Deterministic)
If runPar M ⇓s V1 and runPar M ⇓s V2, then V1 = V2

Proof Sketch. By case analysis on both runPar M ⇓s V1 and
runPar M ⇓s V2. If V1 and V2 are the results of successfully
converging programs, then by Lemma 1 we have runPar M ⇓p V1

and runPar M ⇓p V2. From Theorem 1 we have V1 = V2. The
other cases are proven similarly.

Note that many cases and supporting lemmas are left out for
brevity and that the proof sketches provided are only meant to
give the reader a high level intuition as to how the details of the
proof fit together. Full details about the proof can be found in the
Coq formalization at http://people.rit.edu/ml9951/
research.html

6. Implementation
In addition to the formal semantics and determinism proof we have
also begun a preliminary implementation as a part of the Manticore
project. We have implemented the rollback mechanism and an
IVar library using the BOM intermediate language that is used

for much of the rest of the runtime system and thread scheduling
infrastructure [FRR08]. One key feature that the BOM intermediate
language has is first class continuations, which allow us to “reset”
threads to previous points in their evaluation.

6.1 Threads in Manticore
In Manticore, threads are simply represented as a unit continua-
tion and a pointer to thread local storage. We store the action list
described in the formal semantics inside of thread local storage.
When a thread is created, we can provide a cancelable object such
that each time the thread is scheduled, it first checks to see if a flag
in the cancelable object has been set and if so, it terminates. More
details about about cancelation and thread scheduling can be found
in [FRRS11].

6.2 IVars
An IVar is represented as a record almost identically as it is in the
formal semantics. The main difference is in the list of dependent
readers of an IVar. In the formal semantics, this is simply a multi
set of thread IDs, however, in our implementation it is actually a
tuple containing the cancelable object associated with the reader, a
continuation corresponding to the current continuation of the reader
at the point in which it read the IVar, and a pointer to the list of
actions it has performed. When a thread reads from an IVar, it
captures its current continuation, and stores it in the IVar along with
its cancelable object and action pointer. In the event that a rollback
is invoked, we recursively go through the list of actions to be rolled
back doing the following for each action:

• If the action is a fork action, cancel the forked thread (cance-
lable object is stored in the action object) and append all of the
forked thread’s actions to the list of actions to be rolled back
• If the action is a read action, we simply continue with the

rollback
• If the action is a write action, reset the IVar to empty, and

process each of the dependent readers associated with this IVar.

When processing dependent readers, we recurse down the
list of actions they have been performed and look for the
oldest read action to the IVar being rolled back. Note that it
must be the oldest action because if the thread read from the
IVar multiple times, we need to reset it back to the point at
which it read from the IVar for the first time.

We then reset this thread to the continuation associated with
this read action and append the actions occurring after the
read to the list of actions to be rolled back.

Note that we do not record an action for allocating an IVar. This
is done in the formal semantics for the purposes of maintaining the
well-formedness property and is not necessary to rollback the cre-
ation of IVars as they will simply be garbage collected. The reason
this is important for preserving the well-formedness property is that
after unspeculating a program state, it must be able to run forward
to exactly the state it was in prior to unspeculating. This means
that the names chosen for IVars in the heap must be the same as
they were previously, which would not be possible if speculatively
allocated IVars where not removed from the heap.

As a final technical detail, when “resetting” threads to previous
points in their evaluation we actually simply cancel the thread to be
reset. We then create a new thread with the same identity, except
that it begins its evaluation at the continuation corresponding to the
point in which it is to be “reset”.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

Probability of Rollback

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Speculative Execution
Nonspeculative Execution

Figure 8. Rollback Overhead

7. Preliminary Results
Our implementation is still in its early stages, however, we have
been able to perform some preliminary evaluation in order to give
the reader a sense as to what sort of overhead is introduced by our
logging and rollback mechanism in Manticore.

7.1 Producer Consumer
The first benchmark is a simple program that spawns two threads,
one that repeatedly writes some arbitrary data to a linked list of
IVars and another that reads each element of the linked list as it
becomes available. This gives us some idea as to what sort of price
we pay even if we have no interest in doing any sort of speculative
computation. For a program that writes 5,000 IVars we see only
a 5% slowdown relative to an implementation that performs no
logging.

7.2 Measuring Rollback
In an effort to measure the overhead introduced by the rollback
mechanism we have constructed a synthetic benchmark that forks
a thread that speculatively writes to an IVar, and with a given prob-
ability raises an exception to rollback the write after a predeter-
mined amount of time. After forking this thread, the main thread
then reads from the speculatively written IVar in order to record a
dependent reader and then enters a spin loop for the same predeter-
mined amount of time as the forked thread. When a rollback occurs,
the runtime system will then reset the written IVar to empty and re-
set the main thread to before the point that it read from the IVar. If
a rollback does not occur, then the two spin loops are executed in
parallel and should, in theory, achieve 2X speedup. Figure 8 shows
the results of the experiment varying the probability of perform-
ing a rollback from 0 to 1 in 0.1 increments. The execution times
for each probability interval are the average of 500 iterations. For
the non speculative results, we simply run the two spin loops se-
quentially in order to get a baseline execution that does not involve
the runtime system. The results indicate that for this particular sce-
nario, the overhead of a rollback is essentially free. The average
runtime of the non speculative case is 0.1833 seconds vs. 0.1834
for the average speculative runtimes with a 100% chance of a roll-
back occurring.

Certainly these results will vary based on the “size” of the
rollback, meaning if we had more threads dependently reading

from the IVar, or we were speculatively writing to more IVars, the
execution time would definitely be different as the runtime system
would need to do more work. Future work will include a more in-
depth analysis of these parameters.

8. Related Work
This work builds on two broad categories of related projects, those
that deal with deterministic parallelism in the presence of shared
state, and those that deal with speculative parallelism.

8.1 Shared State
IVars were first proposed in the language Id [ANP89], which is also
a parallel functional language, however, they sacrifice determin-
ism by also adding MVars, which are shared references that can be
written an arbitrary number of times with implicit synchronization.
More recently, IVars have been adopted by parallel languages such
as the Par Monad of Haskell [MNP11] and some of the Concur-
rent Collections work[BBC+10], however, neither of these works
support speculative parallelism.

LVars are a new abstraction that were recently proposed by Ku-
per et al. [KN13, KTKN14] that generalize IVars to allow multiple
writes, but restrict that they must be monotonically increasing in
some fashion. LVars suffer from the same problem as IVars in that
they also lose their determinism guarantee in the presence of can-
celation. More recently, they have proposed an elegant solution for
combining LVars with speculative parallelism [KTTN14], where
threads can perform speculative work (i.e. can potentially be can-
celed) if they are read only. They do however, allow speculative
threads to write to memoization tables such that they can “help out”
other threads, however, one shortcoming to this solution is that per-
formance becomes difficult to reason about as a programmer. Note
that parallel speedup is only achieved if the speculative thread is
able to write to the memoization table before another thread needs
this result. If it does not make it there in time, then not only is there
no benefit, but the speculative thread corresponds to wasted work.
On the other hand in this work, if the commit portion of a paral-
lel tuple finishes before the speculative threads, it simply waits for
them to complete and then joins with them.

Welc et al. proposed a solution for enforcing a sequential se-
mantics for Java futures [WJH05, NZJ08], a concurrency abstrac-
tion taken from Multilisp [Hal85]. They too extend their runtime
system to enforce deterministic execution, but in a very different
way relative to our approach. First, for each thread that is spawned,
they create a new copy for each object that it writes to. This does
not allow for the type of fine grained sharing that we are able to
support in our producer-consumer benchmark. Additionally, if their
runtime system detects that a thread has violated the sequential se-
mantics, they restart the thread from the beginning, where as our
approach is able to simply rollback a thread to the exact point in
which the violation occurred, avoiding redundant work.

Bocchino et al. give a region based type and effect system
for guaranteeing determinism at compile time for parallel Java
programs [BAD+09]. Their approach requires annotations on Java
programs specifying what “regions” objects are allocated in. They
then extend their Java compiler to statically verify that concurrently
executing threads do not manipulate objects that are allocated in the
same regions.

8.2 Speculative Parallelism
There is a large body of work that has been done on transparent
speculative parallelism, where the compiler and runtime system
automatically perform value prediction and control the amount of
parallelism in the program, however, more relevant to this work is
the notion of programmable speculative parallelism. Programmable

speculative parallelism was first introduced in [Bur85] in the con-
text of the Mirranda language. Their approach uses a purely func-
tional language, so they do not deal with any of the rollback issues
that we present in this work.

More recently, Prabhu et al. propose language constructs for
specifying speculatively parallel algorithms and formalize their se-
mantics using the lambda calculus extended with shared references
[PRV10]. Rather than providing a runtime system that performs
rollbacks in the event of a miss-speculated value, they describe an
analysis that is performed at compile-time that guarantees that they
will never need to perform any rollbacks. Their analysis is nec-
essarily conservative, making certain types of sharing patterns not
expressible in their language.

Software Transactional Memory (STM) can be seen as a form
of speculative parallelism. Transactional memory allows program-
mers to wrap code in “atomic” blocks that the runtime system guar-
antees to be executed in isolation [ST95]. STM uses a form of “op-
timistic” concurrency where threads execute code inside of transac-
tions and upon completion check to see if any of the memory loca-
tions they read or wrote were compromised by other concurrently
running threads. If so, they abort the transaction and restart from
the beginning. Transactional memory is different from our work in
the sense that they provide no guarantees about deterministic exe-
cution, and is concerned only with atomicity.

9. Conclusions and Future Work
Giving parallel constructs a deterministic semantics makes reason-
ing about parallel programs substantially easier. In this work we
have shown how we can extend the expressiveness of Manticore by
adding IVars and still be able to guarantee deterministic execution.
We have formalized the semantics of this extended language and
provided a proof of its correctness using the Coq proof assistant.

For our preliminary implementation we have tried to remain
faithful to the formal semantics as much as possible to ensure cor-
rectness without worrying too much about performance. In the im-
mediate future we plan on fine tuning our implementation of the
runtime system in Manticore to improve efficiency and perform a
more thorough evaluation. This idea of combining speculative par-
allelism with IVars is a new programming model that has not been
explored elsewhere so coming up with interesting benchmark pro-
grams is also a bit of a challenge and something we look to explore
further in the future. Lastly, we believe it would be interesting in
generalizing our approach to the LVars programming model. As
mentioned in the previous section, this is an extension of the IVars
model that permits multiple writes to shared references, so extend-
ing both our implementation and our formal semantics presents
some interesting challenges.

References
[ANP89] Arvind, R. S. Nikhil, and K. K. Pingali. I-structures: Data struc-

tures for parallel computing. ACM TOPLAS, 11(4), October
1989, pp. 598–632.

[BAD+09] Bocchino, Jr., R. L., V. S. Adve, D. Dig, S. V. Adve,
S. Heumann, R. Komuravelli, J. Overbey, P. Simmons, H. Sung,
and M. Vakilian. A type and effect system for deterministic par-
allel java. In OOPSLA’09, Orlando, Florida, USA, 2009. ACM,
pp. 97–116.

[BBC+10] Budimlić, Z., M. Burke, V. Cavé, K. Knobe, G. Lowney,
R. Newton, J. Palsberg, D. Peixotto, V. Sarkar, F. Schlimbach,
and S. Tacsirlar. Concurrent collections. Sci. Program., 18(3-
4), August 2010, pp. 203–217.

[Bur85] Burton, F. W. Speculative computation, parallelism, and func-
tional programming. IEEE Trans. Computers, 34(12), 1985,
pp. 1190–1193.

[FRR08] Fluet, M., M. Rainey, and J. Reppy. A scheduling framework
for general-purpose parallel languages. In ICFP ’08, Victoria,
BC, Candada, September 2008. ACM, pp. 241–252.

[FRRS08] Fluet, M., M. Rainey, J. Reppy, and A. Shaw. Implicitly-
threaded parallelism in Manticore. In ICFP ’08, Victoria, BC,
Candada, September 2008. ACM, pp. 119–130.

[FRRS11] Fluet, M., M. Rainey, J. Reppy, and A. Shaw. Implicitly-
threaded parallelism in Manticore. JFP, 20(5–6), 2011, pp.
537–576.

[Hal85] Halstead Jr., R. H. Multilisp: A language for concurrent and
symbolic computation. ACM TOPLAS, 7, 1985, pp. 501–538.

[JLM+09] Jones, C. G., R. Liu, L. Meyerovich, K. Asanović, and
R. Bodı́k. Parallelizing the web browser. In Proceedings of the
First USENIX Conference on Hot Topics in Parallelism, Hot-
Par’09, Berkeley, California, 2009.

[KN13] Kuper, L. and R. R. Newton. Lvars: lattice-based data struc-
tures for deterministic parallelism. In FHPC’13, Boston, Mas-
sachusetts, USA, 2013. ACM, pp. 71–84.

[KTKN14] Kuper, L., A. Turon, N. R. Krishnaswami, and R. R. Newton.
Freeze after writing: Quasi-deterministic parallel programming
with lvars. In POPL’14, San Diego, California, USA, 2014.
ACM, pp. 257–270.

[KTTN14] Kuper, L., A. Todd, S. Tobin-Hochstadt, and R. Newton. Tam-
ing the parallel effect zoo. In PLDI’14, Edinburgh, UK, 2014.
ACM.

[MNP11] Marlow, S., R. Newton, and S. Peton Jones. A monad for de-
terministic parallelism. In Proceedings of the 4th ACM Sympo-
sium on Haskell. ACM, 2011, pp. 71–82.

[NZJ08] Navabi, A., X. Zhang, and S. Jagannathan. Quasi-static
scheduling for safe futures. In PPOPP’08, Salt Lake City, UT,
USA, 2008. ACM, pp. 23–32.

[PRV10] Prabhu, P., G. Ramalingam, and K. Vaswani. Safe pro-
grammable speculative parallelism. In PLDI’10, Toronto, On-
tario, Canada, 2010. ACM, pp. 50–61.

[ST95] Shavit, N. and D. Touitou. Software transactional memory. In
PODC ’95, Ottowa, Ontario, Canada, 1995. ACM, pp. 204–
213.

[WJH05] Welc, A., S. Jagannathan, and A. Hosking. Safe futures for
java. In OOPSLA’05, San Diego, CA, USA, 2005. ACM, pp.
439–453.

Acknowledgments
Thanks to Vitor Rodriquez and Zack Fitzimmons for their many
useful comments that helped to improve this work. This research is
supported by the National Science Foundation under Grants CCF-
0811389 and CCF-101056

10. Appendix

Finished(H;T)

Finished(H;T1) | Finished(H;T2)

Finished(H;T1 | T2)

H(x) = 〈C〉
Finished(H; Θ[S1, S2, E[get x]])

Finished(H; Θ[·, S2, return M]) Finished(H; Θ[S : A,S2,M])

Figure 9. Finished Thread Pool

adopt(S : (R, x,M), E,M ′) = adopt(S,E,N) : (R, x,E[specJoin(N,M)])
adopt(S : (W,x,M), E,M ′) = adopt(S,E,N) : (W,x,E[specJoin(N,M)])
adopt(S : (A, x,M), E,M ′) = adopt(S,E,N) : (A, x,E[specJoin(N,M)])
adopt(S : (F,Θ,M), E,M ′) = adopt(S,E,N) : (F,Θ, E[specJoin(N,M)])
adopt(S : (S,M), E,M ′) = adopt(S,E,N) : (S,E[specJoin(N,M)])
adopt(S : CSpec,E,M ′) = adopt(S,E,N) : CSpec

Figure 10. Action Adoption

x ∈ V ar
Values V ::= x | i | \x.M | return M |M >>= N | runPar M | fork M | new | put i M

| get i | done M | spec M N | specRun(M,N) | specJoin(M,N) | raise M
| handle M N

Terms M,N ::= V |M N | · · ·
Heap H ::= H,x 7→ iv | ·

IVar State iv ::= 〈〉 | 〈M〉
Evaluation Context E ::= [·] | E >>= M | specRun(E,M) | handle E N | specJoin(N,E)

Thread Pool T ::= · | (T1 | T2) |M
Configuration σ ::= H;T | Error

Figure 11. Original Par Monad Syntax

FPar
Finishedp(H;T1) Finishedp(H;T2)

Finishedp(H;T1 | T2)
FBlocked

H(x) = 〈〉
Finishedp(H;E[get x])

FDone
Finishedp(H; return M)

Figure 12. Original Par Monad Finished

RunPar
(M >>= \x.done x)→∗p done N | T N ⇓ V Finishedp(T)

runPar M ⇓ V

Eval
M ⇓ V

H;T | E[M]→p H;T | E[V]
Bind

H;T | E[return N >>= M]→p H;T | E[M N]

BindRaise
H;T | E[raise N >>= M]→p H;T | E[raiseN]

Handle
H;T | E[handle(raise M)N]→p H;T | E[M N]

HandleRet
H;T | E[handle(return M)N]→p H;T | E[return M]

Fork
H;T | E[fork M]→p H;E[return()] |M | T

New
x /∈ Domain(H) H ′ = H[x 7→ 〈〉]
H;E[new] | T →p H

′;T | E[return x]
Get

H(x) = 〈M〉
H;E[get x] | T →p H;E[return M] | T

Put
H(x) = 〈〉 H ′ = H[x 7→ 〈M〉]

H;E[put x M] | T →p H
′;E[return()] | T

Spec
H;E[spec M N] | T →p H;E[specRun(M,N)] | T

SpecRun
H;E[specRun(return M,N)] | T →p H;E[specJoin(return M,N)] | T

SpecRaise
H;E[specRun(raise M,N)] | T →p H;E[raise M] | T

specJoin
H;E[specJoin(return M, return N)] | T →p H;E[return(M,N)] | T

specJoinRaise
H;E[specJoin(return M, raise N)] | T →p H;E[raise N] | T

Figure 13. Original Par Monad Operational Semantics

Towards Execution of the Synchronous
Functional Data-Flow Language SIG

[Draft Paper]

Baltasar Trancón y Widemann
Ilmenau University of Technology
baltasar.trancon@tu-ilmenau.de

Markus Lepper
semantics GmbH

Abstract
SIG is the prototype of a purely declarative programming language
and system for the processing of discrete, clocked synchronous,
potentially real-time data streams. It aspires to combine good static
safety, scalability and platform independence, with semantics that
are precise, concise and suitable for domain experts. Its semanti-
cal and operational core has been formalized. Here we discuss the
general strategy for making SIG programs executable, and describe
the current state of a prototype compiler. The compiler is imple-
mented in Java and targets the JVM. By careful cooperation with
the JVM JIT compiler, it provides immediate executability in a sim-
ple and quickly extensible runtime environment, with code perfor-
mance suitable for moderate real-time applications such as interac-
tive audio synthesis.

1. Introduction
SIG is the prototype of a purely declarative programming language
and system for the processing of discrete, clocked synchronous,
potentially real-time data streams. It is designed to support both
visual (data-flow diagram) and textual (functional) programming
styles, to be scalable to complex tasks, and to be interoperable with
a wide variety of execution platforms and legacy code bases.

The potential application fields for SIG are in science, such as
modelling and simulation of system dynamics, in engineering, such
as sensor data processing and control in embedded systems, as well
as in art, such as audio synthesis and computational music.

The strategic vision of the SIG project is to leverage the safety
and productivity of modern language technology in a system that
can be used effectively, and its actual semantics understood, by do-
main experts. We believe that this could constitute a significant im-
provement over the state of the art, which is plagued by twin evils:
Application development that uses the established domain-specific
tools must deal with their outdated technology and ill-defined se-
mantics; while development that avoids them exposes domain ex-
perts as programming laymen to low-level general-purpose pro-
gramming languages with inadequate expressivity.

[Copyright notice will appear here once ’preprint’ option is removed.]

The full realization of this vision is of course a long-term goal,
and would require substantial effort in order to implement an infras-
tructure consisting of development tools, runtime environments, al-
gorithmic libraries, bindings for indispensable legacy code, etc. A
first major step has been reported on in [7], where the computa-
tional framework of SIG (i.e. denotational semantics, core opera-
tions, intermediate code representation, and their precise relation-
ships) are discussed in due technical detail.

In the present paper, we report on the next step: a prototype SIG
runtime environment that emphasizes integrated tool chains, and
immediate and transparent execution of code in various phases of
the interpreted–compiled spectrum. This allows us to demonstrate
SIG in application areas with interactive systems and moderate real-
time requirements, simultaneously showcasing the expressivity and
practical feasibility of the language. A running demo package for
audio synthesis has recently been published [8].

2. SIG at Work
2.1 Design Considerations
With regard to notation, the data-stream programming world is
divided into a visual and a textual camp.

The visual approach, employing data-flow diagrams as the main
notation for algorithms, is traditionally favoured by domain ex-
perts. Typical programming systems include Simulink for engineer-
ing applications, Max/MSP for audio and artistic performance, or
the “system dynamics” school of computational modelling of com-
plex systems. Programs are graphs built from boxes that specify
computations, and wires that carry data flow. In spite of the ap-
pealing ability to visualize the routing of data flow very intuitively,
the diagram approach is known to suffer from poor scalability, fre-
quent confusion of layout and semantics, and lack of support for
other essential aspects of algorithms: data types, case distinctions,
abstraction and reuse, state and initialization.

These weaknesses are conspicuously absent in functional pro-
gramming, which features well-understood remedies such as type
inference, algebraic data types and pattern matching, anonymous
and higher-order functions, and purely declarative semantics. It is
therefore no surprise that functional reactive programming (FRP)
is hailed as an elegant foundation for data-stream programming by
the more semantically-minded. Diagrams can be expressed in this
framework in terms of arrows [2].

The SIG approach aims at neutrality between visual and tex-
tual frontend representations, and consequently has been designed
around a functional core representation that can represent both nat-
urally; see [7]. In comparison with FRP, SIG takes a characteris-
tically different route: On the one hand, the model of time as dis-
cretized by clock ticks at one or several constant rates, is much

1 2014/9/25

δ

∑(−1)

1x
y

δ

∑1

∆tx
y

δ

∑(1−α)

αx
y

Figure 1. Linear stream programming with delay: left to right – backward difference; discretized integral; first-order low-pass filter.

less generic and abstract than in general FRP, which supports also
spontaneous events and continuous signals. On the other hand, this
restrictiveness is exploited in a computational model that brings de-
notational semantics and low-level implementation techniques to a
very close congruence, and is more orthogonal to other features of
functional programming, most notably pattern matching, than cur-
rent arrow-based FRP frameworks.

2.2 Frontend
True to the tradition of synchronous data-flow programming, SIG
programs are represented in a style that abolishes all kinds of ex-
plicit sequential control flow, such as blocks, loops or recursion. All
computations are specified as if operating on instantaneous data at
a single clock tick, and are understood to be implicitly lifted to
whole streams by iteration at their respective clock rate, without
spontaneous events or termination. All data flow is conceptually in-
stantaneous, unless explicitly delayed. Nontrivial behavior in gen-
eral (anything other than a function mapped over a stream) arises
from delayed interference, and state in particular arises from de-
layed feedback. Instantaneous feedback (i.e. circular data flow not
passing through a delay operator) is forbidden. Hence no causal
singularities arise; scheduling can be decided modularly and stati-
cally, and no fixpoints need be considered. For simplicity, we con-
sider only one primitive delay operator δ, which delays an arbitrary
stream for exactly one clock tick (i.e. prepends some specified or
default initial value).

A great variety of important building blocks for stream pro-
cessing algorithms can already be specified in the simplest form
of this style; see Figure 1 for a gallery of ubiquitous components
built from elementary arithmetics and delay.

Evidently, the diagram approach shines where data has product
structure and routing is static: a tuple of values is nicely visual-
ized as a bus of wires. By contrast, data with coproduct structure,
where routing depends on dynamic case distinctions, is handled
rather awkwardly. It is hence no surprise that automata (a princi-
pal algorithmic manifestation of coproduct-oriented computation)
are supported by a different diagram language in visual approaches
(e.g. Stateflow for Simulink), if at all.

As an archetypal running example, consider the sample and
hold (S&H) operator, which either forwards its current input x or
retains its previous output y, depending on an external trigger t
taking the values {S,H}. This functionality can be specified con-
veniently in a diagram as depicted in Figure 2, using an ad-hoc
multiplexer component. Note that we refrain from the “engineering
practice” of encoding the range of t numerically, for obvious rea-
sons of clarity and safety. An equivalent specification can be given
textually as depicted in Figure 3, using an enumerated type and the
SIG box notation. Note that this notation differs from lambda terms
by naming both inputs and outputs explicitly and symmetrically.

The multiplexer approach to control flow, while handy for sim-
ple situations, has rather poor expressivity and scalability. For in-
stance, consider the evident refactoring of the S&H component

δ

MUX

H?

S?x

t
y

Figure 2. Triggered S&H; diagram with multiplexer

type trigger = { S, H }

[
in x : real , t : trigger
out y : real

where
y := case t of {

S → x
H → delay(y)
}

]

Figure 3. Triggered S&H; SIG notation (box)

from a functional programmer’s viewpoint: Since the input x is ir-
relevant in the hold case, a more economic interface would fuse
the two inputs, using a well-known algebraic datatype as depicted
in Figure 4. Note that Scala vernacular is used, Haskell enthusiasts
may substitute Maybe. Whereas this encoding is easily processed
with pattern matching clauses, there is no obvious viable general-
ization of multiplexing to do the job. Apparently the challenging
feature is the combination of case distinction and data unpacking,
as effected by pattern constructors, as a single atomic operation.

To bring the S&H example even closer to traditional functional
programming style, a lambda-style asymmetric function abstrac-
tion and named access pattern may be used, as depicted in Figure 5.
Note that delayed feedback from the output, a ubiquitous pattern
in stream programming, practically prevents the function body ex-
pression from being anything than a locally bound variable, hence
the gain in conciseness over the box notation is not quite as great
as in noncircular cases.

However, the where clause gives an impression of the unifica-
tion of the diagram and expression paradigms that SIG aspires to.
Ideally, the programmer should be free to combine the notations or-
thogonally, each where it shines: Expressions for tree-shaped flow
with irrelevant intermediates and coproduct-structured data; dia-
grams for irregular and circular flow and product-structured data.

2 2014/9/25

type option(t) = { some(t), none }

[
in x : option(real)
out y : real

where
y := case x of {

some(v) → v
none → delay(y)
}

]

Figure 4. Triggerless S&H; SIG notation (box)

{
x : option(real) → y
where y := getOrElse(x, delay(y))
}

Figure 5. Triggerless S&H; SIG notation (lambda)

The SIG language addresses these issues by program reduction
to a core layer with primitive operations that can implement multi-
plexers and pattern matching equally naturally, and deal with delay
in a semantically clean and operationally useful way.

2.3 Core
The key insight behind the semantic framework of SIG is that three
essential description formats can be made to coincide [7]:

1. adjacency-based algebraic hypergraph representation of data-
flow diagrams (with wires as nodes and boxes as hyperedges,
respectively);

2. administrative normal form of functional program expressions,
or rather the equivalent static single-assignment (SSA) form;

3. intensional definition of local, elementwise semantics given as
a Mealy-style combined I/O-and-transition relation (giving rise
to global, stream function semantics by coinduction).

The full details of the theoretical foundation of (3.) and the
algorithmic derivation of (2.) from a functional frontend notation
can be found in [7]. In the present section, we summarize the key
points. The following sections give the main technical contribution
of the present paper, by discussing the further use of (2.) in a
compiler pipeline.

2.3.1 Delay Elimination
The notation of stream computations in terms of per-element and
delay operators, while intuitively convenient, is awkward to rea-
son with directly in a declarative language processing framework.
Stream-level behavior is not specified fully by element-level in-
put/output relations, as delay operators break referential trans-
parency.

Hence SIG eliminates delay operators en route to the core layer,
by introducing a matching pair of pre- and post-state variables for
each occurrence of δ, which then becomes a pair of independent
simple equations, forwarding input to post-state and pre-state to
output, respectively. Apparently circular data flow is admissible if
and only if the circles are eliminated by the splitting of all delay
operators.

It is implied that the post-state values of each clock cycle flow to
the corresponding pre-state variables of the next cycle. That is, the
quaternary relation of input, output, pre- and post-state specifies a
stream-transducing Mealy machine.

Ra

s

b

s′

Figure 6. Stateful single-step computation model

[
in x : real , t : { S, H }
out y : real
state z : real // implies z’ : real

where
y := case t of {

S → x
H → z
}

z’ := y
]

Figure 7. Triggered S&H; SIG notation (no delay)

The approach can be visualized as depicted in Figure 6. Explicit
data flow in the sense of the functional composition of computa-
tions, proceeds left to right. Temporal data flow proceeds top to
bottom. The stream-level global semantics of a program is given
by replicating its element-level relation ω times along the vertical
axis, up to initial values for the top end. If the element-level re-
lation is a total function, as dictated for complete SIG component
definitions, then the corresponding denotational semantics is cap-
tured neatly by coinduction, as elaborated in [7].

The reduction of delay to state can also be notated textually.
Figure 7 depicts the result of delay elimination from the program
in Figure 3. Note that reduction to the core layer also implies the
naming of all intermediate values, as customary for administrative
normal or SSA form, although the S&H example does not exhibit
this feature.

2.3.2 Control Elimination
Control flow is an awkward feature from a data flow-centric per-
spective. The SIG approach reduces control flow to data flow for
the purpose of maximally parallel core-layer semantics. Backends
are free to implement these directly, as in hardware, or to emulate
them by reconstructed control flow, as on sequential machines.

The rationale here is that the automatic sequentialization of
parallel programs is conceptually much simpler, and effectively
achieved with standard compiler technology, than the reverse prob-
lem, which remains the elusive holy grail of traditional high-
performance computing.

The elimination of control is achieved by creatively abusing the
ϕ operator introduced by SSA, and complementing it with a novel,
dual γ operator, to be introduced below. In its original sense, ϕ
multiplexes a number of inputs, understood as alternative values of
the same variable produced by different control predecessors.

Of course, there is to be no such thing in SIG; the very purpose
of the core layer is to gather all computations in a single basic
block. Instead, the SIG-style ϕ operator multiplexes values from
(the right hand sides of) different clauses of a case distinction,
depending on the success of pattern matching (of their respective
left hand sides).

To this end, all internal variables of a component are tacitly
augmented to admit an additional value ⊥. Note that ⊥ merely
signifies that no value is currently available. This is a decidable
situation, since program divergence, the usual meaning of ⊥ in the

3 2014/9/25

S−1

H−1

ϕ

γ

γ

x

t y

z

z′

Figure 8. Triggered S&H; diagram (core)

semantics of recursive functions, is excluded. Ordinary elementary
operations are lifted strictly; if any input is ⊥, then so are all
outputs.

Each partial computation, such as a single clause of a case dis-
tinction, can be represented uniformly as a “left-top-total” relation
in the sense of Figure 6, where missing cases are mapped to ⊥. A
ϕ node then simply chooses nondeterministically among its non-⊥
inputs, or yields ⊥ if there is none.

The success of pattern matching is communicated by adding to
each pattern constructor an additional “control” output indicating
success. The type of these is nominally a singleton {>}, augmented
to a Boolean control type {>,⊥}. If the pattern succeeds, then
regular outputs unpack the data constructor argument values, which
are non-⊥ by strictness, and the control output is >. If the pattern
fails, then all outputs are ⊥. Note that this encoding may appear
redundant for data constructors with arguments, but it is not for
the common case of nullary constructors, where the corresponding
pattern is a Boolean test.

The selection of computations is expressed by a guard operator
γ. It takes a single data input and arbitrarily many control inputs.
The data is forwarded if no control is ⊥. Otherwise, the output
is ⊥ as well. A clause from a case distinction is then selected by
guarding each result of its right hand side with all control values
issued by its left hand side.

The elimination of control can be specified formally by tedious
but straightforward syntax-directed rewrite rules, see [7]. The ap-
plication to the S&H example is depicted as a diagram in Figure 8.
Data and control wires are indicated by solid and dashed lines, re-
spectively.

A textual representation is depicted in Figure 9. As stated in
the beginning of section 2.3, the set of assignments can be read
consistently in several ways: as the adjacency list of the hypergraph
corresponding the diagram in Figure 8; as a normalized functional
program in SSA form consisting of a monolithic basic block; as the
intensional definition of an element-level semantic relation by set
comprehension in the style of the Z notation.

With respect to the former two, note that the textual single-
assignment constraint coincides with the usual diagram constraint
that distinct outputs must not collide on a shared wire.

Note that γ and ϕ nodes act as data-carrying conjunction and
disjunction operators, respectively. They can be reduced further to
logical expressions in conjunctive normal form. Hence interesting
static properties such as definite single assignment of outputs can
be checked using off-the-shelf SAT solver technology.

[
in x : real , t : { S, H }
out y : real
state z : real // implies z’ : real

where
local c, d : control
local v, w : real

c := S−1(t)
v := guard(x, c)

d := H−1(t)
w := guard(z, d)
y := choose(v, w)
z’ := y

]

Figure 9. Triggered S&H; SIG notation (core SSA)

2.4 Backend
While SIG is designed with maximal platform independence in
mind, there are a number of general assumptions that constitute
a loose execution model.

2.4.1 Composition of Components
A key feature of SIG for scalability and efficient use is full composi-
tionality. The computational box abstraction unifies primitive com-
putations and user-defined subprograms. Thus complex stream-
processing systems are constructed and scoped hierarchically. A
reference to a defined component can be inlined (i.e. the box re-
placed by its innards) without affecting program semantics.

This seems like an obvious, almost trivial, property of a func-
tional language, but has decidedly nontrivial consequences in a
time-aware setting. Most importantly, the wire abstraction of data
flow must not have intrinsic delay, as this would break the scale-
free semantics and disallow the optimizations that routinely go with
inlining, such as copy propagation. All data flow, except for ex-
plicit delay, must be undistinguishable from instantaneous trans-
port.1 This places strict bounds on the depth of computational net-
works that can be implemented with given real-time constraints.

2.4.2 Global Control
The realization of a component performs a single step that pro-
cesses one element of each connected data stream. This involves
the updating of pre-state from the preceding post-state, the con-
sumption of inputs, and the production of intermediate values, post-
state and outputs, with no particular order of the subtasks specified.
During the execution of a step, each component is responsible for
having its subcomponents executing a step of their own, respecting
data flow constraints.

On a sequential platform, this means that the producer of each
stream must execute before its respective consumers. SIG is de-
signed such that a schedule can be devised compositionally and
ahead of time. Note that the order of assignment statements de-
picted in Figure 9, while semantically irrelevant, is a valid sequen-
tial schedule of the component; each variable is written before it
is read. A sequential implementation is free to choose this or any
other valid order, as long as the choice remains transparent to the
external observer.

In many cases, ahead of time means at compile time, but various
advanced but typical applications require the reconfiguration of
computations by parts of the program running at a slower rate.
Support for such hierarchically dynamic systems in SIG is a matter
for future research.

1 To use a physical metaphor, the SIG model of spacetime is the Newtonian
c→∞ limit of relativity.

4 2014/9/25

Parts of a SIG program may operate at the same or at different
clock rates. The complete program is sliced into its synchronous
parts (i.e. each operating at a single rate) and re-sampling con-
nectors. The details are a matter of future research. The runtime
environment triggers the execution steps of each root component
centrally, with the prescribed rate, in a conceptually infinite loop.
Components may not choose to terminate this loop spontaneously.

2.4.3 Inter-Component Communication
Communication between components (i.e. how wires work concep-
tually) in SIG is characterized by pull-based shared memory. Ac-
tual implementations may use arbitrary mechanisms to achieve the
specified behavior.

Each component has the exclusive ownership of a distinct
writable storage location for each of the output streams it produces.
Consumers can access the current value of a stream by reading
from this location. All activity is driven by the external clock; nei-
ther production nor consumption constitutes an observable event.

On the one hand, the current element of each stream is defined
by the value of its location at the clock tick. The producer must
be given the opportunity to write an up-to-date value in time.
Otherwise, the previous value is tacitly retained. By writing to
a location, the previous value is generally made inaccessible. If
needed, it must be retained elsewhere, typically using delay.

All outputs of a component change apparently simultaneously.
Inconsistent states, such as temporarily arising from implementa-
tion by a sequence of write operations, must not be observed. Spon-
taneous events of the execution environment must be quantized at
some clock rate, and reacted on by polling.

On the other hand, each component is oblivious to the con-
sumers of the outputs it produces. Reading the current element of a
stream from a location does not notify the producer. Demand for a
value does not trigger its computation, nor does absence of demand
prevent it. Weird effects such as the infamous time leaks of lazy
FRP do not arise.

2.4.4 Total Computations
The shared-memory communication model implies that, without
additional out-of-band information, is is conceptually impossible
not to yield a result. In embedded systems, this is often a very prac-
tically the case.2 SIG components are generally implementations
of total functions; they must not fail to define their outputs for any
valid combination of input and pre-state.

By contrast, arbitrary networks of components have more free-
dom. They can produce⊥ values, and even be nondeterministic. In
the disciplined textual frontend language of SIG, the former arises
from partial computations such as incomplete case distinctions, and
the latter arises from overlapping cases, since SIG has no implicit
first- or best-fit disambiguation rules. By liberal use of the core
operations γ and ϕ, a wider variety of similar situations can be cre-
ated.

Only when a network of components is explicitly designated
as the definition of a component by the programmer, a proof obli-
gation for totality and determinism is entailed. Since the ques-
tion is evidently undecidable in general for all nontrivial collec-
tions of primitive operations, a statically checkable approximation
is needed. For the disciplined approach (where unsafe subcompu-
tations arise from pattern matching), the requirement that case dis-
tinctions be complete and non-overlapping is a natural candidate,
and can be checked effectively using standard compiler technol-
ogy. Possible relaxations, as well as the general case of arbitrarily
mixed core operations, are left for future research.

2 As has been demonstrated drastically by the botched first launch of the
Ariane 5 rocket.

3. Compiler
3.1 Architecture and Environment
The current SIG compiler and execution environment is written in
Java. The parser is generated by a variant of the ANTLR3 tool.
Syntax trees are mapped to an intermediate representation (IR) as
specified in [7], and the various subsequent program transforma-
tions towards the SSA form are implemented using a visitor style
pattern approach. The IR data model and the visitor machinery are
generated from a very concise (∼200 lines) specification by the
UMOD tool [3].

Programs in IR can be executed on the fly by an interpreter,
or translated to JVM bytecode for better performance. A joint
communication API makes the choice of the execution strategy
transparent, on a per-component basis. Bytecode is produced in a
closed loop and fed directly to the JVM class loader, without the
need to call external tools. Alternatively, the bytecode can be stored
and compiled to machine code by an external static code generator.

Theoretically, SIG programs can be modularized and compiled
separately, although the frontend notation has no module system
yet. However, for real-time applications, we expect that satisfac-
tory results require whole-program compilation, in particular since
many important analyses (e.g. worst case execution time) work
best globally. The non-recursive nature of SIG data flow networks
ensures that conceptual boundaries which exist in well-structured
source code can be eliminated during compilation by aggressive
inlining. Performance-critical application tend to be small enough
for whole-program compilation to be feasible.

3.2 Runtime Interface
3.2.1 Type Specialization
Several basic data types of the SIG frontend are mapped directly to
their Java/JVM counterparts, such that primitive operations can be
used and the dynamic allocation of boxing objects can be avoided.
Computations that declare only variables of such types are guaran-
teed to run without the use of the JVM allocator, and hence without
triggering the garbage collector, which greatly enhances real-time
responsiveness.

In particular, the Java/JVM types int and double are sup-
ported. The Java frontend type boolean is supported as well, which
is encoded as the subset {0, 1} of int on the JVM. Following this
example, arbitrary user-defined enumerated types (i.e. algebraic
data types with nullary constructors only) are encoded as subsets
{0, . . . , n − 1} of int. The extra value ⊥ is encoded by pairing
each variable of primitive type with a boolean control variable.
Types that have no primitive mapping are encoded as objects.

3.2.2 Data Interfaces
For the sake of abstraction, the interfaces of components admit two
different perspectives. The internal perspective is symmetrical with
respect to input and output. It identifies variables of both kinds
formally by locally scoped names, and operationally by self-owned
storage locations. This view has been demonstrated in the examples
of the SIG box notation.

By contrast, the external view treats input and output asym-
metrically. Each component publishes its outputs passively by im-
plementing an API Source for querying their current values. Con-
versely, inputs are supplied by reference to another instance of the
API Source, which the component may query actively. Variables of
either kind are identified by their position in the list of respective
parameter declarations, regardless of their internal names. Thus the
principle of alpha equivalence carries over from conventional func-
tional programming.

3 http://www.antlr.org

5 2014/9/25

http://www.antlr.org

interface Source {
int getInt (int index);
double getDouble (int index);
boolean getBoolean (int index);
Object getValue (int index);
}

Figure 10. Data API

The API needs to strike a pragmatic balance. On the one hand,
static safety and efficiency of data flow demand a high degree of
specialization. On the other hand, ease of use and efficiency of
caller logic demand a uniform access pattern. In the current imple-
mentation, we have chosen a middle road. The uniform interface
is depicted in Figure 10. It specializes access according to imple-
mentation data types, but not according to parameter position. A
critical evaluation of the actual performance and comparison with
alternative approaches is a matter for future research.

Note that the API is mainly employed at system boundaries.
Globally, instances are supplied by the runtime environment and
the compiled program for system inputs and outputs, respec-
tively. Locally, API encapsulation arises at metaprogramming stage
boundaries, where one part of the running system configures an-
other, to be run at a faster rate. Within relatively static component
networks, the SIG compiler is expected to perform whole program
optimization, resulting in the elimination of intermediate interfaces
by inlining.

3.2.3 Component Instantiation
Metaprogramming capabilities are essential to the SIG approach,
because the greatly amplify the scalability of the program develop-
ment process. We follow the staged metaprogramming paradigm à
la MetaML[6], where code fragments can be quoted and spliced,
the meta equivalent of function abstraction and application, respec-
tively, in ordinary higher-order functional programming. The cur-
rent implementation has prototypic support. The details of notation
and semantic constraints of SIG metaprogramming are a matter for
future research.

Care must be taken when lifting a first-class notion of computa-
tion as data to the scenario of elementwise stream processing. There
is no evident canonical explication of, say, a stream of stream func-
tions. The dilemma is rather subtle: On the one hand, application
to single elements is not functional application, due to hidden state
transitions. On the other hand, application to whole streams, which
is perfectly functional, is never expressed directly in the language.

How staged metaprogramming can help to clarify these issues is
a matter of ongoing research. The full details are to be discussed in
a forthcoming companion paper. For the present, it suffices to state
informally that stages break synchronization. From the perspective
of earlier stages, later stages are code objects to be configured to
run independently, at a faster rate. Conversely, from the perspec-
tive of later stages, earlier stages are represented as creation-time
snapshots only. This asymmetricity allows to keep violations of ref-
erential transparency, incurred by the use of delay/state, under the
hood of the implementation.

The technical realization of this scheme in the Java-based run-
time environment uses a three-tiered factory model, with one layer
of abstraction each above and below the representation of compo-
nents.

The highest level of abstraction, and the unit of implementa-
tion, is the Template. It corresponds to the defining expression of
a component object (i.e. a quotation in the frontend language), out
of context. In higher-order functional terminology, templates can
be thought of as lambda-lifted local functions. A template can be

interface Template {
Component newInstance (Source environment);
}

Figure 11. Runtime factory; upper level

interface Component {
Session newSession ();
}

Figure 12. Runtime factory; middle level

instantiated with an environment snapshot of the current values of
its free (cross-stage) variables to produce a Component, see Fig-
ure 11. This is done implicitly by the quotation operator. Different
implementation strategies can coexist transparently through differ-
ent subclasses of Template.

The middle level of abstraction, and the unit of configuration,
is the Component. Components represent referentially transparent
stream functions. In higher-order functional terminology, templates
can be thought of as closure-converted local functions. In order
to make components reentrant in spite of local state, they must be
instantiated for each stream-level application to produce a Session,
see Figure 12. This is done implicitly at initialization time of the
containing computation.

The lowest level of abstraction, and the unit of elementwise
computation, is the Session. Sessions represent intermediate states
of stream computations, and are thus not referentially transparent.
They are never exposed to the user, but handled only internally.
A session need to be initialized (init), and subsequently invoked
(step) once per clock tick to execute a step. This is done implicitly
at initialization time of the containing computation, and by the
splicing operator, respectively. See Figure 13.

Sessions communicate by the Source API. Each session must be
connected to a source from which it can pull the current elements
of its inputs streams at each step. Conversely, each session imple-
ments the Source interface to provide public access to the current
elements of its output streams. The wiring is performed implic-
itly at initialization time of the containing computation; the actual
pulling of outputs is done by the splicing operator.

In principle, sessions can be reused sequentially by reconnec-
tion to new inputs and reinitialization, although concurrent reuse is
obviously unsafe and must be avoided.

Each step of a session consists of three subtasks that update pre-
state (tick), inputs (input), and post-state and outputs (action), re-
spectively. Subclasses of Session must override all abstract meth-
ods to implement the computation of the represented component,
as well as allocate exclusive storage for all local variables. The cur-
rent implementation mandates that a copy of the pulled values be
stored during the input phase. Thus, all variables in the scope of
the component body can have the same storage and access pattern,
and there is no need for distinct “operand modes” of primitive op-
erations.

The API has been designed consciously such that no advanced
features of Java are used, hence it could be mapped with little
effort and no significant overhead to more low-level languages such
as C. Thus, by the implementation of a C code generator, SIG
components could be made usable as libraries in a very wide variety
of systems.

6 2014/9/25

abstract class Session implements Source {
private Source inSource;
public void setInSource (Source inSource) {

this . inSource = inSource;
}

public abstract void init ();

public void step () {
tick ();
input(inSource);
action () ;
}

protected abstract void tick ();
protected abstract void input (Source source);
protected abstract void action ();
}

Figure 13. Runtime factory; lower level

3.3 Code Generation
3.3.1 State Transition
From the perspective of the SIG core layer, each delay operator
gives rise to a pair of distinct variables x and x′ for pre- and post-
state, respectively. The code for a single step of a component relies
on the calling environment to update its pre-state, namely with
initial values on the first call, and with the previous value of the
corresponding post-state on each subsequent call. How this state
transition is actually effected is up to the particular implementation.
There are several reasonable tactics with different usage profiles:

Transport The pair of conceptual variables can be taken literally,
and an actual move operation can be used to copy values from each
post-state variable to its pre-state counterpart. This is a semantically
safe fallback tactic that works in all cases, but not particularly
efficient. It is used by the current compiler implementation by
default.

Double Buffering The behavior of the step code can be made to
alternate between two variants, either by a global Boolean indirec-
tion switch, or by flipping between two clones of the code where
the respective roles of pre- and post-state are mirrored. This tactic
is likely more efficient than literal transport if there are many state
variables. It is supported by the current compiler implementation
as a configurable alternative to the default.

Overlay During code generation for a sequential machine, the
SSA variables of the core representation are likely allocated to
pseudo-registers anyway, such that in general values with non-
overlapping life times can share a storage location. Additional con-
straints can be placed on the instruction schedule, such that all op-
erations reading a pre-state variable must occur before the opera-
tion writing the corresponding post-state variable. Then pre- and
post-state are non-overlapping, and may share a storage location.
This tactic can save space as well as time, but does not work in all
cases; see Figure 14 for a counterexample. It is used by the current
compiler implementation heuristically on an all-or-nothing basis;
selective use is planned for a future revision.

Indirect Buffering Multi-step delay of data must be expressed
as a chain of single-step delay operations. No matter which of the
preceding tactics is used, this yields a naive FIFO buffer implemen-
tation in terms of state variables, where values are actually trans-
ported from the input to the output end, see Figure 15. Except for
near-trivial cases, an indirectly addressed (ring buffer) implemen-
tation is preferrable, where the current position of the input and

δ δ −→

Figure 14. Delay reducing to non-overlayable state variables

δ δ δ δ

↓

Figure 15. Delay chain reducing to FIFO

output ends move, rather than the stored data. This tactic needs to
be applied selectively for suitably long delay chains in order to pay
off. Support is planned for a future revision of the compiler.

3.3.2 Parallel and Sequential Evaluation
The semantics and core operations of SIG have designed carefully
to allow for maximal parallelism, constrained only by explicit data
flow. The encoding of control flow into data flow that embodies this
principle, and is achieved by means of γ and ϕ operations as de-
scribed above, seems unnatural from the perspective of execution
on a conventional sequential machine: rather than choosing proac-
tively between alternative branches, all branches are evaluated in-
dependently, and unneeded results are only discarded after the fact.
Compare this behavior to the eager operators & and | in the C lan-
guage family, as opposed to the short-circuiting operators && and
||, respectively. Several arguments need to be considered in favor
of either operational approach:

In a side-effect free language, the two variants are behav-
iorally indistinguishable. Implementations may choose either on
the grounds of convenience and efficiency. On a simple sequential
execution platform, avoiding unneeded computations by condi-
tional branches is virtually always a win. On modern CPUs with
deep pipelines, branchless solutions that overlap alternatives and
select results by conditional moves may be preferrable, as long as
alternatives are few in number and not disproportionately expen-
sive. Opportunistic choices need to be made, based on accurate
cost models for the specific processor architecture, for good per-
formance. By contrast, on non-sequential platforms such as field-
programmable gate arrays (FPGAs), a literally parallel layout of
alternatives followed by multiplexers is the canonical solution.

The current implementation of the SIG compiler takes the paral-
lel semantics of control at face value, and translates γ and ϕ opera-
tors to code as they appear. Clearly, this solution scales badly on its
target platform, the strongly sequential JVM. Fortunately, the se-
quentialization of parallel programs is turning out to be a much
more tractable problem than its converse. A compiler pass that
identifies conditionally needed code in the SSA form and substi-
tutes conditional branches for γ and ϕ nodes is being developed.4

4 Andreas Loth. Master’s thesis.

7 2014/9/25

abstract class Action {
public abstract void run (State state);
// ...
}

Figure 16. Threaded code substep

class State {
public Action pc ;

public final Object[] registers ;
public final double[] registers double ;
public final int [] registers int ;
public final boolean[] registers bool ;

public final boolean[] registers control ;
}

Figure 17. Interpreter state

3.3.3 Interpreter
The interpreter variant of the current SIG execution environment
operates almost directly on the SSA core form. Operations are
scheduled statically in some valid sequential order, variables are al-
located to numbered reusable “registers”, and frequently occuring
generic operations are specialized for their operand cound (if vari-
adic) and/or type (if polymorphic), respectively. Otherwise, there is
a one-to-one relationship between SSA statements and substeps of
the actual execution.

The substeps are reified as individual Action objects, see Fig-
ure 16, organized in an object-oriented form of the traditional
threaded code approach. The allocated virtual registers are realized
as a family of equally-shaped arrays of the various supported prim-
itive types, bundled together with a program counter (i.e. reference
to the next substep) in a State object; see Figure 17. The interpreter
invokes each substep in turn (run), allowing it to modify the current
state. How the program counter is updated has been omitted for
simplicity. In the current implementation, a linear list of substeps
according to the predetermined schedule is traversed. However, the
mechanism generalizes to nontrivial control flow with branching
instructions, which shall be supported in a future revision.

The threaded code implementation has been designed to max-
imize the use of primitive data and array features of the JVM, as
opposed to “clean” high-level object-oriented APIs. Consequently,
actual operations coded as subclasses of Action invoke few JVM
instructions with little execution overhead each, thus encouraging
the JVM JIT compiler to compensate the interpretative overhead by
aggressive inlining and specialization.

The interpreter, instantiated with the preprocessed code and reg-
ister layout of a component, is encapsulated behind the Template
interface. It can be mixed transparently with other means of imple-
mentation, as long as they use the Source API for communication.

The threaded code approach fulfills the requirement for exten-
sible instruction sets nicely. All that is needed to add a new in-
struction is a new subclass of Action that mutates a State object
accordingly, and a corresponding rule in the instruction selection
procedure of the interpreter. The Action abstraction also allows for
easy unit testing, tracing and profiling of instruction set extension
candidates.

3.3.4 Compiler
The threaded code interpreter, while reasonably fast and very flexi-
ble, contains two indirections that cause runtime overhead on every

public class ... extends Session {
double in0 ; // x
int in1 ; // t
double out0; // y
double pre0; // z
double post0; // z’

// Session method implementations
}

Figure 18. Triggered S&H; compiled class

abstract class Action {
// ...
public void compile(CompilationContext ctx);
}

Figure 19. Threaded code substep

instruction: dynamic array-based access to local variables, and vir-
tual method invocation of Action.run.

We have added an “afterburner” code generation phase that
compiles threaded code objects to JVM bytecode. Dedicated sub-
classes of Session, and their factory progenitors Template and
Component, are created for each compiled SIG component. Local
variables are mapped to individual member fields of the appropri-
ate primitive type; see Figure 18 for the S&H example. Instructions
are compiled to JVM bytecode fragments, which are then glued to-
gether to implement Session . action; see Figure 20 in comparison
to Figure 9. The resulting code can be loaded directly into the host
JVM by a ClassLoader, or stored as class files for external use.

Compilation is implemented in a distributed fashion by Action
subclasses. Namely, a method compile receives a CompilationContext
object that can resolve variables to JVM constant pool entries, and
act as a sink for bytecode instructions. This design retains as much
extensibility and traceability of the instruction set as possible, even
if fragmented bytecode generation is somewhat harder to test and
debug than threaded code. The downside is that, because instruction
selection is performed in isolation, the resulting bytecode contains
a number of redundancies, easily seen in Figure 20.

Theoretically, an extra optimization pass on the JVM bytecode
format could be used for cleanup. But we have found that JVM
JIT compilers do that job well already. For the S&H example, the
machine code produced by Oracle’s Hotspot JVM 1.8.0 20, on a
test machine specified in the following subsection, is depicted in
Figure 21.

The redundancy that remains in the depicted code, namely that
patterns are matched twice, stems from the incongruency of con-
trol flow which is parallel in SIG and sequential on the JVM. A
transformation-based systematic solution notwithstanding, we have
found that existing compilers are quite capable of eliminating the
redundancy in simple cases. In particular, the machine code pro-
duced by GCJ 4.8.2 with the -O3 option, invoked with the same
bytecode on the same target machine, is depicted in Figure 22.
Comparison of Figures 21 and 22 illustrates the typical tradeoff
between just-in-time and ahead-of-time compilation: more aggres-
sive use of processor-specific capabilities (here, SSE2 extensions)
for the former, and more thorough (here, optimal) application of
expensive optimizations (here, sparse conditional constant propa-
gation) for the latter.

3.4 Experimental Evaluation
We have tested the performance of both interpreted and compiled
code with a simple but nontrivial sound synthesis application. It

8 2014/9/25

protected void action();
Code:

0: aload_0
1: getfield #37 // t
4: iconst_1
5: isub // S?
6: ifne 14
9: iconst_1
10: istore_1
11: goto 16
14: iconst_0
15: istore_1

16: iload_1
17: ifne 28
20: dconst_0
21: dstore_2
22: iconst_0
23: istore 4
25: goto 36
28: aload_0
29: getfield #31 // x
32: dstore_2
33: iconst_1
34: istore 4

36: aload_0
37: getfield #37 // t
40: iconst_0
41: isub // H?
42: ifne 50
45: iconst_1
46: istore_1
47: goto 52
50: iconst_0
51: istore_1

52: iload_1
53: ifne 65
56: dconst_0
57: dstore 5
59: iconst_0
60: istore 7
62: goto 74
65: aload_0
66: getfield #47 // z
69: dstore 5
71: iconst_1
72: istore 7

74: aload_0
75: iload 4
77: ifeq 84
80: dload_2
81: goto 102
84: iload 7
86: ifeq 94
89: dload 5
91: goto 102
94: // abort (t out of range)
102: putfield #39 // y

105: aload_0
106: aload_0
107: getfield #39 // y
110: putfield #44 // z’
113: return

Figure 20. Triggered S&H; bytecode

action:
mov 0x38(%rsi), %r11d # t
mov %r11d, %r10d
dec %r10d
xorpd %xmm0, %xmm0, %xmm0
test %r10d, %r10d # S?
je .Le
xorpd %xmm1, %xmm1, %xmm1

.La:
test %r11d, %r11d # H?
jne .Lb
movsd 0x28(%rsi), %xmm0 # z

.Lb:
test %r10d, %r10d # S?
je .Ld
test %r11d, %r11d # H?
jne .Lf

.Lc:
movsd %xmm0, 0x20(%rsi) # y
movsd %xmm0, 0x30(%rsi) # z’
ret

.Ld:
movapd %xmm1, %xmm0
jmp .Lc

.Le:
movsd 0x18(%rsi), %xmm1 # x
jmp .La

.Lf:
abort (t out of range)

Figure 21. Triggered S&H; machine code (JRE)

action:
movl 48(%rdi), %eax # t
testl %eax, %eax # H?
je .L17
cmpl $1, %eax # S?
jne .L26
movsd 40(%rdi), %xmm0 # x
movsd %xmm0, 56(%rdi) # y
movsd %xmm0, 72(%rdi) # z’
ret

.L17:
movsd 64(%rdi), %xmm0 # z
movsd %xmm0, 56(%rdi) # y
movsd %xmm0, 72(%rdi) # z’
ret

.L26:
abort (t out of range)

Figure 22. Triggered S&H; machine code (GCJ)

implements a digital organ with a range of four chromatic octaves.
Each of the 49 notes consists of two SIG components, namely a
sine wave generator and an ADSR envelope generator, running
at the audio rate of 44.1 kHz and the 64 times slower control
rate, respectively. The precise algorithms are specified in [8]. They
translate to 4 and 54 core operations, respectively.

A hand-coded environment runs all 49 notes in quasi-parallel for
full polyphony, and mixes them together according to input from a
MIDI keyboard, for interactive real-time CD quality output. The
resulting audio stream is fed to the push-based Java audio system.
Hence the audio and control rate clocks operate in pseudo-real
time: the control loop runs at full speed when there is sufficient
space in the audio output buffer, and blocks when the buffer is full.
By limiting the buffer size, latency is bounded to 10–100 ms.

9 2014/9/25

The actual time spent in computation (i.e. component exe-
cution and mixing) is recorded with the precision and accuracy
of Java System.nanoTime(). Optimizations that turn off silent
voices have been deactivated for the sake of regular load and
stable measurements. On our test system, with a Core i5-3317U
CPU at 1.7 GHz, Ubuntu 14.04 OS, and Oracle JDE 1.8.0 20, we
have observed an effective rate (number of samples produced di-
vided by time spent computing) of 229±3 kHz for interpreted code,
and 2740±60 kHz for compiled code, respectively.5 These figures
translate to an average effort of about 152 and 13 CPU cycles per
voice-sample, or to a load of 19.6 % and 1.6 %, respectively. The
speedup by compilation is a factor of 12. All experiments use only
a single CPU core for SIG computations, although JVM system
threads may run concurrently on other cores.

In summary, the interpreted version, on stock hardware and
without JVM tweaking, performs fast enough for a real-time
demonstration by a comfortable margin. The compiled version has
enough computational reserves that it can be expected to scale up
to audio synthesis tools of artistically acceptable quality.

4. Conclusion
The SIG language is highly domain-specific, and hence poses spe-
cific problems for effective and efficient execution. On the one
hand, the purely and totally functional approach, and the rigid con-
trol flow enable or simplify a great number of analyses and opti-
mizations. On the other hand, the prototype nature of the current
implementation and applications, and the fact that type system and
instruction sets are far from fixed, calls for a compiler design that
is more a laboratory environment than a closed tool.

As a notable practical lesson from the construction of the SIG
compiler, we have corroborated the hypothesis that bytecode plat-
forms are suitable backends for rapid prototyping. Many errors in
the code generator have been detected statically by standard JVM
bytecode verification tools. In other cases that fail at runtime, de-
bugging is fairly convenient, even without a working generator for
symbol tables or source location metadata.

The Java platform has extensive support for real-world interac-
tion, such as GUIs, sampled audio output and MIDI audio input,
in terms of on-board libraries that work out-of-the box and with
decent efficiency/safety tradeoffs. Using these, tangible demonstra-
tions of SIG programs in a live loop, as in [8], can be constructed
with very moderate effort.

The JVM JIT compiler allows to explore the interpreter–
compiler continuum in search for a sweet spot for the prototype im-
plementation of a novel language rather freely, by keeping the per-
formance penalties for higher levels of backend abstraction within
reasonable limits.

4.1 Related Work
• FRP [2, 4, 9]
• Hume [1]
• Faust [5]
• Trace-based compilation techniques

4.2 Future Work
• Branch-based implementation of ϕ nodes
• C backend
• FPGA backend
• Worst-case execution time analysis

5 Reported errors are mean absolute deviations.

References
[1] Kevin Hammond and Greg Michaelson. The design of Hume: A

high-level language for the real-time embedded systems domain. In
Domain-Specific Program Generation, volume 3016 of Lecture Notes
in Computer Science, pages 127–142. Springer-Verlag, 2003.

[2] Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson.
Arrows, robots, and functional reactive programming. In Advanced
Functional Programming (AFP 2002), volume 2638 of Lecture Notes
in Computer Science, pages 159–187. Springer-Verlag, 2003.

[3] Markus Lepper and Baltasar Trancn y Widemann. Optimization of vis-
itor performance by reflection-based analysis. In J. Cabot and E. Visser,
editors, Proceedings 4th International Conference on Theory and Prac-
tice of Model Transformations (ICMT 2011), volume 6707 of Lecture
Notes in Computer Science, pages 15–30. Springer-Verlag, 2011.

[4] Henrik Nilsson, Antony Courtney, and John Peterson. Functional re-
active programming, continued. In Haskell Workshop, pages 51–64.
ACM, 2002.

[5] Yann Orlarey, Dominique Fober, and Stephane Letz. Syntactical and
semantical aspects of Faust. Soft Comput., 8(9):623–632, 2004.

[6] Walid Taha and Tim Sheard. Metaml and multi-stage programming
with explicit annotations. Theor. Comput. Sci., 248(1-2):211–242,
2000.

[7] Baltasar Trancón y Widemann and Markus Lepper. Foundations of to-
tal functional data-flow programming. In Mathematically Structured
Functional Programming (MSFP 2014), volume 154 of Electronic Pro-
ceedings in Theoretical Computer Science, pages 143–167, 2014.

[8] Baltasar Trancón y Widemann and Markus Lepper. Sound and sound-
ness – practical total functional data-flow programming. In 2nd In-
ternational Workshop on Functional Art, Music, Modeling and Design
(FARM 2014). ACM Digital Library, 2014.

[9] Zhanyong Wan and Paul Hudak. Functional reactive programming from
first principles. SIGPLAN Not., 35(5):242–252, 2000.

10 2014/9/25

Declaration-level Change and Dependency
Analysis of Hackage Packages

Extended Abstract

Philipp Schuster and Ralf Lämmel
Software Languages Team, Department of Computer Science, University of Koblenz-Landau, Germany

Abstract
Version numbers for Haskell packages on Hackage communicate
when an update is possibly breaking and prevent installation of
such updates. However, version numbers say nothing about which
declarations actually changed. Similarly, version bounds on depen-
dencies do not take into account which declarations a package ac-
tually uses. This leads to cases where installation of a package is
unnecessarily prohibited. We describe a methodology and an sup-
porting infrastructure, HackPackUp, for determining if and how an
update affects a package. In a sample of 1,578 packages, we find
5,404 scenarios where an update is prohibited even though a pack-
age uses none of the changed declarations.

Categories and Subject Descriptors D.3.3 [PROGRAMMING
LANGUAGES]: Language Constructs and Features; D.2.7 [SOFT-
WARE ENGINEERING]: Distribution, Maintenance, and Enhance-
ment; F.3.2 [LOGICS AND MEANINGS OF PROGRAMS]: Se-
mantics of Programming Languages

Keywords Haskell. Hackage. Package Update. Version Bound.
Program Analysis. Mining Software Repositories. HackPackUp.

1. Motivation
Imagine a hypothetical package favorites of version 0.2.0. Haskell
or Hackage’s Package Versioning Policy (PVP)1 defines the major
part of a version number to be the first two digits (in our example:
0.2) and the minor part to be the rest (in our example: 0). Version
numbers are ordered lexicographically. It also specifies that all
dependencies on favorites should be constrained with a lower and
an upper bound. The lower bound excludes versions the package
was not tested with. The upper bound includes all future minor
versions but excludes all future major versions. So if for example

1 PVP: http://www.haskell.org/haskellwiki/Package_
versioning_policy Explanation of the idea behind the PVP:
http://www.haskell.org/haskellwiki/The_Monad.Reader/
Issue2/EternalCompatibilityInTheory

[Copyright notice will appear here once ’preprint’ option is removed.]

some package was tested with favorites version 0.1.1 and 0.2.0 the
version bounds should be favorites >= 0.1.1&& < 0.3).

Further imagine, there is a function declaration color in a mod-
ule in favorites. If a new version of favorites with an improved
but backwards compatible implementation for color is released, its
version number would only be increased in the minor part (in our
example: 0.2.1). In this way, future installations of packages de-
pending on favorites could use the improved version. If however,
in a new version of favorites, the declaration for color would be re-
moved, then the change would be backwards incompatible and the
version number would have to be increased in the major part (in
our example: 0.3.0). This means no existing package depending on
favorites can be installed with the new version. They all have to be
checked manually for compatibility and updated accordingly. If a
package did not even use color, then the update would not affect the
package, thereby prohibiting installation unnecessarily. We want to
know if such cases exist in practice and how significant of a prob-
lem this is. To this end, we need information about the changes and
the dependencies at the level of individual declarations for pack-
ages on Hackage.

The research reported in this extended abstract is an instance of
‘mining software repositories’; see [4] for a survey. Such mining
has also been researched in a Haskell/Hackage context with an ob-
jective different from ours; see the analysis of generic programming
on Hackage [1]. The analysis of declaration-level changes and de-
pendencies, as it is central to our research, also relates to change
impact analysis, which is an established subject specifically for im-
perative languages; see [5] for a survey. For instance, a fine grained
impact analysis which includes mining for an evolving software
repository is reported in [3]. On the Haskell front, there exist tools
to check what symbols a Hackage package update changes, e.g.,
hackage-diff,2 but the analysis of changes at a declaration-level and
their impact in terms of dependencies has not been the subject of
research.

2. Research question
Our initial research question is this: Do unnecessarily prohibited
update scenarios exist on Hackage? An update scenario is charac-
terized by a package, a dependency of that package that satisfies the
dependency constraints and any later version of that dependency.
A prohibited update scenario is one where the later version of the
dependency does not satisfy the constraints. An unnecessarily pro-
hibited update scenario is one that could be permitted based on the
criterion that the package is not ‘affected’ by revised or deleted dec-
larations in the newer version of the dependency. Just like the PVP,
we do not consider additions to be breaking because while added

2 http://hackage.haskell.org/package/hackage-diff

1 2014/9/8

http://www.haskell.org/haskellwiki/Package_versioning_policy
http://www.haskell.org/haskellwiki/Package_versioning_policy
http://www.haskell.org/haskellwiki/The_Monad.Reader/Issue2/EternalCompatibilityInTheory
http://www.haskell.org/haskellwiki/The_Monad.Reader/Issue2/EternalCompatibilityInTheory
http://hackage.haskell.org/package/hackage-diff

Hackage

Selected packages

Declaration
Source code
Genre
Declared symbols
Referenced symbols

Annotated syntax tree

Download

Process module files

Extract declarations

Database
Packages
Declarations
Symbols

Insert

Package
Name
Version number
Dependencies

Insert
Parse Cabal file

Numbers of
Packages
Update scenarios
Prohibited scenarios
...

Measure

Figure 1. Overview of the fact extraction and measurement process.

declarations could cause name clashes these can be prevented with
explicit import lists.

In fact, we would like to find out whether the problem of unnec-
essarily prohibited update scenarios is a significant one. Thus, we
complement our research question as follows: How many unneces-
sarily prohibited update scenarios exist on Hackage? Accordingly,
we perform (roughly) the following measurements by analyzing (a
sample of) Hackage packages:

• How many update scenarios are there?
• How many of those are prohibited?
• How many of those prohibited are ‘unnecessary’?

3. Fact extraction model
Fact extraction is applied to a set of packages (i.e., all of Hackage
or a sample thereof). A package is uniquely identified by its name
and its version number. A package p depends on package p′ if the
name of p′ is listed as a dependency in the package description of p
and the version number of p′ satisfies the constraints in the package
description. An update is a pair of packages with the same name
and where the version number of the first package is smaller than
the version number of the second package. The version numbers do
not have to be consecutive, an update may skip several versions. A
major update is where the major parts of the version numbers are
different; otherwise we speak of a minor update.

A package declares a set of declarations, possibly subdivided
into several modules. Every declaration has these properties: a

genre (i.e., function, type, class, instance), sets of declared and
referenced symbols, and the source code or AST underlying the
declaration. Symbols are to be qualified by module names and
genres (because of separate namespaces).

Using these basic facts, we can compute what symbols of a de-
pendency a package requires and in what way an update changes a
symbol. This allows us to decide if an update affects a package. We
are inspired by other work on classifying software changes [2]. By
collecting all such information and general package descriptions
for Hackage packages (all of Hackage or a sample thereof), we can
compute the measurements of §2.

4. Methodology
We address the research question through the following methodol-
ogy. Figure 1 gives an overview.

• Download Hackage packages. We may need to trade scalability
for completeness; see the actual selection of packages in the
case study (§5).

• For each package’s Cabal file, save these properties in the
database:

The package’s name and version number.

Which of all the packages under investigation it is allowed
to depend on according to the dependency constraints. Usu-
ally, multiple different minor and major versions are al-
lowed.

2 2014/9/8

Packages 1,578
Declarations 332,663
Symbols 36,603
Update scenarios 212,176

Minor 113,030
Allowed 113,000
Prohibited 30

Major 99,146
Allowed 77,418

Affected 40,479
Unaffected 36,939

Prohibited 21,728
Affected 16,354
Unaffected 5,374

Figure 2. Measurement results of the case study.

An immediate next version, if it exists, together with the
status whether it differs in the major version part. From the
immediate next versions we can generate all updates. We are
primarily interested in major updates, but the minor updates
are interesting for validating the methodology.

• Attempt to install every package.
• Run the HackPackUp processor instead of the regular com-

piler:

Preprocess and parse to get the abstract syntax tree (AST).

Resolve names to annotate every symbol occurrence in the
AST with its origin.

Save properties of each declaration in a database:

− Source code

− Genre

− Declared symbols

− Referenced symbols
• Run measurements (§2) against that database.

5. Case study
While the initial goal was to analyze all of Hackage, for scalability
reasons, we had to choose some segment of Hackage. Without such
selection, we would have to exercise too many dependencies and
validate too many results. We looked for a list of packages that
share many dependencies to minimize the number of packages we
have to process. Stackage is a Haskell package repository with
fewer packages than Hackage has. It is also complete in the sense
that all dependencies of all its packages are included in it. We got
the list of packages from Stackage and took all versions of all those
packages from Hackage.

Table 2 lists number of entities resulting from fact extraction
and storage in the database (§3 and §4).

We computed 212,176 update scenarios from our data. An up-
date scenario consists of three parts: A package, a dependency of
that package that satisfies the constraints and any later version of
that dependency. In 113,030 of these update scenarios the update
does not involve a major version change which means they should
not be prohibited and indeed only 30 are. The other 99,146 update
scenarios involve a major update. In 21,728 of these the version of
the later dependency does not satisfy the constraints anymore. This
means they are prohibited by an upper version bound.

We find that in 5,404 of the prohibited update scenarios the
update does not affect the package and are therefore unnecessarily
prohibited. We conclude this because none of the symbols the

package requires from the first version of its dependency are absent
or different in the second. If on the other hand we look at the
77,418 major update scenarios that are allowed we find that in
40,479 of those the update does indeed remove or alter at least one
of the symbols required by the package. This could mean that the
upper version bounds are wrong or missing. This could also mean
that there are backwards compatible changes to parts of a package
and backwards incompatible changes to another part requiring the
update to be classified as major. We plan to investigate this problem
in future work.

Besides the fact that we have only taken a sample of Hackage
there are other threats to validity. Not all packages of the sample
can be processed with HackPackUp. We use haskell-src-exts3 for
parsing and haskell-names4 for name resolution. Most packages are
only tested to work with GHC and make implicit assumptions about
preprocessor flags, language extensions and builtin modules and
therefore are not immediately parseable or some symbols fail to be
resolved. We do not consider the base package as a dependency be-
cause it is a dependency of almost every package and for simplicity
we only have one version and no information about the declarations
of base available. We currently ignore type class instances because
their resolution is out of scope of our tool.

At the time of writing, we are working on validating our classi-
fication of the update scenarios as unnecessarily prohibited. To this
end, we need to install the packages with the varying dependencies.
This proves difficult because of the number of installs and the time
they take to build, especially in the view of a clean state needed for
each test install.

In summary we can say that we indeed have found a significant
number of cases where an update scenario is prohibited while
the update would not affect the package. We have found, to our
surprise, that in many update scenarios a major update does affect
the package while it is still allowed. This observation calls for
future work.

References
[1] N. Bezirgiannis, J. Jeuring, and S. Leather. Usage of generic program-

ming on hackage: Experience report. In Proceedings of the 9th ACM
SIGPLAN Workshop on Generic Programming, WGP ’13, pages 47–52.
ACM, 2013.

[2] J. Buckley, T. Mens, M. Zenger, A. Rashid, and G. Kniesel. Towards a
taxonomy of software change: Research articles. J. Softw. Maint. Evol.,
17(5):309–332, Sept. 2005.

[3] G. Canfora and L. Cerulo. Fine grained indexing of software repos-
itories to support impact analysis. In Proceedings of the 2006 Inter-
national Workshop on Mining Software Repositories, MSR ’06, pages
105–111. ACM, 2006.

[4] H. Kagdi, M. L. Collard, and J. I. Maletic. A survey and taxonomy of
approaches for mining software repositories in the context of software
evolution. J. Softw. Maint. Evol., 19(2):77–131, Mar. 2007.

[5] B. Li, X. Sun, H. Leung, and S. Zhang. A survey of code-based change
impact analysis techniques. Softw. Test., Verif. Reliab., 23(8):613–646,
2013.

3 http://hackage.haskell.org/package/haskell-src-exts
4 http://hackage.haskell.org/package/haskell-names

3 2014/9/8

http://hackage.haskell.org/package/haskell-src-exts
http://hackage.haskell.org/package/haskell-names

banner above paper title

An Efficient Type- and Control-Flow Analysis for System F

Connor Adsit
Rochester Institute of Technology

cda8519@rit.edu

Matthew Fluet
Rochester Institute of Technology

mtf@cs.rit.edu

Abstract
At IFL’12, we presented a novel monovariant flow analysis for Sys-
tem F (with recursion) that yields both type-flow and control-flow
information. [4] The type-flow information approximates the type
expressions that may instantiate type variables and the control-flow
information approximates the λ- and Λ-expressions that may be
bound to variables. Furthermore, the two flows are mutually bene-
ficial: control flow determines which Λ-expressions may be applied
to which type expressions (and, hence, which type expressions may
instantiate which type variables), while type flow filters the λ- and
Λ-expressions that may be bound to variables (by rejecting expres-
sions with static types that are incompatible with the static type of
the variable under the type flow).

Using a specification-based formulation of the type- and
control-flow analysis, we proved the analysis to be sound, de-
cidable, and computable. Unfortunately, naïvely implementing the
analysis using a standard least fixed-point iteration yields an
O(n13) algorithm.

In this work, we give an alternative flow-graph-based for-
mulation of the type- and control-flow analysis. We prove that
the flow-graph-based formulation induces solutions satisfying the
specification-based formulation and, hence, that the flow-graph-
based formulation of the analysis is sound. We give a direct algo-
rithm implementing the flow-graph-based formulation of the anal-
ysis and demonstrate that it is O(n4). By distinguishing the size l
of expressions in the program from the size m of types in the pro-
gram and performing an amortized complexity analysis, we further
demonstrate that the algorithm is O(l3 +m4).

1. Introduction
2. Language and Semantics
2.1 Syntax
In IFL’12, we introduced an ANF Intermediary Representation for
System F. We give a specification for a modified ANF System F
language in Figure 1.

We maintain the same types as before, but we restrict the form of
syntactic types in order to remove the recursion found in the previ-
ous definition of types. Instead of having type constructors be com-
posed of smaller types (ie. for function and forall types), they must

[Copyright notice will appear here once ’preprint’ option is removed.]

be constructed with type variables. We also introduce DeBruijn in-
dices into the type system to describe any type parameterized by a
Λ-abstraction.

In addition to adding a distinction between simple binds (val-
ues) and complex binds (applications), we expand upon the defini-
tion of expressions to accommodate the changes made to the type
system. The syntax is extended to include let-bindings for type
variables. Additionally, we mandate that all binding occurances of
expression variables be annotated with a type variable instead of
a type. Similarly, the recursive function variables and λ-parameter
variables appearing in simple binds must also have type variable
annotations. We changed the specification of type applications so
that only type variables may be passed as arguments.

Our motivation for using type variables is to promote type reuse,
limiting the pool of possible types to as little a number as possible.
As we will see later, having as few types as possible will reduce the
overall complexity of the algorithm.

2.2 Scanning Input Program
Figure 2 introduces relations that finds all nested expressions, ex-
pression binds, type binds, type variables, and expression variables
in a program.

We begin our recursive descent into a program by saying the en-
tire program can be found inside itself. An expression can be found
in the program if it is the body of a let-binding or if it belongs to a
λ- or Λ-abstraction. An expression bind belongs to a program if the
program contains a let x with that particular expression bind on
the right-hand side. Similarly, a type bind belongs to a program if it
participates in a let α expression that also belongs to the program.
All type variables found in any nested letα or as parameters to Λ-
abstractions belong to the program. The relation behaves similarly
with expression variables and let x bindings and λ-abstractions.
We must also consider that the recursive function variables, f , be-
long to a program if the encapsulating λ- or Λ-abstraction also be-
longs to the program.

2.3 Semantics
We assume the usual operational semantics for the ANF System
using a CESK machine. More details can be found in [4].

The static semantics will need to be extended to include support
for DeBruijn indices. In particular, when a value is used, we need
to ensure that all indices present in the type are encapsulated by the
proper amount of foralls. We also must mandate that type variables
are bound before use, which has been implemented successfully
in [12]. Whenever an expression variable is bound to a value, the
annotated type variable must map to a type in the current context
that is compatible with the type of the value.

It is worth noting that all forms of the analysis and algorithm
will hold for a program even if it is untyped. It is only when the
program is well typed that the flow-graph based analysis and the
algorithm will yield a sound result.

short description of paper 1 2014/9/25

Type variables TyVar 3 α, β, . . .
Type indices TyIdx 3 n ::= 0 | 1 | · · ·
Type binds TyBnd 3 τ ::= αa → αb | ∀. αb | #n

Expression variables ExpVar 3 x, y, z, f, g, . . .
Expression binds (simple) ExpBnds 3 bs ::= µf:αf.λz:αz.eb | µf:αf.Λβ.eb
Expression binds (complex) ExpBndc 3 bc ::= xf xa | xf [αa]

Expression binds ExpBnd 3 b ::= bs | bc

Expressions Exp 3 e ::= let α = τ in e | let x:αx = b in e | x
Programs Prog 3 P ::= e

ResOf(·) :: Exp → ExpVar
ResOf(let α = τ in e) = ResOf(e)

ResOf(let x:αx = b in e) = ResOf(e)
ResOf(x) = x

TyOf(·) :: ExpBnds → TyVar
TyOf(µf:αf.λz:αz.eb) = αf

TyOf(µf:αf.Λβ.eb) = αf

Figure 1. Syntax of ANF System F

e �Exp P

P �Exp P

let α = τ in e �Exp P

e �Exp P

let x:αx = b in e �Exp P

e �Exp P

µf:αf.λz:αz.eb �ExpBnd P

eb �Exp P

µf:αf.Λβ.eb �ExpBnd P

eb �Exp P

b �ExpBnd P

let x:αx = b in e �Exp P

b �ExpBnd P

τ �TyBnd P

let α = τ in e �Exp P

τ �TyBnd P

α �TyVar P

let α = τ in e �Exp P

α �TyVar P

µf:αf.Λβ.eb �ExpBnd P

β �TyVar P

x �ExpVar P

let x:αx = b in e �Exp P

x �ExpVar P

µf:αf.λz:αz.eb �ExpBnd P

f �ExpVar P

µf:αf.λz:αz.eb �ExpBnd P

z �ExpVar P

µf:αf.Λβ.eb �ExpBnd P

f �ExpVar P

Figure 2. Sub-term Relations

short description of paper 2 2014/9/25

3. Specification-Based Formulation of TCFA
The specification formulation is safe under an abstract type envi-
ronment, which keeps track of type variables and the possibly many
types that may be bound to the variables, and also an abstract value
environment, which behaves the same way with expression vari-
ables and binders. In order to check for type compatibility, we make
use of an abstract type environment to recursively replace all type
variables with any type found in the environment’s entry for the
variable. We say that a type is closed when there are no longer any
type variables in the expanded type. Two type variables, α1 and α2,
are compatible under an abstract type environment if it is possible
to derive the same closed type from both α1 and α2.

An abstract type environment, φ̂, and an abstract value environ-
ment, ρ̂, safely approximate an expression by an inductive analysis
of the expression.

If the expression is a let-α expression, we must make sure that
the τ being bound in the syntax appears in the possible bindings
for α as described by φ̂ and that the remaining expressions are also
safe under the same φ̂ and ρ̂.

If the expression is a let-x expression and the binder is a
simple bind, we read the type off of x and the binder. If the two
are compatible we need to make sure that the binder appears in
the possible bindings of x in ρ̂. Additionally, we need to push
the analysis through the body of the binder and the remaining
expressions.

Otherwise, if a complex bind appears on the right side of a let-
x expression, we need to iterate through the possible λ-abstractions
recorded in ρ̂ if the binder is a value application. For every possible
argument in the entry for xa, if the type of the argument is com-
patible with the type of the formal parameter under φ̂, we need to
assert that the argument also appears in the entry for the parameter.
Likewise, for all values returned by the abstraction, if the type of
the value is compatible with the type of the bound variable, it must
appear in the entry for the bound variable in φ̂.

Similarly, if a type application is being performed, we iterate
through all possible Λ-abstractions that could be bound to the func-
tion variable. We assert that all types potentially bound to the type
argument must appear in the description of the type parameter in
φ̂. As with value application, any type-compatible results returned
from the abstraction must be present in φ̂’s entry for the bound
variable.

Finally, in the case that the expression is a simple variable, we
assume that the analysis is sound.

3.1 Soundness, Decidability, and Computability
Our previous work [4, 5] showed that the specification-based for-
mulation of the type- and control-flow analysis is sound with re-
spect to the operational semantics, that the acceptability of given
(finite) abstract type and value environments with respect to a pro-
gram is decidable, and that the minimum acceptable abstract type
and value environments for a program are computable in polyno-
mial time. We briefly recall the essence of these arguments.

Soundness of the specification-based formulation of the type-
and control-flow analysis asserts that any acceptable pair of abstract
environments for a well-typed program approximates the run-time
behavior of the program. In particular, the abstract type and value
environments approximate every concrete type and value environ-
ment that arises during execution of the program. Flow soundness
relies crucially on the well-typedness of the program. Soundness
of the type system guarantees that, at run time, an expression vari-
able will only be bound to a well-typed closed value of a closed
type and that the expression variable’s type annotation must be in-
terpreted as that closed type. Hence, if there is no closed type at
which both the static type of the expression variable and the static

type of the value might be instantiated, then that variable will never
be bound to that value at run time. The critical component of the
proof is that the type compatibility judgment φ̂; ρ̂ �S α1 ∼∼∼ α2 is
derivable whenever there is a common closed type at which both
α1 and α2 are instantiated.

Although there are an infinite number of pairs of abstract type
and value environments that are acceptable for a given program,
we are primarily interested more precise pairs over less precise
pairs. For a given program, we can limit our attention to the “finite”
abstract type and value environments that map the type variables
that occur in the program to sets of type binds that appear in
the program (and map all type variables that do not occur in the
program to the empty set) and map the expression variables that
occur in the program to sets of simple expression binds that appear
in the program (and map all expression variables that do not occur
in the program to the empty set).

The decidability of the acceptability judgment φ̂; ρ̂ �S e re-
lies upon the decidability of the type compatibility judgment
φ̂ �S α1 ∼∼∼ α2. Due to “recursion” in the abstract type environ-
ment, whereby a type variable may be mapped (directly or indi-
rectly) to a set of type binds in which the type variable itself occurs
free, we cannot simply enumerate the (potentially infinite sets of)
closed types θ1 and θ2 such that φ̂ �S α1 ⇒⇒ θ1 and φ̂ �S α2 ⇒⇒ θ2
in order to decide whether or not the judgment φ̂ �S α1 ∼∼∼ α2 is
derivable. To address this issue, we take inspiration from the the-
ory and implementation of regular-tree grammars [1, 3, 6]. By in-
terpreting an abstract type environment as (the productions for) a
regular-tree grammar, a derivation of the judgment φ̂ �S α⇒⇒ θ is
exactly a parse tree witnessing the derivation of the ground tree θ
from the starting non-terminal α in the regular-tree grammar φ̂ and
the judgment φ̂ �S α1 ∼∼∼ α2 is derivable iff languages generated
by taking α1 and α2, respectively, as the starting non-terminal in
the regular-tree grammar φ̂ have a non-empty intersection. Since
regular-tree grammars are closed under intersection and the empti-
ness of a regular-tree grammar is decidable [6, 9], the type compat-
ibility judgment φ̂ �S α1 ∼∼∼ α2 is decidable.

Finally, the minimum acceptable pair of abstract type and value
environments for a given program is computable via a standard
least-fixed point iteration. We interpret the acceptability judgment
φ̂; ρ̂ �S e as defining a monotone function from pairs of abstract en-
vironments to pairs of abstract environments; the “output” abstract
environments are formed from the “input” abstract environments
joined with all discovered violations.

We conclude with a crude upper-bound on computing the mini-
mum acceptable pair of abstract type and value environments for a
given program, of size n, via a standard least-fixed point computa-
tion. We represent φ̂ and ρ̂ as two-dimensional arrays (indexed by
α/τ and x/bs, respectively), requiringO(n2) space.1 Thus, the two
abstract environments are lattices of height O(n2). Each (naïve)
iteration of the monotone function is syntax directed (O(n)) and
dominated by the function-application bind, which loops over all of
the elements of ρ̂(xf) and ρ̂(ResOf(eb)) (O(n)), loops over all of
the elements of ρ̂(xa) (O(n)), and computes type compatibility via
a regular-tree grammar intersection (O((n2)2), because the output
regular-tree grammar is, worst-case, quadratic space with respect
to the size of the input regular-tree grammar) and emptiness test
(O(((n2)2)2), because the emptiness query is quadratic time with
respect to the input regular-tree grammar). Hence, our analysis is
computable in polynomial time: O(n13) = (O(n2) + O(n2)) ×
(O(n)×O(n)×O(n)× (O(n4) +O(n8))).

1 See Sections 5.2.1 and 5.2.2 for more discussion of assumptions about the
representation of the input program and data structures and operations.

short description of paper 3 2014/9/25

Types (closed) TyClsd 3 θ ::= θa → θb | ∀. θb | #n
Abstract type environments ATyEnv = TyVar → P(TyBnd) 3 φ̂ ::= {α 7→ {τ, . . .}, . . .}
Abstract value environments AValEnv = ExpVar → P(ExpBnds) 3 ρ̂ ::= {x 7→ {bs, . . .}, . . .}

φ̂ �S τ ⇒⇒ θ

φ̂ �S αa ⇒⇒ θa φ̂ �S αb ⇒⇒ θb

φ̂ �S αa → αb ⇒⇒ θa → θb

φ̂ �S αb ⇒⇒ θb

φ̂ �S ∀. αb ⇒⇒ ∀. θb φ̂ �S #n⇒⇒ #n

φ̂ �S α⇒⇒ θ

τ ∈ φ̂(α) φ̂ �S τ ⇒⇒ θ

φ̂ �S α⇒⇒ θ

φ̂ �S α1 ∼∼∼ α2

φ̂ �S α1 ⇒⇒ θ φ̂ �S α2 ⇒⇒ θ

φ̂ �S α1 ∼∼∼ α2

φ̂; ρ̂ �S e

τ ∈ φ̂(α) φ̂; ρ̂ �S e

φ̂; ρ̂ �S let α = τ in e

φ̂ �S αf ∼∼∼ αx ⇒ µf:αf.λz:αz.eb ∈ ρ̂(x) φ̂ �S αf ∼∼∼ αf ⇒ µf:αf.λz:αz.eb ∈ ρ̂(f) φ̂; ρ̂ �S eb φ̂; ρ̂ �S e

φ̂; ρ̂ �S let x:αx = µf:αf.λz:αz.eb in e

φ̂ �S αf ∼∼∼ αx ⇒ µf:αf.Λβ.eb ∈ ρ̂(x) φ̂ �S αf ∼∼∼ αf ⇒ µf:αf.Λβ.eb ∈ ρ̂(f) φ̂; ρ̂ �S eb φ̂; ρ̂ �S e

φ̂; ρ̂ �S let x:αx = µf:αf.Λβ.eb in e

∀µf:αf.λz:αz.eb ∈ ρ̂(xf) .

(∀bs ∈ ρ̂(xa) . φ̂ �S TyOf(bs) ∼∼∼ αz ⇒ bs ∈ ρ̂(z) ∧
∀bs ∈ ρ̂(ResOf(eb)) . φ̂ �S TyOf(bs) ∼∼∼ αx ⇒ bs ∈ ρ̂(x)

)
φ̂; ρ̂ �S e

φ̂; ρ̂ �S let x:αx = xf xa in e

∀µf:αf.Λβ.eb ∈ ρ̂(xf) .

(∀τ ∈ φ̂(αa) . τ ∈ φ̂(β)) ∧
∀bs ∈ ρ̂(ResOf(eb)) . φ̂ �S TyOf(bs) ∼∼∼ αx ⇒ bs ∈ ρ̂(x)

)
φ̂; ρ̂ �S e

φ̂; ρ̂ �S let x:αx = xf [αa] in e

φ̂; ρ̂ �S x

Figure 3. Specification-Based Formulation of TCFA

short description of paper 4 2014/9/25

4. Flow-Graph-Based Formulation of TCFA
We give judgments pertaining to the behavior of the Flow-Graph
analysis in Figure 4. These judgments are analogous to building
a flow-graph of a program P where the edges are the definite
flows between types, type variables, simple binders and expression
variables. There is also a conditional edge between a binder and an
expression variable that is guarded by the type compatibility of the
two in P . Once it is learned that the types are indeed compatible,
the edge is activated and belongs to the final result. After the graph
is constructed, Typed- and Control-Flow Analysis is reduced to
Graph Reachability across the flow-graph.

4.1 Flow-Graph Analysis
We define a series of judgments to perform a program parameter-
ized flow-graph analysis, dependent upon the Sub-part relation in
Figure 2.

The analysis uses a program based type compatibiliity, defined
mutually with type variable compatibility. Any two DeBruijn in-
dices are compatible if they are the same index number. Otherwise,
for functions and forall types that have type variable components,
the two types are compatible if the corresponding components are
compatible under the program. Two type variables, α1 and α2 are
compatible in a program if there is a τ1 and τ2 flowing to α1 and
α2, respectively, such that τ1 is compatible with τ2 in the program.

The flow-graph constructed by the analysis performed on a
program, P , consists of both type-flow information and value-flow
information.

We know that a type, τ , flows to a given type variable, α1, when
one of two cases is true: there is an explicit let-α binding in the
program involving τ and α1; if not, there is some α2 and we have
learned that α1 flows to α2. Such an edge between type variables is
constructed if there exists a type application in P where α2 is the
formal type parameter and α1 is the supplied type argument.

For a simple binder, bs to flow to an expression variable, x, we
need to know two pieces of information. We must have already
seen that the binder could possibly flow to the variable and also that
the type of the binder is compatible with the type of the variable.
Initially, for all λ- and Λ-abstractions, we assert that the abstraction
flows to its own recursive function variable. Other conditional flow
edges are added whenever the program contains a let-x expression
using bs and x and whenever we learn of a transitive variable
flow. Whenever we see an expression application and we already
know that a λ-abstraction flows to the function variable, we add a
flow edge between the argument variable and the formal parameter
variable dependent upon the type of the parameter and also between
the return of the function and the variable being bound by the let-x
expression. The return of Λ-abstraction also flows to a let-x bound
variable dependent upon the bound variable’s type if the binder is a
type application and the Λ-abstraction flows the function variable.

4.2 Soundness
From our flow-based analysis, we prove that if we have a φ̂ and
ρ̂ that are "flow-induced" from a well-typed program, then they
soundly model the program. Before we begin, we introduce the
following lemma:

Lemma 1. For all P , φ̂, if
∀α, τ . τ ∈ φ̂(α)⇔ P �G τ � α

then P �G α1 ∼∼∼ α2 ⇔ φ̂ �S α1 ∼∼∼ α2

We assert that the lemma is true without an accompanying
proof. By inspection, the forward case must be true because the
derivation of P �G α1 ∼∼∼ α2 tells us that there exists a τ1 flowing
to α1 and a τ2 flowing to α2 such that P �G τ1 ∼∼∼ τ2. We assume
that this can be translated to φ̂ �S τ1 ⇒⇒ θ and φ̂ �S τ2 ⇒⇒ θ,

thus allowing us to derive our conclusion. The backwards case is a
reflection of the logic in the forward case.

Theorem 1. For all P , φ̂, and ρ̂, if

• ∀α, τ . τ ∈ φ̂(α)⇔ P �G τ � α, and
• ∀x, bs . bs ∈ ρ̂(x)⇔ P �G bs � x

then φ̂; ρ̂ �s P .

Proof. By induction on P . The interesting cases are when P is a
let-x bound to a λ-abstraction and also when P is a let-x bound
to a type application.

Case P of let x:αx = µf:αf.λz:αz.eb in e: Knowing
that P is unconditionally a sub-term of itself, we can deduce that
let x:αx = µf:αf.λz:αz.eb in e is a subterm of P . Thus we
can build a conditional edge in the flow graph from the abstraction
to x. Since P is well-typed, we know that P �G αf ∼∼∼ αx

and can thus derive P �G µf:αf.λz:αz.eb � x and
φ̂ �S αf ∼∼∼ αx. Our assumption thus gives us bs ∈ ρ̂(x) from
P �G µf:αf.λz:αz.eb � x. We have φ̂; ρ̂ �S eb and φ̂; ρ̂ �S e
by our inductive hypothesis, and thus we have our derivation for
φ̂; ρ̂ �S let x:αx = µf:αf.λz:αz.eb in e.

Case P of let x:αx = xf [αa] in e: We again start by as-
serting that αx = xf [αa] in e is a subterm of P . If there is a
µf:αf.Λβ.eb that flows to xf , then we can create a conditional
edge from the result of the Λ-abstraction to x and an unconditional
edge from αa and β. The conditional edge only allows binders that
are type compatible in the flow specification to flow transitively
from the result variable to x. By our Lemma we can show that the
binders that flow to x are type compatible with αx and our assump-
tion tells us that those binders are in the entry for x in ρ̂. The graph
also tells us that any τ flowing to αa flows to β, which we can use
to show that τ is in the entry for β in φ̂ from our assumption. Our
inductive hypothesis allows us to show that φ̂ and ρ̂ soundly model
e, and we thus derive that φ̂; ρ̂ �G let x:αx = xf [αa] in e.

short description of paper 5 2014/9/25

P �G τ1 ∼∼∼ τ2

TYCOMPATARROW

P �G αa1 ∼∼∼ αa2 P �G αb1 ∼∼∼ αb2

P �G αa1 → αb1 ∼∼∼ αa2 → αb2

TYCOMPATFORALL

P �G αb1 ∼∼∼ αb2

P �G ∀. αb1 ∼∼∼ ∀. αb2

TYCOMPATTYIDX

P �G #n ∼∼∼ #n

P �G α1 ∼∼∼ α2

TYVARCOMPAT

P �G τ1 � α1 P �G τ2 � α2 P �G τ1 ∼∼∼ τ2
P �G α1 ∼∼∼ α2

P �G τ � α

LETTYBND

let α = τ in e �Exp P

P �G τ � α

TRANSTYBND

P �G τ � α P �G α� β

P �G τ � β

P �G α� β

TYAPPARG

P �G µf:αf.Λβ.eb � x let xr:αr = x [αa] in e �Exp P

P �G αa � β

P �G bs � x

TYVARCOMPATEXPBNDs

P �G bs �
? x : αx P ` TyOf(bs) ∼∼∼ αx

P �G bs � x

P �G bs �? x : αx

LETEXPBNDs

let x:αx = bs in e �Exp P

P �G bs �
? x : αx

TRANSEXPBNDs

P �G bs � x P �G x� y : αy

P �G bs �
? y : αy

µλEXPBNDs

let x:αx = µf:αf.λz:αz.eb in e �Exp P

P �G µf:αf.λz:αz.eb �
? f : αf

µΛEXPBNDs

let x:αx = µf:αf.Λβ.eb in e �Exp P

P �G µf:αf.Λβ.eb �
? f : αf

P �G x� y : αy

EXPAPPARG

P �G µf:αf.λz:αz.eb � x let xr:αr = x xa in e �Exp P

P �G xa � z : αz

EXPAPPRES

P �G µf:αf.λz:αz.eb � x let xr:αr = xf xa in e �Exp P

P �G ResOf(eb)� xr : αr

TYAPPRES

P �G µf:αf.Λβ.eb � x let xr:αr = x [αa] in e �Exp P

P �G ResOf(eb)� xr : αr

Figure 4. Flow-Graph-Based Formulation of TCFA

short description of paper 6 2014/9/25

5. Algorithm
In Figures 5, 6, and 7, we give a direct algorithm implementing the
flow-graph-based formulation of the type- and control-flow anal-
ysis. The algorithm returns a result set R whose elements corre-
spond to judgements from Figure 4 that are proven to be derivable
with respect to the input program P . After an initialization phase,
the algorithm uses a work-queue W to process each element that
is added to R; when a newly added element is processed, all of
the inference rules for which the newly added element could be an
antecedent are inspected to determine if the corresponding conclu-
sion can now be added to R. In order to achieve our desired time
complexity, there is a map T from elements of the form α1 ∼∼∼ α2

to a queue of conclusions that may be added to R when α1 ∼∼∼ α2

is proved to be derivable; the queues in T will serve as “banks”
holding credit for the amortized complexity analysis.

5.1 Commentary
5.1.1 Initialization Phase
The first initialization phase (lines 5–18) adds to R and W all ele-
ments of the form bs �? x : αx that are derivable using the rules
LETEXPBNDs, µλEXPBNDs, and µΛEXPBNDs, rules whose conclusion
follows directly from the input program. Similarly, the second ini-
tialization phase (lines 19–22) adds to R and W all elements of the
form τ � α that are derivable using the rule LETTYBNDs.

The third initialization phase (lines 23–27) prepares the map T ,
creating an empty queue for each pair of type variables that appear
in the input program.

The fourth initialization phase (lines 28–48) handles the rules
TYCOMPATARROW, TYCOMPATFORALL, and TYCOMPATTYIDX for all type
binds that appear in the input program. When τ1 and τ2 are arrow
types, then τ1 ∼∼∼ τ2 is derivable using the rule TYCOMPATARROW

when the argument type variables are known to be compatible and
the result type variables are known to be compatible. Therefore, we
create a counter c initialized with the value 2 and add the element
〈c, τ1 ∼∼∼ τ2〉 to the queues in map T for the elements αa1 ∼∼∼ αa2

and αb1 ∼∼∼ αb2. The element 〈c, τ1 ∼∼∼ τ2〉 indicates that τ1 and τ2
will be known to be compatible when two pairs of type variables
are known to be compatible; when αa1 ∼∼∼ αa2 and αb1 ∼∼∼ αb2 are
known to be compatible, the counter will be decremented and
when the counter is zero, τ1 ∼∼∼ τ2 will be added to R and W (see
lines 148–156). Similarly, when τ1 and τ2 are forall types, then
τ1 ∼∼∼ τ2 is derivable using the rule TYCOMPATFORALL when the result
type variables are known to be compatible and we create a counter c
initialized with the value 1 and add the element 〈c, τ1 ∼∼∼ τ2〉 to the
queue in map T for the element αb1 ∼∼∼ αb2. Finally, when τ1 and
τ2 are the same type index, then τ1 ∼∼∼ τ2 is immediately derivable
using the rule TYCOMPATTYIDX and τ1 ∼∼∼ τ2 is added to R and W .

5.1.2 Work-queue Phase
The work-queue phase repeatedly pops an element from the work-
queueW and processes the element (possibly adding new elements
to R and W) until W is empty. To process an element, all of the
inference rules for which the element could be an antecedent are
inspected to determine if the corresponding conclusion can now be
added to R and W .

When the work-queue element is of the form x� y : αy

(lines 51–58), only the rule TRANSEXPBNDs need be inspected.
For each bs � x that is already known to be derivable, then
TRANSEXPBNDs may derive bs �? y : αy and it is added to R and
W .

When the work-queue element is of the form bs � x : αx

(lines 59–68), only the rule TYVARCOMPATEXPBNDs need be in-
spected. If TyOf(bs) and αx are already known to be compati-
ble, then TYVARCOMPATEXPBNDs may derive bs � x and it is added

to R and W . If TyOf(bs) and αx are not yet known to be com-
patible, then the element bs � x is added to the queue given by
Map.get(T,TyOf(bs) ∼∼∼ αx), indicating that when TyOf(bs) and
αx are known to be compatible, bs � x will be added to R and W
(see lines 142–147).

When the work-queue element is of the form bs � x (lines 69–
104), the rules TRANSEXPBNDs, EXPAPPARG, EXPAPPRES, TYAPPARG,
and TYAPPRES need to be inspected. For each x� y : αy that
is already known to be derivable, then TRANSEXPBNDs may derive
bs �? y : αy and it is added to R and W . When bs is of the form
µf:αf.λz:αz.eb where xb = ResOf(eb) (lines 77–89), all ex-
pression applications let xr:αr = x xa in e in the input program
are examined to determine if EXPAPPARG may derive xa � z : αz

and if EXPAPPRES may derive xb � xr : αr . Similarly, when bs is
of the form µf:αf.Λβ.eb where xb = ResOf(eb) (lines 90–102),
all expression applications let xr:αr = x [αa] in e in the in-
put program are examined to determine if TYAPPARG may derive
αa � β and if TYAPPRES may derive xb � xr : αr .

When the work-queue element is of the form τ � α (lines 105–
120), the rules TRANSTYBND and TYVARCOMPAT need to be inspected.
For each α� β that is already known to be derivable, then
TRANSTYBND may derive τ � β and it is added to R and W . For
each π� β that is already known to be derivable, if τ and π
are already known to be compatible, then TYVARCOMPAT may derive
α ∼∼∼ β and it is added to R and W .

When the work-queue element is of the formα� β (lines 121–
128), only the rule TRANSTYBND need be inspected. For each τ � α
that is already known to be derivable, then TRANSTYBND may derive
τ � β and it is added to R and W .

When the work-queue element is of the form τ1 ∼∼∼ τ2
(lines 129–138), only the rule TYVARCOMPAT need be inspected. For
each τ1 � α1 and τ2 � α2 that are known to be derivable, then
TYVARCOMPAT may derive α1 ∼∼∼ α2 and it is added to R and W .

Finally, when the work-queue element is of the form α1 ∼∼∼ α2

(lines 139–159), the rules TYVARCOMPATEXPBNDs and TYVARCOMPAT

need to be inspected. Each time that bs � x : αx was known to be
derivable but TyOf(bs) and αx were not yet known to be com-
patible (preventing TYVARCOMPATEXPBNDs from deriving bs � x),
an element of the form bs � x was added to the queue given by
Map.get(T,TyOf(bs) ∼∼∼ αx) (see line 66); hence, processing these
elements of the queue will add each bs � x that may be derived by
TYVARCOMPATEXPBNDs to R and W . For each pair of type binds τ1
and τ2 whose compatibility depends upon the compatibility of α1

and α2 (and possibly upon the compatibility of other pairs of type
variables), an element of the form 〈c, τ1 ∼∼∼ τ2〉, where c indicates
the total number of pairs of type variables whose compatibility will
establish the compatibility of τ1 and τ2, was added to the queue
given by Map.get(T, α1 ∼∼∼ α2) (see lines 33, 34, and 38); hence,
processing these elements of the queue will add each τ1 ∼∼∼ τ2 that
may be derived by TYVARCOMPAT to R and W .

5.1.3 Termination
Note that throughout the algorithm, whenever an element is added
to the result setR, it is simultaneously added to the work-queueW .
Furthermore, an element is added to R and W only after checking
that the element is not already in R, except during the initialization
phase when all elements added to R and W are necessarily not
already in R. Hence, elements are only added to W once and the
work-queue phase of the algorithm terminates because, for a given
input program, there are only a finite number of elements that may
be added to R and W .

short description of paper 7 2014/9/25

Ensure: ∀τ1 �TyBnd P . ∀τ2 �TyBnd P . τ1 ∼∼∼ τ2 ∈ R⇔ P �G τ1 ∼∼∼ τ2
Ensure: α1 ∼∼∼ α2 ∈ R⇔ P �G α1 ∼∼∼ α2

Ensure: τ � α ∈ R⇔ P �G τ � α
Ensure: α� β ∈ R⇔ P �G α� β
Ensure: bs � x ∈ R⇔ P �G bs � x
Ensure: bs �? x : αx ∈ R⇔ P �G bs �? x : αx

Ensure: x� y : αy ∈ R⇔ P �G x� y : αy

1: procedure TCFA(P) B O(l3 +m4) = O(l2) +O(m2) +O(1) +O(m2)
+O(l) +O(m) +O(m2) +O(m2)
+O(l3) +O(l2) +O(l3)
+O(m4) +O(m3) +O(m4) +O(m2)

2: R← Set.newEmpty() B O(l2) +O(m2)
3: W ← Queue.newEmpty() B O(1)
4: T ← Map.newEmpty() B O(m2)

5: for all let x:αx = bs in e �Exp P do B O(l) = O(l)×O(1)
6: Set.insert(R, bs �? x : αx)
7: Queue.push(W, bs �? x : αx)
8: match bs with
9: case µf:αf.λz:αz.eb do

10: Set.insert(R, bs �? f : αf)
11: Queue.push(W, bs �? f : αf)
12: end case
13: case µf:αf.Λβ.eb do
14: Set.insert(R, bs �? f : αf)
15: Queue.push(W, bs �? f : αf)
16: end case
17: end match
18: end for

19: for all let α = τ in e �Exp P do B O(m) = O(m)×O(1)
20: Set.insert(R, τ � α)
21: Queue.push(W, τ � α)
22: end for

23: for all α1 �TyVar P do B O(m2) = O(m)×O(m)
24: for all α2 �TyVar P do B O(m) = O(m)×O(1)
25: Map.set(T, α1 ∼∼∼ α2,Queue.newEmpty())
26: end for
27: end for

28: for all τ1 �TyBnd P do B O(m2) = O(m)×O(m)
29: for all τ2 �TyBnd P do B O(m) = O(m)×O(1)
30: match 〈τ1, τ2〉 with
31: case 〈αa1 → αb1, αa2 → αb2〉 do
32: c← Counter.new(2)
33: Queue.push(Map.get(T, αa1 ∼∼∼ αa2), 〈c, τ1 ∼∼∼ τ2〉) B O(1) credit into T [αa1 ∼∼∼ αa2] queue
34: Queue.push(Map.get(T, αb1 ∼∼∼ αb2), 〈c, τ1 ∼∼∼ τ2〉) B O(1) credit into T [αb1 ∼∼∼ αb2] queue
35: end case
36: case 〈∀. αb1, ∀. αb2〉 do
37: c← Counter.new(1)
38: Queue.push(Map.get(T, αb1 ∼∼∼ αb2), 〈c, τ1 ∼∼∼ τ2〉) B O(1) credit into T [αb1 ∼∼∼ αb2] queue
39: end case
40: case 〈#n, #m〉 do
41: if n = m then
42: Set.insert(R, τ1 ∼∼∼ τ2)
43: Queue.push(W, τ1 ∼∼∼ τ2)
44: end if
45: end case
46: end match
47: end for
48: end for

Figure 5. TCFA Algorithm

short description of paper 8 2014/9/25

49: while ¬Queue.empty?(W) do
50: match Queue.pop(W) with

51: case x� y : αy do B O(l3) = O(l2)×O(l)
52: for all bs � x ∈ R do B O(l) = O(l)×O(1)
53: if bs �? y : αy /∈ R then
54: Set.insert(R, bs �? y : αy)
55: Queue.push(W, bs �? y : αy)
56: end if
57: end for
58: end case

59: case bs �? x : αx do B O(l2) = O(l2)×O(1)
60: if TyOf(bs) ∼∼∼ αx ∈ R then
61: if bs � x /∈ R then
62: Set.insert(R, bs � x)
63: Queue.push(W, bs � x)
64: end if
65: else
66: Queue.push(Map.get(T,TyOf(bs) ∼∼∼ αx), bs � x) B O(1) credit into T [TyOf(bs) ∼∼∼ αx] queue
67: end if
68: end case

69: case bs � x do B O(l3) = O(l2)×O(l)
70: for all x� y : αy ∈ R do B O(l) = O(l)×O(1)
71: if bs �? y : αy /∈ R then
72: Set.insert(R, bs �? y : αy)
73: Queue.push(W, bs �? y : αy)
74: end if
75: end for
76: match bs with
77: case µf:αf.λz:αz.eb do
78: xb ← ResOf(eb)
79: for all let xr:αr = x xa in e �Exp P do B O(l) = O(l)×O(1)
80: if xa � z : αz /∈ R then
81: Set.insert(R, xa � z : αz)
82: Queue.push(W,xa � z : αz)
83: end if
84: if xb � xr : αr /∈ R then
85: Set.insert(R, xb � xr : αr)
86: Queue.push(W,xb � xr : αr)
87: end if
88: end for
89: end case
90: case µf:αf.Λβ.eb do
91: xb ← ResOf(eb)
92: for all let xr:αr = x [αa] in e �Exp P do B O(l) = O(l)×O(1)
93: if αa � β /∈ R then
94: Set.insert(R,αa � β)
95: Queue.push(W,αa � β)
96: end if
97: if xb � xr : αr /∈ R then
98: Set.insert(R, xb � xr : αr)
99: Queue.push(W,xb � xr : αr)
100: end if
101: end for
102: end case
103: end match
104: end case

Figure 6. TCFA Algorithm (continued)

short description of paper 9 2014/9/25

105: case τ � α do B O(m4) = O(m2)×O(m2)
106: for all α� β ∈ R do B O(m) = O(m)×O(1)
107: if τ � β /∈ R then
108: Set.insert(R, τ � β)
109: Queue.push(W, τ � β)
110: end if
111: end for
112: for all π� β ∈ R do B O(m2) = O(m2)×O(1)
113: if τ ∼∼∼ π ∈ R then
114: if α ∼∼∼ β /∈ R then
115: Set.insert(R,α ∼∼∼ β)
116: Queue.push(W,α ∼∼∼ β)
117: end if
118: end if
119: end for
120: end case

121: case α� β do B O(m3) = O(m2)×O(m)
122: for all τ � α ∈ R do B O(m) = O(m)×O(1)
123: if τ � β /∈ R then
124: Set.insert(R, τ � β)
125: Queue.push(R, τ � β)
126: end if
127: end for
128: end case

129: case τ1 ∼∼∼ τ2 do B O(m4) = O(m2)×O(m2)
130: for all τ1 � α1 ∈ R do B O(m2) = O(m)×O(m)
131: for all τ2 � α2 ∈ R do B O(m) = O(m)×O(1)
132: if α1 ∼∼∼ α2 /∈ R then
133: Set.insert(R,α1 ∼∼∼ α2)
134: Queue.push(W,α1 ∼∼∼ α2)
135: end if
136: end for
137: end for
138: end case

139: case α1 ∼∼∼ α2 do B O(m2) = O(m2)×O(1)
140: while ¬Queue.empty?(Map.get(T, α1 ∼∼∼ α2)) do
141: match Queue.pop(Map.get(T, α1 ∼∼∼ α2)) with B O(1) credit from T [αa1 ∼∼∼ αa2] queue
142: case bs � x do
143: if bs � x /∈ R then
144: Set.insert(R, bs � x)
145: Queue.push(W, bs � x)
146: end if
147: end case
148: case 〈c, τ1 ∼∼∼ τ2〉 do
149: Counter.dec(c)
150: if Counter.get(c) = 0 then
151: if τ1 ∼∼∼ τ2 /∈ R then
152: Set.insert(R, τ1 ∼∼∼ τ2)
153: Queue.push(W, τ1 ∼∼∼ τ2)
154: end if
155: end if
156: end case
157: end match
158: end while
159: end case

160: end match
161: end while

162: return R
163: end procedure

Figure 7. TCFA Algorithm (continued)

short description of paper 10 2014/9/25

5.2 Complexity
5.2.1 Preliminaries
Before analyzing the time complexity of the algorithm, we first
make some (standard) assumptions about the representation of the
input program.

We assume that all let-, µ-, and λ-bound expression variables
and all let-, and Λ-bound type variables in the program are dis-
tinct. We further assume that expression variables and type vari-
ables can be mapped (in O(1) time) to unique integers (for O(1)
time indexing into an array) and that integers can be mapped (in
O(1) time) to corresponding expression variables and type vari-
ables.2 Given the assumption that all let-, µ-, and λ-bound ex-
pression variables in the program are unique, each expression vari-
able in the program is annotated with a single type variable at its
unique binding occurrence. We therefore assume that expression
variables can be mapped (in O(1) time) to its annotating type vari-
able. Given the assumption that all µ-bound expression variables in
the program are unique, each simple expression bind in the program
is unique and can be mapped (in O(1) time) to and from unique in-
tegers.3 We do not assume that each type bind in the program is
unique, but we do assume that each type bind in the program can
be mapped (in O(1) time) to and from unique integers. Finally, we
assume that ResOf(·) can be computed in O(1) time.4

5.2.2 Data Structures and Operations
We next consider the data structures used to implement the result
set R and the map T and the cost of various operations.

The result set R is implemented as seven multi-dimensional
arrays, each corresponding to one of the seven judgements from
Figure 4. Given the assumptions above, it is easy to see that the
arrays corresponding to τ1 ∼∼∼ τ2, α1 ∼∼∼ α2, τ � α, α� β, and
bs � x are simple two-dimensional arrays with O(1) time index-
ing by mapping components to unique integers. Furthermore, the
arrays corresponding to bs � x : αx and x� y : αy can also be
implemented with simple two-dimensional arrays (indexed by bs/x
and x/y, respectively), because the type variable is always the sin-
gle type variable at the unique binding occurrence of the expression
variable and can be left implicit. Thus, queries like bs � x /∈ R
and operations like Set.insert(R, bs � x) can be performed in
constant time. Loops like “for all bs � x ∈ R do” for fixed bs in-
stantiating x or for fixed x instantiating bs can be implemented as a
linear scan of an array column or array row.

The map T is implemented with a simple two-dimensional
array, indexed by pairs of type variables. Operations like
Map.set(T, α1 ∼∼∼ α2, q) and Map.get(T, α1 ∼∼∼ α2) can be per-
formed in constant time.

The work-queue W and the queues in map T are implemented
with a simple linked-list queue. Queries like Queue.empty?(W)
and operations like Queue.push(W, bs � x) and Queue.pop(W)
can be performed in constant time.

5.2.3 Coarse Analysis
We first argue that the algorithm is O(n4) time, where n is the
size of the input program P . First, note that there are O(n) type

2 These mappings can established with a linear-time preprocessing step.
3 In a richer language with simple-expression-bind forms that do not include
a bound expression variable (e.g., 〈x1, x2〉 pairs), we can assume a num-
bering of all simple expression binds in the program, similar to the labeling
found in textbook presentations of CFA [10].
4 This can be established either by a linear-time preprocessing step (associ-
ating each result variable with its corresponding abstraction) or by changing
the representation of expressions to a list of α = τ and x:αx = b bindings
paired with the result variable.

variables, O(n) type binds, O(n) expression variables, and O(n)
simple expression binds in the program. Thus, the result set R
requires O(n2) space for (and is O(n2) time to create) each of
the seven two-dimensional arrays and the map T requires O(n2)
space for (and is O(n2) time to create) the two-dimensional array.

The first initialization phase is O(n) time to traverse the pro-
gram and process each simple expression bind. Similarly, the sec-
ond initialization phase is O(n) time to traverse the program and
process each type bind. The third initialization phase is O(n2)
time to process each pair of type variables. The fourth initialization
phase is O(n2) time to process each pair of type binds. Altogether,
the initialization phase isO(n2) = O(n)+O(n)+O(n2)+O(n2)
time.

As noted above, elements are only added toW once. Therefore,
the time complexity of the “while ¬Queue.empty?(W) do”-loop
is the sum of the time required to process an element of each
kind times the number of elements of that kind. There are
O(n2) elements of the form x� y : αy (recall that the αy is
implicitly determined by the y) and processing an x� y : αy

element is O(n) time to scan for all bs � x ∈ R. There are
O(n2) elements of the form bs �? x : αx and processing a
bs �? x : αx element is O(1) time. There are O(n2) ele-
ments of the form bs � x and processing a bs � x element
is O(n) time to scan all x� y : αy ∈ R and O(n) time
to find all let xr:αr = x xa in e �Exp P and to find all
let xr:αr = x [αa] in e �Exp P . There are O(n2) elements of
the form τ � α and processing a τ � α element is O(n) time
to scan for all α� β ∈ R and O(n2) to process all π� β ∈ R.
There are O(n2) elements of the form α� β and processing
an α� β element is O(n) time to scan for all τ � α ∈ R.
There are O(n2) elements of the form τ1 ∼∼∼ τ2 and processing a
τ1 ∼∼∼ τ2 element is O(n2) time to scan for all τ1 � α1 ∈ R and
τ2 � α2 ∈ R. There are O(n2) elements of the form α1 ∼∼∼ α2,
processing an α1 ∼∼∼ α2 element must process each element in the
queue Map.get(T, α1 ∼∼∼ α2), and, therefore, the time complexity
to process an α1 ∼∼∼ α2 element is the sum of the time required to
process the elements in the queue of each kind times the number
of elements of that kind; there are O(n2) elements of the form
bs � x in the queue (since an element of the form bs � x are
added at most once to at most one queue (see line 66)) and process-
ing an bs � x element is O(1) time and there are O(n2) elements
of the form 〈c, τ1 ∼∼∼ τ2〉 (since an element of the form 〈c, τ1 ∼∼∼ τ2〉
is added at most twice to at most one queue (see lines 33–34 and
line 38)) and processing a 〈c, τ1 ∼∼∼ τ2〉 element is O(1) time. Alto-
gether, the work-queue phase is O(n4) = O(n2)×O(n) +
O(n2)×O(1) + O(n2)× (O(n) +O(n) +O(n)) +
O(n2)× (O(n) +O(n2))+O(n2)×O(n)+O(n2)×O(n2)+
O(n2)× (O(n2)×O(1) +O(n2)×O(1)).

Thus, the entire algorithm is O(n4). Recall that algorithms
for classic (untyped) control-flow analysis have been shown to be
O(n3) [2, 7, 10, 11], though recently improved to O(n2 logn) [8].

5.2.4 Refined Analysis
In order to clarify the relationship between the time complexity
of algorithms for classic (untyped) control-flow analysis and our
algorithm for type- and control-flow analysis, we perform a refined
analysis of our algorithm.

First, note that the quartic components of the algorithm are due
to the processing of elements of the form τ � α, τ1 ∼∼∼ τ2, and
α1 ∼∼∼ α2. Intuitively, the increased time complexity of the algo-
rithm for type- and control-flow analysis compared to algorithms
for classic (untyped) control-flow analysis is due to the computa-
tion of the type-compatibility relations.

short description of paper 11 2014/9/25

Second, in typical programs of interest, we expect that the total
size of the program to be dominated by the contribution of (bound)
expression variables and expression binds, with the contribution
of (bound) type variables and type binds significantly (asymptot-
ically?) less. For example, a program may have many definitions of
and uses of int→ int functions, all of which can share the same
(top-level) let αi = int in let αi→i = αi → αi in . . . type
bindings. Indeed, our ANF representation of types encourages
type-level optimizations such as let-floating, common subexpres-
sion elimination (CSE), and copy propagation, which would fur-
ther reduce the contribution of types to the total program size.
Therefore, we consider it useful to distinguish l, the size of
(bound) expression variables and expression binds, and m, the
size of (bound) type variables and type binds, where we have
O(l) +O(m) is O(n) and we expect O(l) � O(m), though,
in the worst-case, both O(l) and O(l) are O(n). We further as-
sume an O(n) preprocessing step that provides an enumeration of
all let x:αx = b in e �Exp P inO(l) time and an enumeration of
all let α = τ in e �Exp P in O(m) time.

We now argue that the algorithm is O(l3 + m4) time. First,
note that there are O(m) type variables, O(m) type binds, O(l)
expression variables, and O(l) simple expression binds in the pro-
gram. Thus, the result set R requires O(l2 +m2) space for (and is
O(l2 + m2) time to create) the seven two-dimensional arrays and
the map T requiresO(m2) space for (and isO(m2) time to create)
the two-dimensional array.

The first initialization phase isO(l) time to process each simple
expression bind. Similarly, the second initialization phase is O(m)
time to process each type bind. The third initialization phase is
O(m2) time to process each pair of type variables. The fourth ini-
tialization phase is O(m2) time to process each pair of type binds;
included in this processing time is an O(1) credit “deposited” into
the queues in T when pushing elements, which “pre-pays” for the
processing of the elements when popped. Altogether, the initializa-
tion phase is O(l + m2) = O(l) + O(m) + O(m2) + O(m2)
time.

The analysis of the work-queue phase is similar
to that performed above: the time complexity of the
“while ¬Queue.empty?(W) do”-loop is the sum of the time
required to process an element of each kind times the number
of elements of that kind; we simply refine n to l or m as ap-
propriate. We further perform an amortized analysis of the time
complexity to process an bs �? x : αx element and to process an
α1 ∼∼∼ α2 element. Included in the time to process an bs �? x : αx

element is an O(1) credit “deposited” into the queue given by
Map.get(T,TyOf(bs) ∼∼∼ αx) when pushing elements, which
“pre-pays” for the processing of the elements when popped. As
before, processing an α1 ∼∼∼ α2 element must process each element
in the queue Map.get(T, α1 ∼∼∼ α2); however, an O(1) credit
may be “withdrawn” from the queue Map.get(T, α1 ∼∼∼ α2) when
popping elements and this O(1) credit may be used to “pay” for
the popping and processing of the element. Thus, processing an
α1 ∼∼∼ α2 element is (amortized) O(1) time.5 Altogether, the work-
queue phase is O(l3 + m4) = O(l2)×O(l) + O(l2)×O(1) +
O(l2)× (O(l) +O(l) +O(l)) +O(m2)× (O(m) +O(m2)) +
O(m2)×O(m) +O(m2)×O(m2) +O(m2)×O(1).

Thus, the entire algorithm is O(l3 +m4).

5 Note that without the amortized analysis, processing an α1 ∼∼∼ α2 ele-
ment would be O(l2) + O(m2) time and the entire algorithm would be
O(l3 + l2m2 +m4).

6. Conclusion
References
[1] A. Aiken and B. R. Murphy. Implementing regular tree expressions. In

J. Hughes, editor, FPCA’91: Proceedings of the Fifth ACM Conference
on Functional Programming Languages and Computer Architecture,
volume 523 of Lecture Notes in Computer Science, pages 427–447,
Cambridge, Massachusetts, Aug. 1991. Springer-Verlag.

[2] A. E. Ayers. Efficient closure analysis with reachability. In M. Bil-
laud, P. Castéran, M.-M. Corsini, K. Musumbu, and A. Rauzy, edi-
tors, Actes WSA’92 Workshop on Static Analysis, Bigre, pages 126–
134, Bordeaux, France, Sept. 1992. Atelier Irisa, IRISA, Campus de
Beaulieu.

[3] P. Cousot and R. Cousot. Formal language, grammar and set-
constraint-based program analysis by abstract interpretation. In
S. Peyton Jones, editor, FPCA’95: Proceedings of the Seventh Interna-
tional Conference on Functional Programming Languages and Com-
puter Architecture, pages 170–181, La Jolla, California, June 1995.

[4] M. Fluet. A type- and control-flow analaysis for System F. In
R. Hinze, editor, IFL’12: Post-Proceedings of the 24th International
Symposium on Implementation and Application of Functional Lan-
guages, Lecture Notes in Computer Science, Oxford, England, 2013.
Springer-Verlag. To appear.

[5] M. Fluet. A type- and control-flow analysis for System F. Tech-
nical report, Rochester Institute of Technology, February 2013.
https://ritdml.rit.edu/handle/1850/15920.

[6] F. Gecseg and M. Steinby. Tree Automata. Akademiai Kiado, Bu-
dapest, Hungary, 1984.

[7] N. Heintze. Set-based program analysis of ML programs. In C. L.
Talcott, editor, LFP’94: Proceedings of the 1994 ACM Conference on
Lisp and Functional Programming, pages 306–317, Orlando, Florida,
June 1994.

[8] J. Midtgaard and D. V. Horn. Subcubic control flow analysis algo-
rithms. Computer Science Research Report 125, Roskilde University,
Roskilde, Denmark, May 2009. Revised version to appear in Higher-
Order and Symbolic Computation.

[9] P. Mishra and U. S. Reddy. Declaration-free type checking. In M. S.
Van Deusen, Z. Galil, and B. K. Reid, editors, POPL’85: Proceed-
ings of the Twelfth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 7–21, New Orleans,
Louisiana, Jan. 1985. ACM, ACM.

[10] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program
Analysis. Springer-Verlag, 1999.

[11] J. Palsberg and M. I. Schwartzbach. Safety analysis versus type
inference. Information and Computation, 118(1):128–141, 1995.

[12] C. A. Stone. Type definitions. In B. C. Pierce, editor, Advanced Topics
in Types and Programming Languages. The MIT Press, 2005.

short description of paper 12 2014/9/25

https://ritdml.rit.edu/handle/1850/15920

Worker/wrapper for a Better Life
Extended Abstract

Brad Torrence Mike Stees Andrew Gill
Information and Telecommunication Technology Center

The University of Kansas
{brad.torrence,mstees,andygill}@ittc.ku.edu

Abstract
In Software Engineering, an implementation, and its model, can fall
out of step. If we can connect the implementation and model, then
development of both artifacts can continue, while retaining confi-
dence in the overall design and implementation. In this paper, we
show it is possible in practice to connect together an executable
specification of Conway’s Game of Life, and a number of imple-
mentations, using the worker/wrapper transformation. In particular,
we use the rewrite tool HERMIT to apply post-hoc transformations
to replace a linked-list based description with other data structures.
Directed optimizations allow for highly-efficient executable speci-
fications, where the model becomes the implementation. This work
is the first time programmer-directed worker/wrapper has been at-
tempted on a whole application, rather than simply on individual
functions. Beyond data representation improvement, we translate
our model such that we can execute on a CPU/GPU hybrid, by tar-
geting the accelerate DSL.

1. Introduction
The concepts of the worker/wrapper methodology introduced
by Gill and Hutton in [6] are the driving force behind the ex-
amples demonstrated in this paper. We have implemented the
worker/wrapper methodology in the Haskell Equational Reason-
ing Model to Implementation Tunnel (HERMIT) system. HERMIT
has already demonstrated several examples of its capability of us-
ing the worker/wrapper theory [3, 4, 11]. However, these examples
have only consisted of small transformations usually over a single
function. In this paper, we scale the methodology and tool support
to a larger example – an implementation of the Game of Life.

1.1 Worker/Wrapper
The worker/wrapper transformation is a technique for improving
the performance of a program by changing the underlying im-
plementation. The transformation generates two components: the
“worker”, which performs using the new implementation, and the
“wrapper”, which conceals this new implementation under the orig-
inal API.

Copyright held by author(s). This is an unrefereed extended abstract, distributed for the
purpose of feedback toward submitting a complete paper on the same topic to IFL’14.

When using worker/wrapper, the programmer provides two
functions, abs and rep that translate from the new representation
to the original representation, and from the original representation
to the new representation. When given some specific precondi-
tions on the relationship between abs and rep, we can assume
another condition that creates a provably correct worker/wrapper
transformation [10]. Specifically, given a fix-point of the original
computation,

comp = fix work

as well as abs and rep, and the worker/wrapper preconditions, we
can rewrite comp into a worker and wrapper.

comp = abs worker
worker = fix (rep . work . abs)

Critically, the worker is now acting over a new representation. By
applying laws that relate rep, work, and abs, we can optimize the
worker, giving a more efficient program. The user intervention is
the choice of abs and rep, and demonstrating the pre-conditions,
and we want to use HERMIT to perform both of these steps, as well
as optimize the result.

1.2 HERMIT
HERMIT is a framework that provides tools for interacting with
and transforming GHC Core programs. The primary means of fa-
cilitating this interaction is through the HERMIT Shell, a REPL in-
terface that allows the user to traverse a GHC Core abstract syntax
tree. It is inside this REPL that the user issues commands that con-
struct rewrites from AST to AST [3, 11]. Use of the ‘unfold-rule’
command in particular, in conjunction with GHC RULES pragma
[8], allows the user to construct a rewrite from the given rule [3].

Adding to these capabilities are the new worker/wrapper re-
lated commands, ‘split-1-beta’ and ‘split-2-beta’. These new com-
mands perform the worker/wrapper split using the safe correct-
ness conditions discussed in the previous section. These commands
take a function argument, which is the target of the split, and two
more arguments that comprise a transformation-pair. This pair of
functions are referred to as the ‘abs’ and ‘rep’ functions [10] or
‘work’ and ‘wrap’ functions [6] in previous discussions about the
worker/wrapper theory. If this transformation pair is created to meet
the necessary preconditions to make 1β or 2β true, then they can
be given to a “split” command. The product of a split is a worker,
which implements new functionality, and a wrapper, which simply
calls the new function, maintaining the original interface.

The creation of these commands have given HERMIT users the
ability to transform an entire program using the worker/wrapper
methodology, provided the theory can be applied effectively using
automated mechanisms such as HERMIT to transform an imple-
mentation without changing the source code.

1.3 The Game of Life
To show that worker/wrapper transformations under HERMIT can
be accomplished for complex programs composed of multiple
source files, a suitable program had to be selected that was com-
plex enough to have merit, but not so complex as to provide an
overly involved example. An example program that contains these
features is the Game of Life.

The Game of Life was created by the British mathematician
John Horton Conway [5]. Technically, it’s a simulation. A player
creates the initial state of the board and the rules of the game
determine how the board evolves, the player can only observe once
the game has begun.

The game board is made of cells arranged in a two dimensional
grid. A cell can either be in an alive or dead state, and depending
on the state of neighboring cells a cell may change its state. The
neighbors of a cell are simply those immediately adjacent to the
the target cell in any direction. The rules of the game are simple
and as follows:

1. Under-population – A living cell dies if it has fewer than two
living neighbors.

2. Stable-population – A living cell remains alive if it has 2 or 3
living neighbors.

3. Over-population – A living cell dies if it has more than three
living neighbors.

4. Reproduction – A new cell is born if it is empty and has exactly
three living neighbors.

The combination of these simple rules allows for surprisingly
interesting and complex patterns to emerge from the game.

The first image in the following figure shows a popular pattern
in the game known as the Glider. This pattern replicates through
generations. Due to the rules of the game, the pattern moves across
the game board in a specific direction. The second image shows the
pattern with each cell imprinted with the number of living neighbor
cells. These numbers determine the pattern of the next generation,
displayed in the third image. The white cells die due to under-
population, the dark cells are newly born due to reproduction, and
the lightly colored cells remain from the previous generation due
to stable-population numbers. These five cells represent the new
generation in the game and are used to calculate the next pattern.

� � �

� � � �

� � �

� � �

� � � �

�

�

�

�

�

The game has been implemented many times. Graham Hutton
implemented the Game of Life in Haskell using a simple list-
based implementation in a terminal console[7, p. 94-97]. It was
from Hutton’s original implementation that our implementation
was derived.

The implementation used in this experiment still uses Hutton’s
original design, however it has been slightly modified. The new
design restricts the implementation to use a sorted-list. This created
an isomorphic structure to transform, making the task of proving
code equivalence simpler. The sorted-list is made of two-tuples of
integers. Each pair represents a location on the two-dimensional
board structure and has a type synonym, Pos. The pairs featured in
the list represent the position of living cells in each generation of

the game. Therefore, when a cell dies that position is removed from
the list, and the reverse is true when a new cell is born.

Another difference in Hutton’s Life is that the dimensions of
the game board were hard coded into the source code. The program
has been modified in a way to allow the board configuration to be
altered by user input. Through these modifications, the user can
change the board dimensions, represented as an integer pair. The
user can also dictate whether or not the edges of the board wrap
around to the opposite edge, represented as a boolean value. This
information is stored into a new type created called a Config. It
is simply a two-tuple of an integer pair and a boolean. This con-
figuration and the data structure containing the game data are con-
tained in a new structure called a LifeBoard, and it is a new data
type with a constructor and accessing functions for the board and
configuration fields. It also aided in another change to the original
program. Hutton’s Life source code was also divided. The part of
the code that calculates each generation of the game (the engine)
has been separated from the part of the code that visualizes each
generation (the display). The reason was to allow new engine and
display mechanisms to be created and connected. The class which
merges the engine and the display elements is the Life class. This
abstract interface contains functions that allow the combination of
any engine that implements the Life class functions with any dis-
play that utilizes the Life class interface. This section shows the
module Life.Types which contains the types described.

type Pos = (Int,Int)
type Size = (Int,Int)
type Config = (Size,Bool)

class Life b where
empty :: Config -> b
diff :: b -> b -> b
next :: b -> b
inv :: Pos -> b -> b
dims :: b -> Size
alive :: b -> [Pos]

scene :: Life board => Config -> [Pos] -> board
scene = foldr inv . empty

data LifeBoard c b = LifeBoard{ config :: c, board :: b }
deriving Show

The module contains the abstract definition of the Life class
mentioned as well as the LifeBoard structure. In addition, the
scene function is also defined there. It provides a standard way
to transform a [Pos] into an implementation-specific board. And
the following section shows the Life.Engine.Hutton module which
is derived from Hutton’s Life.

type Board = LifeBoard Config [Pos]

neighbs :: Config -> Pos -> Board
neighbs c@((w,h),warp) (x,y) = LifeBoard c $ sort $ if warp

then map (\(x,y) -> (x ‘mod‘ w, y ‘mod‘ h)) neighbors
else filter

(\(x,y) -> (x >= 0 && x < w) && (y >= 0 && y < h))
neighbors

where neighbors =[(x-1,y-1), (x,y-1), (x+1,y-1), (x-1,y),
(x+1,y), (x-1,y+1), (x,y+1), (x+1,y+1)]

isAlive :: Board -> Pos -> Bool
isAlive b p = elem p $ board b

isEmpty :: Board -> Pos -> Bool
isEmpty b = not . (isAlive b)

liveneighbs :: Board -> Pos -> Int

liveneighbs b =
length . filter (isAlive b) . board . (neighbs (config b))

survivors :: Board -> Board
survivors b = LifeBoard (config b) $

filter (\p -> elem (liveneighbs b p) [2,3]) $
board b

births :: Board -> Board
births b = LifeBoard (config b) $

filter (\p -> isEmpty b p && liveneighbs b p == 3) $
nub $ concatMap (board . (neighbs (config b))) $

board b

nextgen :: Board -> Board
nextgen b = LifeBoard (config b) $

sort $ board (survivors b) ++ board (births b)

instance Life Board where
next b = nextgen b
alive b = board b
empty c = LifeBoard c []
dims b = fst $ config b
diff b1 b2 = LifeBoard (config b1) $

board b1 \\ board b2
inv p b = LifeBoard (config b) $

if isAlive b p
then filter ((/=) p) $ board b
else sort $ p : board b

Although the top-level programmodule is loaded into HERMIT,
only this engine module is targeted for transformation, leaving the
original display mechanisms unchanged and still effective through
worker/wrapper methodology.

2. HERMIT Worker/Wrapper Examples
The goal of this experiment is to confirm that an entire program can
be transformed with HERMIT using the worker/wrapper method-
ology. The examples take a slighly-modified version Hutton’s orig-
inal implementation of the game, which uses lists as the data struc-
ture for representing the game board, and modify it using HERMIT.
This was done by applying the worker/wrapper concept through
HERMIT in an effort to change the underlying data structures used
in the program.

The following sections describe the examples and the meth-
ods used in HERMIT to accomplish a worker/wrapper transforma-
tion. Each experiment involved changing Hutton’s Life (the list-
based implementation) into an implementation using another pri-
mary data structure, such as a QuadTree, a Set, and an Unboxed
Vector. Along with changing the representation of the game, we
found it is also possible to change the hardware used by the pro-
gram with the inclusion of certain DSLs (like Accelerate, which
gives program access to a GPU). First, lets explore the preparation
process required to do these transformations within HERMIT.

As outlined in previous worker/wrapper example transforma-
tions using HERMIT [11], the process requires the creation of spe-
cific GHC rules and a set of transformation functions.

The module that contains this information is referred to as the
transformation-module. This module must be tailored specifically
to each conversion. A transformation-module requires one pair of
conversion functions for each function targeted. When approaching
the problem, it is best to start by creating the most basic transfor-
mations first. Transformation pairs can be stacked, using more basic
pairs in their definitions.

The transformation-module is also where a series of GHC Rules
will be written to allow HERMIT to equate sections of Core code
between old and new implementations. This is accomplished via

the use of GHC rules that are added to the conversion file using the
GHC RULES pragma and compiled into the HERMIT session.

Once a worker/wrapper split is made within HERMIT, the pro-
cess requires making transformations to segments of code in an ef-
fort to match the AST with a GHC rule that swaps equivalent code
statements.

It is most likely that a HERMIT user will not know all the
needed rules to accomplish the transformation before the process
begins. At this stage in HERMIT development, it is easiest to
take a more organic approach when performing a worker/wrapper
conversion. By that, one should create the needed transformation-
pairs and a few rules that will be known to be useful to start,
then add new rules as they are needed. Adding a new GHC rule
to a HERMIT session requires exiting HERMIT and reentering
to add any newly created rules to the environment. This was the
process used to complete these transformations. That being said
the finished product is a HERMIT script that can perform the entire
transformation. This script makes a perfect guide to lead through
the following examples.

These examples were performed with GHC 7.8 in combination
with the latest version of HERMIT. All of them target the same
program described in the previous section.

2.1 Example: List-to-Set implementation transform
The first example uses the same data representation for the board
structure. The goal of the transformation was to implement the
game engine using the Set data structure featured in the standard
library Data.Set. The transformation replaces the use of the stan-
dard Haskell list with the use of the set in the engine module. This
transformation is isomorphic because we have restricted the use
of the Set to maintain order of its elements. Therefore, relation-
ship of a sorted-list to a sorted-set is trivially equivalent, swapping
the containers used by the engine produces an equivalent program.
The representation remains the same, both containers contain pairs
of integers that correspond to living cells on the board. The con-
taining LifeBoard structure is maintained except it is morphed to
contain a set rather than a list.

2.1.1 Transform Preparation
The transformation-module should contain all the transformation
functions necessary to complete the process. To make the type def-
initions shorter and relate to the list-based engine, the module also
includes type synonyms for the Board (copied from the source) and
Board’ (the transformed type). These type definitions as well as all
the necessary transformation pairs are displayed here for reference.

type Board = LifeBoard Config [Pos]
type Board’ = LifeBoard Config (Set Pos)

{-# NOINLINE absb #-}
absb :: Set Pos -> [Pos]
absb = toAscList

{-# NOINLINE repb #-}
repb :: [Pos] -> Set Pos
repb = fromDistinctAscList

{-# NOINLINE absB #-}
absB :: Board’ -> Board
absB b = LifeBoard (config b) $ absb (board b)

{-# NOINLINE repB #-}
repB :: Board -> Board’
repB b = LifeBoard (config b) $ repb (board b)

absBx :: (Board’ -> a) -> Board -> a
absBx f = f . repB

repBx :: (Board -> a) -> Board’ -> a
repBx f = f . absB

absxB :: (a -> Board’) -> a -> Board
absxB f = absB . f

repxB :: (a -> Board) -> a -> Board’
repxB f = repB . f

absCPB :: (Config -> Pos -> Board’) -> Config -> Pos -> Board
absCPB f = absxB . f

repCPB :: (Config -> Pos -> Board) -> Config -> Pos -> Board’
repCPB f = repxB . f

absBB :: (Board’ -> Board’) -> Board -> Board
absBB = absBx . absxB

repBB :: (Board -> Board) -> Board’ -> Board’
repBB = repBx . repxB

absPBB :: (Pos -> Board’ -> Board’)-> Pos -> Board -> Board
absPBB f = absBB . f

repPBB :: (Pos -> Board -> Board) -> Pos -> Board’ -> Board’
repPBB f = repBB . f

absBBB :: (Board’ -> Board’ -> Board’) -> Board -> Board -> Board
absBBB f = absBB . f . repB

repBBB :: (Board -> Board -> Board) -> Board’ -> Board’ -> Board’
repBBB f = repBB . f . absB

The purpose of the transformation is to replace the use of lists
with the use of sets. The most basic transformation function pair,
and the first that should be created, is the pair that transforms the
data structure. In staying true to the worker/wrapper methodol-
ogy the function names begin with abs and rep. These abs-rep
pairs need to be designed to perform bidirectional transformations,
where the abs function returns the original form and the rep func-
tion returns the new form.

The base pair are named absb and repb. Both make use of
the Data.Set functions that transform a set to/from an ordered
list, the fromDistinctAscList and toAscList functions. Each
function of the pair should reverse the results of the other. The
compiler directives above these functions are directions that notify
GHC to not automatically inline these functions. GHC will do this
automatically for some code in an optimization effort. Without
these directives the absb and repb functions would not appear in
HERMIT session.

To continue, the base pair only transforms the underlying data
structure. There also needs to be a pair of functions that will
transform the containing data structure LifeBoard. Notice how
they simply replace one of the contained structures using of the
predefined absb or repb functions. This stacking trend continues
through all of the transformation-pairs.

Analyzing the source code of the Hutton’s Life helps to know
what other transformations are necessary. We start with the Life
class function dims. This function simply returns the board dimen-
sions that are originally entered by the user. The output of the dims
function is a Size, which doesn’t require any transformation be-
cause the new implementation retains this original structure. The
absBx-repBx pair is defined is polymorphic because with its simple
definition it can be used for several conversions. Since the function-
types of the alive, isAlive, isEmpty, and liveneighbs func-
tions, are similar to the dims function, this pair can also be used in
their conversion processes.

Next we turn to the function empty. This function simply cre-
ates an empty board structure. To convert this function the func-

tions, absxB and repxB would be used. This pair is polymorphic
for reasons similar to the absBx-repBx pair, it can be used in several
worker/wrapper splits.

Now consider the neighbs function. It is used to create a list of
neighboring locations depending on the board configuration. This
function will require the absCPB-repCPB pair for conversion. The
previous polymorphic functions are used in their definitions. This
aids the unfolding and code reduction process inside a HERMIT
session.

Probably the most crucial function in the Life class for our pur-
poses is the ”next” function. This function is used to calculate the
next generation of the game from the current board structure. It re-
quires the functions, absBB and repBB. Upon inspecting the source
code, one will note that this type of transformation will be neces-
sary for the engine functions nextgen, births, and survivors.
Reusing transformation pairs is useful, and since these functions
have the same type, there is no need to create a polymorphic trans-
formation function.

Now consider the inv function of the Life class. It takes a board
position and inverts the cell status on the given board. The absPBB
and repPBB functions are required for its transformation.

The last function to consider is diff. It is used to compare two
boards and get return the differences between them in a new board.
The absBBB repBBB definitions are used to convert this function.
It has the most complex definition because all of its arguments are
of type Board or Board’, and so requires the most transformation.

With the function pairs completed, we move on to the transfor-
mation process within HERMIT. But first, we can assume a few
necessary GHC Rules that will definitely be useful, like the follow-
ing.

{-# RULES "repB-absB" [~] forall b. repB (absB b) = b #-}

{-# RULES "LifeBoard-absb" [~] forall c b.
LifeBoard c (absb b) = absB (LifeBoard c b) #-}

{-# RULES "config-absB" [~] forall b.
config (absB b) = config b #-}

{-# RULES "board-absB" [~] forall b.
board (absB b) = absb (board b) #-}

{-# RULES "repB-LifeBoard" [~] forall c b.
repB (LifeBoard c b) = LifeBoard c (repb b) #-}

These rules are known to be useful because they all simply perform
a code transformation designed to move the transformation func-
tion node in the AST. For instance, the ‘repB-absB’ rule is used to
eliminate an transformation pair once they have been syntactically
juxtaposed. Since the goal is to remove unnecessary transforma-
tions, this rule is almost necessity. The other rules shown above are
useful for similar reasons, they either eliminate or move a trans-
former in the AST. Typically one won’t know all the rules needed
prior to starting a worker/wrapper conversion due to the fact that
one may not know what form the Core syntax will take during the
process. However, the following rules were discovered and are nec-
essary to complete this example.

{-# RULES "repb-null" [~] forall c.
LifeBoard c (repb []) = LifeBoard c Set.empty #-}

{-# RULES "not-elem-absb" [~] forall p b.
not (elem p (absb b)) = notMember p b #-}

{-# RULES "elem-absb" [~] forall p b.
elem p (absb b) = member p b #-}

{-# RULES "length-absb" [~] forall b.
length (absb b) = size b #-}

{-# RULES "filter-absb" [~] forall f b.
Prelude.filter f (absb b) = absb (Set.filter f b) #-}

{-# RULES "sort-++-absb" [~] forall b1 b2.
sort (absb b1 ++ absb b2) = absb (union b1 b2) #-}

{-# RULES "ncm-absb" [~] forall f b.
nub (concatMap (\p -> absb (board (f p))) (absb b)) =
absb (unions (toList (Set.map (\p -> board (f p)) b))) #-}

{-# RULES "diff-absb" [~] forall b1 b2.
absb b1 List.\\ absb b2 = absb (b1 Set.\\ b2) #-}

{-# RULES "insertion" [~] forall b p.
sort (p : absb b) = absb (insert p b) #-}

{-# RULES "deletion" [~] forall b p.
Prelude.filter ((/=) p) (absb b) = absb (delete p b) #-}

Notice that each of these rules replaces some list-based implemen-
tation with an equivalent implementation that uses the set data-
structure.

Once the transformation functions are created, a HERMIT ses-
sion can be started and the worker/wrapper conversion attempted.
If all of the rules are known prior to start then the conversion can be
completed in one session. Most likely one will have to exit a ses-
sion to create rules to continue the process. This is where HERMIT
scripts are useful. Commands in HERMIT can be saved as scripts,
which is especially useful for replaying sessions after modifying
HERMIT.

2.1.2 Transform Process
The order that the transformation occurs is important, one should
focus on the functions that have the no dependence on other target
functions first. One must also consider the transformed result when
deciding since the dependencies may change during the process.
Transforming one function before you have transformed another
function on which the first depends will only create more work,
and most likely a poor transformation result.

With these facts in mind, we begin with the Life class functions
for the Board type. Consider first, the empty function, its defini-
tion is very simple and it doesn’t depend on other functions. The
result that is desired would instead use an empty set rather than an
empty list. The desired function will also not depend on any of the
other module functions. This is a great function to start the trans-
formation. From the worker/wrapper method we know that at some
point the definition will be repB (LifeBoard c []), which after
unfolding repB will be LifeBoard c (repb []). This indicates
that the rule called ‘repb-null’ is necessary. Since we have a trans-
formation rule ready for the empty function the process can begin.

The script used to convert the empty function is shown here as
an example.

binding-of ’$cempty
fix-intro
down
split-1-beta $cempty [|absxB|] [|repxB|]
{
rhs-of ’g
repeat (any-call (unfold [’repxB, ’repB]))
bash
any-call (unfold-rule repb-null)

}

let-subst
alpha-let [’$cempty’]
{ let-bind ; nonrec-rhs ; unfold ; bash }
top
innermost let-float

The first and last few lines of each conversion script are identical,
the first few commands focus HERMIT on the proper function then
perform the worker/wrapper split. The last few commands move the
new function to the top-level of the program so that it becomes a
part of the API. Most of these commands are common HERMIT
commands that are used to manipulate the Core AST. For brevity,
these commands will not be covered in detail. The interesting com-
mand that may differ each script is the split-1-beta command.

The arguments for this command will vary with each script, here
the command is split-1-beta $cempty [|absxB|] [|repxB|].
This command performs a worker/wrapper split on the named func-
tion ($cempty) using the given transformation-pair (absxB and
repxB). This command is what performs the worker/wrapper split,
producing the wrapper, which retains the original name $cempty,
and the worker, which is always named g. The rest of the com-
mands that are unique to the script are shown between the { and }
commands. Except the rhs-of g, this command is common to all
the scripts.

The first step in all the scripts is to unfold the transformation
functions. How far they are unfolded depends on the particular
function being converted. The bash command is commonly used
to reduce code to a form more suitable for using GHC rules. The
definition of empty is not complex and does not require much
manipulation. That is why there are few commands present in this
script. Typically following the unfolding of the transformers there
are a series of Core manipulations that would put the AST in a form
that matches a predefined GHC rule. However, for this conversion
the bash command was sufficient.

The application of a GHC rule is done with the unfold-rule
command. As seen in this script, only the ‘repb-null’ rule was
needed and applied. After the application of this script the function
empty’ is available through the API. The equivalent definition in
Haskell would be empty’ c = LifeBoard c Data.Set.empty.

Focusing on the alive conversion script, the absBx-repBx pair
are used to perform the worker/wrapper split, and repBx is the
only function unfolded. The original alive function is synony-
mous with the board access function. But in our new program
board will return a (Set Pos), and alive still returns a [Pos].
So, it is necessary to leave a transform function in the new def-
inition. This is one instance where one does not wish to elimi-
nate all of the transformation functions from the definition. The
toAscList function will appear by simply unfolding the absb
function, when it is in the right position. This produces the defini-
tion alive’ b = toAscList (board b), completing this trans-
form.

The dims function, also uses the absBx-repBx pair. And similar
to the previous conversion, it only needs to unfold the repBx func-
tion. After the application of the ‘config-absB’ rule to eliminate
the transform-function. The function is in the desired form since
the dims definition should not change. After applying this rule the
conversion is complete, and ”dims’” will be accessible.

The diff function conversion requires the absBBB-repBBB
pair to perform the worker/wrapper split. And after unfolding the
repBBB function, a few rules are needed to complete the trans-
formation, which requires swapping the use of Data.List.\\ to
Data.Set.\\ via the ‘diff-absb’ rule.

The neighbs conversion makes use of the absCPB-repCPB pair
for its split. The process is similar to the process for alive, in that
it requires leaving a transformation in place. For this function, the

implementation is left alone and the structure is converted before
being returned.

The worker/wrapper split is performed on the next three func-
tions using the absBx-repBx pair. The function isEmpty is con-
sidered next. Its definition is simple but it is important that this
function be converted before isAlive because isEmpty de-
pends on it. However, when converted it will no longer have
this dependency. The resulting definition of isEmpty uses the
Data.Set.notMember function and is created with the ‘not-elem-
absb’ rule.

Once that is complete the process moves to isAlive. The
process is similar to isEmpty’s but uses the ‘elem-absb’ rule to
produce a function that uses the Data.Set.member function.

The liveneighbs function uses the ‘filter-absb’ and ‘length-
absb’ rules to complete its conversion which replaces Prelude.filter
and Prelude.lengthwith Data.Set.filter and Data.Set.size
respectively.

The functions survivors, births, nextgen, and next all re-
quire the use of the absBB-repBB pair. The survivors function
only needs to swap its filter function from the Prelude to Set
implementation. But births requires this transformation in addi-
tion to the use of the ‘ncm-absb’ rule, which changes the list-based
implementation to a set-based one.

The nextgen function requires the use of the ‘sort-++-absb’
rule, which changes concatenation into a set union. While next
is a special case an only requires changing the function to call
nextgen’ rather than nextgen.

The final function in the conversion is inv. This conversion
requires that isAlive be transformed first so that isAlive’ is
accessible. Although, inv is not dependent on isAlive, inv’
will depend on isAlive’. This function is a little more complex
to convert because it has two branches that must be accounted
during the transformation. It requires the use of both ‘insertion’
and ‘deletion’ rules to replace the code in each branch.

When all the necessary functions have been converted the HER-
MIT command continue can be given to complete compilation of
the new program.

In addition to the example above, the final paper will discuss
similar transformations from List to QuadTree, and List to Un-
boxed Vector.

2.2 Example: List-to-Accelerate implementation transform
The Accelerate language is a Haskell embedded DSL that provides
arrays and scalars, and a collection of collective operations applied
to arrays. These operations are algorithmic skeletons that target
CUDA implementations via the Accelerate code generator [2]. For
more information about Accelerate and its implementation, consult
[2, 9].

2.2.1 Transform Process
For this transformation, we again use the definition of Board from
our earlier examples, but we choose an interesting type for Board’.

type Board = LifeBoard Config [Pos]
type Board’ = LifeBoard Config (Acc (Array DIM2 Int))

Additionally, the types and implementations of absb and repb are
more involved than the previous ones we have seen.

repb :: Size -> [Pos] -> Acc (Array DIM2 Int)
repb (w,h) xs =

A.reshape (A.index2 (lift w) (lift h))
(A.scatter to def src)

where sz = List.length xs
to = A.map (\pr -> let (x,y) = unlift pr

in (x * (lift w)) + y)
(A.use $ A.fromList (Z :. sz) xs)

src = A.fill (A.index1 (lift sz)) 1
def = A.fill (A.index1 (lift $ w * h)) 0

absb :: Size -> Acc (Array DIM2 Int) -> [Pos]
absb (w,h) arr =

let prs = A.reshape (A.index1 (lift (w * h)))
$ A.generate (index2 (lift w) (lift h))

(\ix -> let Z :. i :. j = unlift ix
in lift (i :: Exp Int, j :: Exp Int))

res = A.filter (\pr -> let (i,j) =
unlift pr :: (Exp Int, Exp Int)
in (arr A.! (index2 i j)) ==* 1) prs

in toList $ run res

These choices, along with a comparison of this implementation to
the other implementations will be discussed in the final paper.

3. Related works
The HERMIT toolkit has experienced success in a wide variety
of applications. Some of those applications include applying the
worker/wrapper transformation to optimize functions like reverse
and last [3, 11]. Additionally, HERMIT has also been used to
mechanize an optimization pass for SYB [1], and to enable stream
fusion for concatMap [4].

The full paper will contain a detailed literature survey of related
works.

4. Conclusion
Earlier work in [3, 11] showed that worker/wrapper can be success-
fully mechanized in the small. We extended that work to include the
transformation of an entire program. In choosing our target appli-
cation, Game of Life, we wanted an application that was complex
enough to require several functions and potentially multiple mod-
ules, but simple enough that it could be conceptually understood
quickly.

Through the course of our investigation into applying worker/wrapper
to the Game of Life, we transformed the original List based version
into versions that used Sets, Unboxed Vectors, and Quad Trees. In
addition to changing the underlying structure, we also wanted to
leverage the GPU. By targeting the Accelerate DSL, we were able
to transform the List based version into a version that performed
all of the population calculations on the GPU. Ultimately, our ex-
periences in this exploration have shown us that application wide
worker/wrapper transformations can in fact be mechanized, and
that HERMIT is a valuable tool for doing such a mechanization.

Acknowledgments
We would like the thank Andrew Farmer for help with HERMIT.
This material is based upon work supported by the National Science
Foundation under Grant No. 1117569.

References
[1] M. D. Adams, A. Farmer, and J. P. Magalhães. Optimizing syb is

easy! In Proceedings of the ACM SIGPLAN 2014 Workshop on Partial
Evaluation and ProgramManipulation, PEPM ’14, pages 71–82, New
York, NY, USA, 2014. ACM. ISBN 978-1-4503-2619-3. . URL
http://doi.acm.org/10.1145/2543728.2543730.

[2] M. M. Chakravarty, G. Keller, S. Lee, T. L. McDonell, and V. Grover.
Accelerating haskell array codes with multicore gpus. In Proceedings
of the sixth workshop on Declarative aspects of multicore program-
ming, pages 3–14. ACM, 2011.

[3] A. Farmer, A. Gill, E. Komp, and N. Sculthorpe. The HER-
MIT in the machine: A plugin for the interactive transforma-
tion of GHC core language programs. In Proceedings of

the ACM SIGPLAN Haskell Symposium, Haskell ’12, pages 1–
12. ACM, 2012. ISBN 978-1-4503-1574-6. . URL
http://doi.acm.org/10.1145/2364506.2364508.

[4] A. Farmer, C. Höner zu Siederdissen, and A. Gill. The her-
mit in the stream: Fusing stream fusion’s concatmap. In Pro-
ceedings of the ACM SIGPLAN 2014 Workshop on Partial Evalu-
ation and Program Manipulation, PEPM ’14, pages 97–108, New
York, NY, USA, 2014. ACM. ISBN 978-1-4503-2619-3. . URL
http://doi.acm.org/10.1145/2543728.2543736.

[5] M. Gardner. Mathematical games – the fantastic combinators of john
conway’s new solitaire game ”life”. Scientific American, 223:120–
123, 1970.

[6] A. Gill and G. Hutton. The worker/wrapper transformation. Journal
of Functional Programming, 19(02):227–251, 2009.

[7] G. Hutton. Programming in Haskell. Cambridge University Press,
2007.

[8] S. P. Jones, A. Tolmach, and T. Hoare. Playing by the rules: rewriting
as a practical optimisation technique in GHC. In Haskell Workshop,
volume 1, pages 203–233, 2001.

[9] T. L. McDonell, M. M. Chakravarty, G. Keller, and B. Lippmeier. Op-
timising purely functional gpu programs. In Proceedings of the 18th
ACM SIGPLAN international conference on Functional programming,
pages 49–60. ACM, 2013.

[10] N. Sculthorpe and G. Hutton. Work it, wrap it, fix it, fold it.
Journal of Functional Programming, 24(1):113–127, 2014. URL
http://dx.doi.org/10.1017/S0956796814000045.

[11] N. Sculthorpe, A. Farmer, and A. Gill. The HERMIT in the
tree: Mechanizing program transformations in the GHC core lan-
guage. In Proceedings of the 24th Symposium on Implementa-
tion and Application of Functional Languages, volume 8241 of
Lecture Notes in Computer Science, pages 86–103, 2013. URL
http://dx.doi.org/10.1007/978-3-642-41582-1 6.

Selected Issues in
Persistent Asynchronous Adaptive Specialization

for Generic Array Programming

Clemens Grelck Heinrich Wiesinger
University of Amsterdam

Informatics Institute
Amsterdam, Netherlands

C.Grelck@uva.nl H.M.Wiesinger@student.uva.nl

Abstract
Asynchronous adaptive specialization of rank- and shape-generic
code for processing immutable (purely functional) multi-dimen-
sional arrays has proven to be an effective technique to reconcile
the desire for abstract specifications with the need to achieve rea-
sonably high performance in sequential as well as in automatically
parallelized execution. Since concrete rank and shape information
is often not available as a matter of fact until application runtime,
we likewise postpone the specialization and in turn aggressive opti-
mization of generic functions until application runtime. As a conse-
quence, we use parallel computing facilities to asynchronously and
continuously adapt a running application to the structural properties
of the data it operates on.

A key parameter for the efficiency of asynchronous adaptive
specialization is the time it takes from requesting a certain spe-
cialization until this specialization effectively becomes available
within the running application. We recently proposed a persistence
layer to effectively reduce the average waiting time for specialized
code to virtually nothing In this paper we revisit the proposed ap-
proach in greater detail. We identify a number of critical issues that
partly have not been foreseen before. Such issues stem among oth-
ers from the interplay between function specialization and function
overloading as well as the concrete organization of the specializa-
tion repository in a persistent file system. We describe the solutions
we have adopted for the various issues identified.

Categories and Subject Descriptors Software and its engineering
[Software notations and tools]: Dynamic compilers

Keywords Array processing, Single Assignment C, runtime opti-
mization, dynamic compilation, rank and shape specialization

1. Introduction
SAC (Single Assignment C) is a purely functional, data-parallel ar-
ray language [4, 6, 7] with a C-like syntax (hence the name). SAC

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IFL’14, October 1–3, 2014, Boston, MA, USA.
Copyright c© 2014 ACM ???. . . $15.00.
http://dx.doi.org/10.1145/???

features immutable, homogeneous, multi-dimensional arrays and
supports both shape- and rank-generic programming: SAC func-
tions may not only abstract from the concrete shapes of argument
and result arrays, but even from their ranks (i.e. the number of di-
mensions).

In software engineering practice, it is generally desirable to ab-
stract as much as possible from concrete shapes and ranks. This is
particularly true for the compositional array programming style ad-
vocated by SAC, where in the tradition of APL entire applications
are constructed abstraction layer by abstraction layer from basic
building blocks, which are by definition rank- and shape-generic as
well as application-agnostic.

However, generic array programming comes at a price. In com-
parison to non-generic code the runtime performance of equivalent
operations is substantially lower for shape-generic code and again
for rank-generic code [18]. There are various reasons for this obser-
vation and often their relative importance is operation-specific, but
nonetheless we can identify three categories of overhead caused
by generic code: First, generic runtime representations of arrays
need to be maintained, and generic code tends to be less efficient,
e.g. no static nesting of loops can be generated to implement a
rank-generic multidimensional array operation. Second, many of
the SAC compiler’s advanced optimizations [8, 9] are not as effec-
tive on generic code because certain properties that trigger program
transformations cannot be inferred. Third, in automatically paral-
lelized code [1, 3, 5, 13] many organizational decisions must be
postponed until runtime, and the ineffectiveness of optimizations
inflicts frequent synchronization barriers and superfluous commu-
nication.

In order to reconcile the desires for generic code and high
runtime performance, the SAC compiler aggressively specializes
rank-generic code into shape-generic code and shape-generic code
into non-generic code. However, regardless of the effort put into
compiler analysis for rank and shape specialization, this approach
is fruitless if the necessary information is not available at compile
time as a matter of principle. For example, the corresponding data
may be read from a file, or the SAC code may be called from
external (non-SAC) code, to mention only two potential scenarios.

Such scenarios and the ubiquity of multi-core processor archi-
tectures form the motivation for our asynchronous adaptive special-
ization framework [11, 12]. The idea is to postpone specialization,
if necessary, until runtime, when complete structural information
on array arguments (rank and shape) is trivially available. Asyn-
chronous with the execution of a generic function, potentially in a
data-parallel fashion on multiple cores, a specialization controller
generates an appropriately specialized binary variant of the same

function and dynamically links the additional code into the running
application program. Eligible functions are indirectly dispatched
such that if the same binary function is called again with arguments
of the same shapes as previously, the corresponding new and fast
non-generic clone is run instead of the old and slow generic one.

The effectiveness of our approach, in general, depends on mak-
ing specialized, and thus considerably more efficient, binary vari-
ants available to a running application as quickly as possible. This
would normally call for fast and light-weight just-in-time com-
piler, but firstly the SAC compiler is everything but light-weight
and rewriting it in a more light-weight style would be a gigantic
engineering effort. Secondly, making the compiler faster would in-
evitably come at the expense of reducing its aggressive optimiza-
tion capabilities, which obviously is adverse to our overarching
goal: highest possible application performance.

In [10] we proposed a total of four different refinements of the
original asynchronous adaptive specialization framework:

• bulk asynchronous adaptive specialization,
• prioritized asynchronous adaptive specialization,
• parallel asynchronous adaptive specialization and
• persistent asynchronous adaptive specialization

All four mutually orthogonal techniques aim at reducing the av-
erage effective time that it takes for a specialization to become
available to the running application once it has been identified as
needed.

In this paper we focus on the persistence refinement. In the
original asynchronous adaptive specialization framework special-
izations are accumulated during one execution of an application
and are automatically removed upon the application’s termination.
Consequently, any follow-up run of the same application program
starts again from scratch as far as specializations are concerned.
Of course, the next run may use arrays of different shape, but in
many scenarios it is quite likely that a similar set of shapes will
prevail as in previous runs. The same holds across different appli-
cation programs, in particular as any SAC application is heavily
based on the foundation of SAC’s comprehensive standard library
of rank-generic array operations.

With the proposed persistent storage of specialized functions
the overhead of actually compiling specializations at application
runtime can often be avoided entirely. For many applications the
persistent storage of specializations would in practice result in a
sort of training phase, after which most required specializations
have been compiled. Only in case the user runs an application
on a not previously encountered array shape, does the dynamic
specialization machinery become active again.

A potential scenario could be image filters. They can be applied
to any image pixel format. In practice, however, users only deal
with a fairly small number of different image formats. Still, the con-
crete formats are unknown at compile time of the image processing
application. Purchasing a new camera may introduce further image
formats to be used. This scenario would result in a short training
phase until all image filters have been specialized for the additional
image formats of the new camera.

However, persistence requires more radical changes to the dy-
namic specialization framework than thought at first glance. This
paper is about these issues and how to solve them.

The remainder of the paper is organized as follows. In Section 2
we explain SAC in general and the calculus of multi-dimensional
arrays in particular. In Section 3 we elaborate on the existing run-
time specialization framework in more detail. Through Sections 4–
7 we sketch out a number of issues that arise from the desire to
make specializations persistent and explain how to solve them. Fi-
nally, we draw conclusions in Section 8.

j

k

i

10

7 8 9

1211

1 32

4 5 6

rank: 3
shape: [2,2,3]
data: [1,2,3,4,5,6,

7,8,9,10,11,12]

 1 2 3
4 5 6
7 8 9

 rank: 2
shape: [3,3]
data: [1,2,3,4,5,6,7,8,9]

[1, 2, 3, 4, 5, 6]
rank: 1
shape: [6]
data: [1,2,3,4,5,6]

42
rank: 0
shape: []
data: [42]

Figure 1. Truly multidimensional arrays in SAC and their repre-
sentation by data vector, shape vector and rank scalar

2. SAC and its Multi-Dimensional Arrays
As the name “Single Assignment C” suggests, SAC leaves the
beaten track of functional languages with respect to syntax and
adopts a C-like notation. This choice is primarily meant to facilitate
familiarization for programmers who rather have a background in
imperative languages than in declarative languages. Core SAC is
a functional, side-effect free subset of C: we interpret assignment
sequences as nested let-expressions, branching constructs as condi-
tional expressions and loops as syntactic sugar for tail-end recursive
functions. Details on the design of SAC can be found in [4, 7].

Following the example of interpreted array languages, such as
APL[2, 14], J[15] and NIAL[16, 17], an array value in SAC is
characterized by a triple (r,~s, ~d). The rank r ∈ N defines the
number of dimensions (or axes) of the array. The shape vector ~s ∈
Nr yields the number of elements along each of the r dimensions.
The data vector ~d ∈ T

∏
~s contains the array elements (in row-

major unrolling), the so-called ravel. Here T denotes the element
type of the array. Some relevant invariants ensure the consistency of
array values. The rank equals the length of the shape vector while
the product of the elements of the shape vector equals the length of
the data vector.

...

...int int[1] int[42]

int[.]

int[]

int[.,.]

int[1,1] int[3,7]

rank: dynamic

AUD Class:

shape: static

shape: dynamic

AKD Class:

rank: static

shape: dynamic

AKS Class:

rank: static

*

Figure 2. Three-level hierarchy of array types: arrays of unknown
dimensionality (AUD), arrays of known dimensionality (AKD) and
arrays of known shape (AKS)

Fig. 1 illustrates the calculus of multi-dimensional arrays that is
the foundation of array programming in SAC. The array calculus
nicely extends to scalars, which have rank zero and the empty vec-
tor as shape vector. Consequently, every value in SAC has rank,
shape vector and data vector as structural properties. Both rank
and shape vector can be queried by built-in functions. The data

SAC

Module
Dynamic Specialisation

Controller

Specialisation

Request

Queue Registry

Function

Dispatch

and

retrieve

inspect

update

link with

Shared

Library (.so)

SAC Compiler

Code

Intermediate

load

generate

re−create

link

with

file

request

lookup

dispatch

function

Application Program

invoke

Figure 3. Software architecture of asynchronous adaptive specialization framework

vector can only be accessed element-wise through a selection fa-
cility adopting the square bracket notation familiar from other C-
like languages. Given the ability to define rank-generic functions,
whose argument array’s ranks may not be known at compile time,
indexing in SAC is done using vectors (of potentially statically
unknown length), not (syntactically) fixed sequences of scalars as
in most other languages. Characteristic for the calculus of multi-
dimensional arrays is a complete separation between data assem-
bled in an array and the structural properties (rank and shape) of
the array.

The type system of SAC is monomorphic in the element type of
an array, but polymorphic in the structure of arrays. As illustrated
in Fig. 2, each element type induces a conceptually unbounded
number of array types with varying static structural restrictions on
arrays. These array types essentially form a hierarchy with three
levels. On the lowest level we find non-generic types that define
arrays of fixed shape, e.g. int[3,7] or just int. On an intermedi-
ate level of genericity we find arrays of fixed rank, e.g. int[.,.].
And on the top of the hierarchy we find arrays of any rank, and
consequently any shape, e.g. int[*]. The hierarchy of array types
induces a subtype relationship, and SAC supports function over-
loading with respect to subtyping.

The array type system leads to three different runtime represen-
tations of arrays depending on the amount of compile time struc-
tural information, as illustrated in Fig. 2. For AKS arrays both rank
and shape are compile time constants and, thus, only the data vec-
tor is carried around at runtime. For AKD arrays the rank is a com-
pile time constant, but the shape vector is fully dynamic and, hence,
must be maintained alongside the data vector. For AUD arrays both
shape vector and rank are dynamic and lead to corresponding run-
time data structures.

3. Asynchronous Adaptive Specialization
In order to reconcile software engineering principles for generality
with user demands for performance we have developed the asyn-
chronous adaptive specialization framework illustrated in Fig. 3.
The idea is to postpone specialization if necessary until runtime,
when all structural information is eventually available no matter
what. A generic SAC function compiled for runtime specialization
leads to two functions in binary code: the original generic and pre-

sumably slow function definition and a small proxy function that is
actually called by other code instead of the generic binary code.

When executed, the proxy function files a specialization request
consisting of the name of the function and the concrete shapes of
the argument arrays before calling the generic implementation. Of
course, proxy functions also check whether the desired specializa-
tion has been built before, or whether an identical request is cur-
rently pending. In the former case, the proxy function dispatches
to the previously specialized code, in the latter case to the generic
code, but without filing another request.

Concurrent with the running application, a specialization con-
troller (thread) takes care of specialization requests. It runs the
fully-fledged SAC compiler with some hidden command line ar-
guments that describe the function to be specialized and the spe-
cialization parameters in a way sufficient for the SAC compiler to
re-instantiate the function’s partially compiled intermediate code
from the corresponding module, compile it with high optimization
level and generate a new dynamic library containing the specialized
code and a new proxy function. Eventually, the specialization con-
troller links the application with that library and replaces the proxy
function in the running application.

The effectiveness of asynchronous adaptive specialization de-
pends on how often the dynamically specialized variant of some
function is actually run instead of the original generic version. This
depends on two connected but distinguishable properties. Firstly,
the application itself must apply an eligible function repeatedly to
arguments with the same shape. Secondly, the specialized variant
must become available sufficiently quickly to have a relevant im-
pact on application performance. In other words, the application
must run considerably longer than the compiler needs to generate
binary code for specialized functions.

The first condition relates to a property of the application. Many
applications in array processing do expose the desired property, but
obviously not all. We can only deal with unsuitable applications by
dynamically analyzing an application’s properties and by stopping
the creation of further specialized functions at some point.

The second condition sets the execution time of application
code in relation to the execution time of the compiler. In array
programming, however, the former often depends on the size of
the arrays being processed, whereas the latter depends on the size
and structure of the intermediate code. Obviously, execution time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 5 10 15 20 25 30 35 40 45 50

T
im

e
 i
n
 s

e
c
o
n

d
s
 p

e
r

c
o
n

v
o

lu
ti
o
n

 s
te

p

Convolution steps

Experiment: 100x100x100 array
Runtime specialisation disabled
Runtime specialisation enabled

Figure 4. Case study: running a generic convolution kernel on a 3-dimensional argument array of shape 100× 100× 100 with and without
asynchronous adaptive specialization

and compile time of any code are unrelated with each other and,
thus, many scenarios are possible.

In order to demonstrate the possible dynamic behaviour of asyn-
chronous adaptive specialization and its impact on application per-
formance, we show the measurements from one experiment in
Fig. 4. The experiment was performed on an AMD Phenom II
X4 965 quad-core system. The machine runs at 3.4GHz clock fre-
quency and is equipped with 4GB DDR3 memory; the operating
system is Linux with kernel 2.6.38-rc1, but we expect very similar
results on different processor architectures.

The experiment is based on a rank-generic convolution kernel
with convergence test. In this code two functions are run alternately
for a sequence of steps: a convolution step that computes a new
array from an existing one and a convergence test that checks
whether the old and the new array are sufficiently similar to stop
computing. Both functions are defined in rank-generic manner and
appropriate measures are put in place to prevent the SAC compiler
from statically optimizing either function.

Fig. 4 shows the dynamic behaviour of an application that ap-
plies this convolution kernel to a 3-dimensional array of 100 ×
100×100 double precision floating point numbers. The plot shows
individual iterations on the x-axis and measured execution time for
each iteration on the y-axis. The two lines show measurements with
runtime specialization disabled and enabled, respectively.

With asynchronous adaptive specialization disabled the time
it takes to complete one cycle consisting of convolution step and
convergence check — as expected — is more or less constant.
With asynchronous adaptive specialization enabled, however, we
can observe two significant drops in per iteration execution time.
After 8 iterations running completely generic binary code a shape-
specialized version of the convolution step becomes available.
Switching from a generic to a non-generic implementation reduces
the execution time per iteration from about 1.5 seconds to roughly
0.25 seconds. After 26 iterations in addition to the specialized con-

volution step also a specialized convergence check has been com-
piled and linked into the running application. This reduces the
execution time of a single iteration further from 0.25 seconds to
0.065 seconds.

This example demonstrates the tremendous effect that runtime
specialization can have on generic array code. The main reason for
this considerable performance improvement again is the effective-
ness of optimizations that fuse consecutive array operations and,
thus, avoid the creation of intermediate arrays. A more detailed
explanation of this experiment as well as a number of further ex-
periments can be found in [12] and in [10]. All these experiments
unanimously substantiate the relevance of asynchronous adaptive
specialization in practice.

4. Issue 1: specialization vs overloading
Our first issue originates from SAC’s support for function over-
loading in conjunction with our desire to share specializations be-
tween independent applications. The combination of overloading
and specialization raises the question how to correctly dispatch
function applications between different function definitions of the
same name. In Fig. 5 we show an example of 5 overloaded defini-
tions of the function foo. The actual bodies of the function defi-
nitions are irrelevant in our context and, thus, we leave them out.
Moreover, SAC is currently restricted to be monomorphic on the
element type of arrays. Hence, we uniformly use type int through-
out the example.

From a given set of overloaded function definitions the SAC
compiler derives explicit dispatch code that dispatches on param-
eter types from left to right and for each parameter first on rank
and then on type. The type system of SAC ensures that the dis-
patch is unambiguous [19]. More precisely, if the first parameter
type of some function instance is a subtype of the first parameter
type of some other overloaded instance of the same function, then
the same relationship must hold for all further parameter types, etc.

1 int [*] foo(int [*] a, int [*] b) {...}
2 int [*] foo(int [.] a, int [.] b) {...}
3 int [*] foo(int [7] a, int [8] b) {...}
4 int [*] foo(int[.,.] a, int [42] b) {...}
5 int [*] foo(int[2,2] a, int [99] b) {...}

Figure 5. Example of shapely function overloading in SAC

Fig. 6 shows an excerpt of the wrapper code derived from the orig-
inal overloading example.

For the construction of the dispatch tree it is irrelevant whether
a some instance of a function definition is original user-supplied
code or a compiler-generated specialization. There is, however, a
significant semantic difference between the two cases that makes
our life difficult as it comes to the proposed persistence layer:
when dispatching between compiler-generated specializations of
the some original function, it is desirable to dispatch to the most
specific instance because that is arguably the most efficient one,
but it is, not necessary from a correctness point of view. In contrast,
when dispatching between different overloaded instances of some
function, the compiler must dispatch any application to the best
matching instance, no matter what.

With this in mind the obvious question is how we dispatch func-
tion applications in the case of the original asynchronous adaptive
specialization framework. In fact, we can exploit an interesting fea-
ture of the SAC module system. It allows us to import possibly
overloaded instances of some function and to again overload those
instances with further instances in the importing module. This fea-
ture allows us to incrementally add further instances to a function,
and this feature is extremely handy when it comes to implementing
runtime specialization.

On every module level that adds further instances a new dis-
patch (wrapper) function similar to that shown in Fig. 6 is gen-
erated that implements the dispatch over all visible instances of a
function regardless of where exactly these instances are actually
defined. We take advantage of this design for implementing asyn-
chronous adaptive specialization as follows: each time we gener-
ate a new specialization at application runtime we effectively con-
struct a new module that imports all existing instances of the to be
specialized function and then adds one more specialization to the
module, the one matching the current function application. With-
out further ado the SAC compiler in addition to the new executable
function instance also generates a new dispatch wrapper function
that dispatches over all previously existing instances plus the one
newly generated instance. All we need to do at runtime then is to
appropriately replace the previously existing dispatch function by
the new one.

At first glance, it seems we could continue with this scheme,
and whenever we add a further specialization to the repository of
specializations we replace the previous dispatch function by the
new one. In other words, we would carry over the concept from a
single application run to the set of all application runs in the history
of the computing system installation.

Unfortunately, this would be incorrect.
The show-stopper here is the coexistence of semantically equiv-

alent specializations and possibly semantically different overload-
ings of function instances. One dispatch function in the specializa-
tion repository is not good enough because any program (or mod-
ule) may well contribute further overloadings to whatever function
definition is available. This may shadow certain specializations in
the repository and at the same time require the generation of new
specializations that are semantically different from the ones in the
repository, despite sharing the same function name.

1 int [*] foo_wrapper(int[*] a, int [*] b)
2 {
3 if (dim(a) == 1) {
4 if (shape(a) == [7]) {
5 if (dim(b) == 1) {
6 if (shape(b) == [8]) {
7 c = foo_3(a, b);
8 }
9 else {

10 c = foo_2(a, b);
11 }
12 }
13 else {
14 c = foo_1(a, b);
15 }
16 }
17 else {
18 if (dim(b) == 1) {
19 c = foo_2(a, b);
20 }
21 else {
22 c = foo_1(a, b);
23 }
24 }
25 }
26 else if (dim(a) == 2) {
27 if (shape(a) == [2,2]) {
28 if (dim(b) == 1) {
29 if (shape(b) == [99]) {
30 c = foo_5(a, b);
31 }
32 else if (shape(b) == [42]) {
33 c = foo_4(a, b);
34 }
35 else {
36 c = foo_1(a, b);
37 }
38 }
39 else {
40 c = foo_1(a, b);
41 }
42 }
43 else {
44 if (shape(b) == [42]) {
45 c = foo_4(a, b);
46 }
47 else {
48 c = foo_1(a, b);
49 }
50 }
51 }
52 else {
53 c = foo_1(a, b);
54 }
55
56 return c;
57 }

Figure 6. SAC wrapper function with dispatch code for the five
overloaded instances of function foo shown in Fig. 5

A simple example illustrates the issue: let us assume a function
foo with, for simplicity, a single argument of type int[*]. Again
the element type, here int, is irrelevant. Let us further assume that
the original definition of foo is found in module A. Now, some
application using module A may have created specializations for
shapes [42], [42,42] and [42,42,42], i.e. for 1-dimensional, 2-
dimensional and 3-dimensional arrays of size 42 in each dimension.

In this context we write another module B that imports the orig-
inal definition of function foo, i.e. the generic one, and adds one
more instance: foo(int[.,.]). This new instance of foo may not
be semantically equivalent to the generic function imported from
module A. Of course, it would be good software engineering prac-
tice if both function instances that bear the same name are some-
what related, but firstly this cannot be enforced in any way and
secondly there may be a good reason to provide the specific defi-
nition of function foo for matrices, although it does not yield the
exact (bit-wise) same result as applying the original rank-generic
definition to a matrix.

As a consequence of the scenario sketched out above, an ap-
plication of function foo to a vector of 42 elements in module B
could be dispatched to the specialized instance in the repository,
same as in module A. However, an application of function foo to
a matrix of 42x42 elements in module B must be dispatched to the
shape-generic instance defined in module B itself. This should trig-
ger a further runtime specialization during the execution of module
B. As a consequence, two different instances of function foo both
specialized for 42x42 element matrices materialize in the special-
ization repository.

This raises questions pertaining to the organization of the spe-
cialization repository that we elaborate on in Section 5 while we
focus on the dispatch issue for now. From the above scenario it be-
comes clear that we need a two-level dispatch for the persistence
layer. Firstly, we must dispatch within the current application. This
can be done with the conventional dispatch wrapper functions as il-
lustrated in Fig. 6. If as the result of this first level dispatch a rank-
or shape-generic function instance is selected, we must interfere.

First, we focus our attention on the specialization repository.
We must figure out whether or not a suitable specialization already
exists. For this purpose module name, function name and the se-
quence of argument types with full shape information (as is al-
ways available at application runtime) suffice to identify the cor-
rect instance. If the required specialization does already exist, we
can directly link it into the running application and call it. If the
required specialization does not yet exist, we file the correspond-
ing specialization request, as described in Section 3. Then we call
the generic function instance. Asynchronously, the specialization
controller will create an executable specialization of this specific
generic function instance and likewise asynchronously will add it
to the specialization repository when finished with compilation.

5. Issue 2: file system as specialization data base
So far, we have silently assumed some form of specialization col-
lection or data base that allows us to store and retrieve function
specializations in a space and time efficient way. To be more con-
crete now, we deem the file system to be the best option to serve as
this persistent data base.

To avoid issues with write privileges in shared file systems
we refrain from sharing specilazations between multiple users.
While it would appear attractive to do so in particular for functions
from the usually centrally stored SAC standard library from a
purely technical perspective, the system administration concerns
of running SAC applications in privileged mode can hardly be
overcome in practice. Consequently, we store specialized function
instances in the user’s file system space. A subdirectory .sac2c in
the user’s home directory appears to be a suitable default location.

Each specialized function instance is stored in a separate dy-
namic library. In order to store and later retrieve specializations
we make reuse of an already existing feature within the SAC com-
piler: to disambiguate overloaded function instances (and likewise
compiler-generated specializations) in compiled code we employ a
scheme that constructs a unique function name out of module name,
function name and argument type specifications. We use that very

same scheme, but replace the original separator token (underscore-
underscore) by a slash. As a consequence, we end up with a poten-
tially very complex directory structure that effectively implements
a search tree and thus allows us to efficiently locate existing spe-
cializations as well as to identify missing specializations.

There is, however, one small pitfall that luckily can be overcome
fairly easily. A module name in SAC is not necessarily unique
in a file system. Like many other compilers the SAC compiler
allows users to specify directory paths to locate modules in the
file system. Changing the path specification from one compiler run
to the next may effect the semantics of a program. Like with any
other compiler, it is the user’s responsibility to get it right. For our
purpose this merely means that instead of the pure module name
we need to use a fully qualified path name to uniquely identify a
module definition.

6. Issue 3: semantic revision control
For users who merely run SAC application programs instead of
writing their own the techniques described in the preceding two
sections would be sufficient. Of course, forbidding users to write
their own SAC code when making use of persistent asynchronous
adaptive specialization is a fairly undesirable constraint.

So, what is the issue?
Let us go back to the scenario sketched out in Section 4. The

user’s specialization repository contains four specializations, three
specializations of the function foo(int[*]) as defined in module
A ([42], [42,42] and [42,42,42]) and one specialization of
function foo(int[.,.]) as defined in module B (again [42,42]).

A developing user could now simply come up with the idea to
change the implementation of function foo(int[.,.]) in module
B and by doing so invalidate certain existing specializations in the
repository. To be on the safe side, we must incorporate the entire
definition of a rank- or shape-generic function into the identifier of
a specialization.

For this purpose we linearize the intermediate code of a generic
function instance into textual form and compute a suitable hash
when generating a dynamic specialization of this generic instance.
This hash is then used as the lowest directory level when storing a
new specialization in the file system.

Upon retrieving a specialization from the file system repository
a running application again generates a hash of a linearization of
the intermediate code of its own generic definition and uses this
for generating the path name to look up the existence of a specific
specialization needed.

With this non-trivial solution we ensure that we never acciden-
tally run an outdated specialization.

7. Issue 4: specialization repository size control
A rather obvious issue in persistent asynchronous adaptive special-
ization is the need to control the size of a specialization repository
in some suitable way. Otherwise, the scheme as described so far
is bound to accumulate more and more specializations over time.
With today’s typical disk spaces this is not an immediate problem,
but of course it will become one over time, no matter what. Requir-
ing the user to manually discard all specializations when running
out of disk space is not an attractive solution.

Instead, we ask the user at installation time how much disk
space he would like to give SAC for the specialization repository;
of course, this could be changed later. Now, the specialization
repository becomes a sot of cache memory. As long as the size limit
has not been reached, we simply let it grow. When the size limit is
reached, we must create space before storing a new specialization.
As is common in cache organizations, we expect the least recently
used specialization across all modules, functions, etc. to be the least

likely to be used in the future. This is of course just a heuristics,
but it has worked reasonably well in hardware caches and in the
absence of accurate prediction of the future there is not much we
could do to be much smarter. Given the heuristic nature of this
approach we can — just as hardware caches do — get away with a
reasonable approximation of the least recently used property.

File system time stamps provide all the necessary information
for free. Unfortunately, searching for the file with the oldest access
time stamp in a reasonably large specialization repository can be
unpleasantly time consuming. Of course, this would happen asyn-
chronously to the running application in a specialization controller
thread, but notwithstanding it makes sense to think about a smarter
scheme.

Our plan is to store a small file containing the access time stamp
of the least recently accessed file in the whole directory. Originally,
this is the creation time of the first file in some directory (and that
of the directory). Adding a new file (or subdirectory) to a directory
does not affect this time stamp because that file would have a newer
time stamp.

However, if a specialization is loaded from the repository the
access time stamp of the corresponding file is updated. If that file
is/was the oldest in the repository (i.e. its time stamp coincides
with that stored in the special file), the time stamp in the special
file will be updated to the now oldest time stamp found in the
directory. If so, we go one directory up and check if the special
file on that level contains exactly the given time stamp. If so, we
must update the information of this directory level. Since directory
time stamps do not accurately reflect accesses to subdirectories, we
must rely on our own time stamp files. In this case we search for
the special file with the oldest time stamp among all subdirectories
and copy this file (or rather its contents) into the current directory.
We recursively repeat this procedure until we reach the top level of
the specialization repository.

If new a specialization is to be stored in an already full special-
ization repository, we can now efficiently locate the least recently
accessed specialization in the whole repository by going top-down
from the root of the directory tree always choosing the least re-
cently accessed subdirectory based on the time stamps in the spe-
cial files. After deleting the least recently used specialization, we
recursively go up the directory tree again applying the exact same
technique as described above for loading a specialization.

The advantage of the proposed scheme is that its overhead is
linear in the depth of the tree, not in the size of the tree as a
naive search. The scheme is, nonetheless, not fully accurate as
it only recognizes when a specialization is loaded into a running
application, not how often that specialization is effectively used
in that application. One can think of a refinement that updates the
access time stamps above whenever a specialized function instance
from the repository is actually executed within an application. It is,
however, not a-priori clear that the additional overhead that such a
refinement would bring with it on average pays off. We consider
this an area of future research to give more substantiated answers
to these questions.

8. Conclusions
Asynchronous adaptive specialization is a viable approach to rec-
oncile the desire for generic program specifications in (functional)
array programming with the need to achieve competitive runtime
performance under limited compile time information about the
structural properties (rank and shape) of the arrays involved. This
scenario of unavailability of shapely information at compile time is
extremely relevant. Beyond potential obfuscation of shape relation-
ships in user code data structures may be read from files or func-
tional array code could be called from less information-rich envi-
ronments in multi-language applications. Furthermore, the scenario

is bound to become reality whenever application programmer and
application user are not identical, which rather is the norm than the
exception in (professional) software engineering.

In the past we proposed several improvements and extensions
to asynchronous adaptive specialization that generally broaden its
applicability by making specialized binary code available quicker
[10]. One key proposal was to make specializations persistent.
Persistent asynchronous adaptive specialization aims at sharing
runtime overhead across several runs of the same application or
even across multiple independent applications sharing the same
core library code (e.g. from the SAC standard library).

In the ideal case required specializations of some function do
not need to be generated on demand in a time- and resource-
consuming way at all. Instead, following some learning or setup
period the vast majority of required specializations have already
been generated in preceding runs of the same application or even
other applications that share some of the code base, as for example
parts of SAC’s comprehensive standard library. If so, these pre-
generated specializations merely need to be loaded from a special-
ization repository and linked into the running application. In many
situations the proposed persistence layer may effectively reduce the
average overhead of asynchronous adaptive specialization to close
to nothing.

What appeared to be very attractive but mainly an engineering
task at first glance has proven to be fairly tricky in practice. In this
paper we identified a number of issues related to correct function
dispatch in the presence of specialization and overloading, use of
the file system as code data base, revision control in the potential
presence of semantically different function definitions and, last not
least, control of the specialization repository size. We sketched out
our solutions found for each of the four issues.

Currently, we are busy implementing the various proposed solu-
tions. In the near future we expect to run experiments that demon-
strate how we can reconcile abstract specifications with high se-
quential and parallel execution performance, seemingly without ob-
servable overhead.

References
[1] M. Diogo and C. Grelck. Heterogenous computing without heteroge-

neous programming. In K. Hammond and H. Loidl, editors, Trends
in Functional Programming, 13th Symposium, TFP 2012, St.Andrews,
UK, volume 7829 of Lecture Notes in Computer Science. Springer,
2013.

[2] A. Falkoff and K. Iverson. The Design of APL. IBM Journal of
Research and Development, 17(4):324–334, 1973.

[3] C. Grelck. Implicit Shared Memory Multiprocessor Support for the
Functional Programming Language SAC — Single Assignment C.
PhD thesis, Institute of Computer Science and Applied Mathematics,
University of Kiel, Germany, 2001. Logos Verlag, Berlin, 2001.

[4] C. Grelck. Single Assignment C (SAC): high productivity meets
high performance. In V. Zsók, Z. Horváth, and R. Plasmeijer, edi-
tors, 4th Central European Functional Programming Summer School
(CEFP’11), Budapest, Hungary, volume 7241 of Lecture Notes in
Computer Science, pages 207–278. Springer, 2012.

[5] C. Grelck. Shared memory multiprocessor support for functional array
processing in SAC. Journal of Functional Programming, 15(3):353–
401, 2005.

[6] C. Grelck and S.-B. Scholz. SAC: Off-the-Shelf Support for Data-
Parallelism on Multicores. In N. Glew and G. Blelloch, editors,
2nd Workshop on Declarative Aspects of Multicore Programming
(DAMP’07), Nice, France, pages 25–33. ACM Press, 2007.

[7] C. Grelck and S.-B. Scholz. SAC: A functional array language for
efficient multithreaded execution. International Journal of Parallel
Programming, 34(4):383–427, 2006.

[8] C. Grelck and S.-B. Scholz. Merging compositions of array skeletons
in SAC. Journal of Parallel Computing, 32(7+8):507–522, 2006.

[9] C. Grelck and S.-B. Scholz. SAC — From High-level Programming
with Arrays to Efficient Parallel Execution. Parallel Processing Let-
ters, 13(3):401–412, 2003.

[10] C. Grelck and H. Wiesinger. Next generation asynchronous adap-
tive specialization for data-parallel functional array processing in
sac. In R. Plasmeijer, editor, Implementation and Application of
Functional Languages, 25th International Symposium, IFL 2013, Ni-
jmegen, Netherlands, Revised Selected Papers. ACM, 2014.

[11] C. Grelck, T. van Deurzen, S. Herhut, and S.-B. Scholz. An Adap-
tive Compilation Framework for Generic Data-Parallel Array Pro-
gramming. In 15th Workshop on Compilers for Parallel Computing
(CPC’10). Vienna University of Technology, Vienna, Austria, 2010.

[12] C. Grelck, T. van Deurzen, S. Herhut, and S.-B. Scholz. Asynchronous
Adaptive Optimisation for Generic Data-Parallel Array Programming.
Concurrency and Computation: Practice and Experience, 24(5):499–
516, 2012.

[13] J. Guo, J. Thiyagalingam, and S.-B. Scholz. Breaking the gpu
programming barrier with the auto-parallelising SAC compiler. In
6th Workshop on Declarative Aspects of Multicore Programming
(DAMP’11), Austin, USA, pages 15–24. ACM Press, 2011.

[14] International Standards Organization. Programming Language APL,
Extended. ISO N93.03, ISO, 1993.

[15] K. Iverson. Programming in J. Iverson Software Inc., Toronto,
Canada, 1991.

[16] M. Jenkins. Q’Nial: A Portable Interpreter for the Nested Interactive
Array Language Nial. Software Practice and Experience, 19(2):111–
126, 1989.

[17] M. Jenkins and J. Glasgow. A Logical Basis for Nested Array Data
Structures. Computer Languages Journal, 14(1):35–51, 1989.

[18] D. Kreye. A Compilation Scheme for a Hierarchy of Array Types. In
T. Arts and M. Mohnen, editors, Implementation of Functional Lan-
guages, 13th International Workshop (IFL’01), Stockholm, Sweden,
Selected Papers, volume 2312 of Lecture Notes in Computer Science,
pages 18–35. Springer, 2002.

[19] S.-B. Scholz. Single Assignment C — efficient support for high-
level array operations in a functional setting. Journal of Functional
Programming, 13(6):1005–1059, 2003.

Abstract machines for higher-order term sharing

Connor Lane Smith
University of Kent
cls204@kent.ac.uk

Abstract
In this paper we take the Krivine machine, a simple abstract ma-
chine for weak β-reduction, and augment it with the σ-calculus
to unlock strong reduction. We demonstrate that this abstract ma-
chine can be used to drive higher-order rewriting, and with some
alterations can be used for ‘higher-order term sharing’: rather than
normalising a term at each rewrite step, we view the lambda calcu-
lus itself as a sophisticated sharing mechanism, and make use of it
so as to avoid needless duplication of rewrite steps.

1. Introduction
Higher-order term rewriting [9] is a powerful generalisation of
first-order term rewriting in which rewrite steps are performed
modulo the simply-typed λ-calculus. Terms are generally assumed
to be normalised after each rewrite step, but doing so loses the
sharing of subterms present in the unreduced term. For example, the
normalisation (λA00)B →β ABB unshares B from one instance
to two, meaning if we wish to rewrite B to C then we must now do
it twice instead of only once.

In this paper we explore two known mechanisms for reducing
λ-terms: the Krivine machine [6], a simple abstract machine for
weak β-reduction; and the σ-calculus [1], an explicit substitution
calculus. We then introduce a new ‘Kσ-machine’ combining these
two approaches into an abstract machine for strong β-reduction.

By further extending this machine, and tracing the provenance
of the subterms forming a rewrite redex in a term’s normal form,
we can compute a reduction that reduces only the part of the term
needed to reveal that redex. This allows us to maintain during
reduction the sharing present in λ-terms, rather than β-normalising
rewritten terms as is generally done. This sharing scheme parallels
Wadsworth’s [11] ‘first-order’ mechanism for sharing using dags.
Comparatively, we make steps towards ‘higher-order term sharing’.

2. Preliminaries
We will assume familiarity with the simply-typed λ-calculus [2],
and will avoid the complexities of named variables by using De
Bruijn indices [3] exclusively.

[Copyright notice will appear here once ’preprint’ option is removed.]

Definition 1. The set simple types is the closure of a fixed set of
type atoms under the binary function type constructor→. Notation:
→ is right-associative: α→ β → γ = α→ (β → γ).

Definition 2. We use ε for the empty list, and :: for the ‘cons’
operator — i.e. datatype List(α) = ε | α :: List(α). We write α · β
for the concatenation of α and β.

Definition 3. A basis Γ is a list of simple types, with which we
may derive a simply-typed term t ∈ T, written Γ ` t : τ .

σ :: Γ ` 0 : σ

Γ ` n : σ =⇒ ρ :: Γ ` n+1 : σ

σ :: Γ ` t : τ =⇒ Γ ` λt : σ → τ

Γ ` t1 : σ → τ ∧ Γ ` t2 : σ =⇒ Γ ` t1t2 : τ

K : τ =⇒ Γ ` K : τ

Definition 4. A context C is a λ-term containing a single unique
‘hole’ symbol �. The hole in C may be ‘filled’ by a term t, written
C[t], replacing the hole with the term twith no variable adjustment.
Contexts may be composed, such that (C1 ;C2)[t] ≡ C2[C1[t]].

Definition 5. A substitution θ is a mapping from variables to terms
of the same type, which may be lifted to a homomorphism over
terms, written θ̂(t).

Definition 6. We write β-reduction as→β , η-reduction→η , and
their union, γ-reduction, →γ = →β ∪ →η . All are closed under
contexts and substitutions. There are a number of subrelations of
β-reduction:

• Weak reduction – as β-reduction, but reductions cannot be
performed under a lambda. Full β-reduction may in contrast
be called ‘strong reduction’.

• Head reduction – β-reduction of only the leftmost subterm,
such that the head — the leftmost atom (constant or variable)
applied to a ‘spine’ of argument terms — is found.

• Weak head reduction – head reduction that is also weak, such
that the weak head of a term may alternatively be a lambda that
does not form a β-redex.

A normal form — be it weak, strong, head, or weak head — is a
term that cannot be reduced by the respective relation. Any simply-
typed term has a unique normal form for each of these subrelations.

3. Explicit reduction
3.1 K-machine
The Krivine machine [6], or ‘K-machine’, is an abstract machine
for the weak β-reduction of λ-terms. The machine 〈〈t, e〉 | stack〉
has three components: the term t being reduced; the environment e,
a stack of term–environment pairs with the topmost corresponding
to De Bruijn index 0 and the bottom to index n; and the stack, like-
wise a stack of term–environment pairs, but from which items are
taken as arguments to applied lambdas. The machine is therefore of

1 2014/9/22

the following type, where the µ operator yields the least fixpoint of
a type.

(µα.T× List(α))× List(µα.T× List(α))

The mechanics of the K-machine are defined in terms of a set
of transition rules, detailed in Figure 1. The machine simulates
weak β-reduction, in that, given two machine configurations m
and m′ and terms t and t′, if m ∼ t and m′ ∼ t′, then m →∗
m′ =⇒ t→∗β t′, for the relation ∼:

〈〈t0, e0〉 | 〈t1, e1〉 :: . . . :: 〈tn, en〉 :: ε〉 ∼ ê0(t0)ê1(t1) . . . ên(tn)

When reducing a term t, we run the machine 〈〈t, ε〉 | ε〉 until it
halts. There are two possible configurations in which the machine
halts: 〈〈n, ε〉 | stack〉 and 〈〈K, e〉 | stack〉. In either case, t0 ≡
ê0(t0)↓β , so the weak head normal form has been found. We can
continue on to full weak normal form (i.e. all redexes not under
a lambda have been reduced) by recursing over the terms and
environments in the stack of the halted machine.

The reason the K-machine cannot perform strong β-reduction is
there is no way to represent in its stack the offset in De Bruijn in-
dices that would be required of the environment if the machine were
to move under a lambda. For this we need a more sophisticated data
structure, and for that we look towards explicit substitution.

3.2 λσ-calculus
The λσ-calculus [1] is a ‘substitution calculus’ that renders the
higher-order λ-calculus into a first-order term rewriting system,
thus formalising the mechanisms of substitution. σ-substitutions
may be thought of as a data structure for representing arbitrary λ-
calculus substitutions on De Bruijn indices. σ-substitutions have
the following constructors:

id = {n 7→ n} Identity
↑ = {n 7→ n+1} Shift

t · σ = {0 7→ t, n+1 7→ σ(n)} Cons
ρ ;σ = {n 7→ ρ(n)[σ]} Compose

Note that I use the notation ρ ;σ where Abadi, et al. have used
ρ ◦ σ, so as to avoid any confusion between left-to-right and right-
to-left composition. I also use the De Bruijn indices over the set
N = {0, 1, 2, . . .} rather than N+ = {1, 2, 3, . . .}. Neither of these
notational changes have any effect on the calculus itself.

Definition 7. A σ-substitution σ is applied to a λ-term t, written
t[σ], like so:

(t1t2)[σ] = t1[σ]t2[σ]

(λt)[σ] = λ(t[0 · (σ ; ↑)])
n[id] = n

n[↑] = n+1

0[t · σ] = t

n+1[t · σ] = n[σ]

n[ρ ;σ] = n[ρ][σ]

K[σ] = K

β-reduction is defined as the relation (λs)t →β s[t · id] closed
under contexts and substitution.

Definition 8. We extend simply-typed λ-terms to the λσ-calculus
by introducing a typing for σ-substitutions. We write Γ ` σ . Γ′ to
say that in the environment Γ the substitution σ has the environment

Γ′, by the following rules:

Γ ` id . Γ

τ :: Γ ` ↑ . Γ

Γ ` t : τ ∧ Γ ` σ . Γ′ =⇒ Γ ` t · σ . τ :: Γ′

Γ ` ρ . Γ′ ∧ Γ′ ` σ . Γ′′ =⇒ Γ ` ρ ;σ . Γ′′

We can then use this to derive simple types for σ-closures.

Γ ` σ . Γ′ ∧ Γ′ ` t : τ =⇒ Γ ` t[σ] : τ

3.3 Kσ-machine
We will now introduce the Kσ-machine, an extension of the K-
machine in which the environment stack has been generalised to a
σ-substitution. This unlocks reduction under lambda, as necessary
for strong β-reduction. The Kσ-machine is similar to the machine
described in [1], but the terms themselves are not modified in any
way, much like the original Krivine machine. With this approach
the structures of terms and substitutions are kept entirely separate,
which means that the type of the machine’s environment and stack
is independent from that of the term’s closures, if any. This will
prove important in §4.2, where the machine’s thunks’ closures are
labelled, but the terms’ are not.

In order to keep the machine definition simple, we assume that
σ-substitutions are always of the pattern (σ1 ; (σ2 ; . . . ; (σn ; id))).
The initial substitution (id) satisfies this pattern, and the rules of
the machine maintain it. Additionally, we parametrise the substi-
tution type, Subst(α), so that instead of ‘cons’ being of the type
T→ Subst→ Subst, it is of the type α→ Subst(α)→ Subst(α).
These substitutions then form maps of the type N→ α+ N. In the
case of the Kσ-machine, they are of the type µα. Subst(T × α).
We call these term–substitution pairs thunks.

These σ-substitutions alone do not quite give us full strong
reduction, however. Analogous to the K-machine halting at weak
head normal form, we would expect the Kσ-machine to halt at
(strong) head normal form λ . . . λt0(t1[σ1]) . . . (tn[σn]), where t0
is a variable or constant. But if we are to pass under a lambda,
we must discard it from the term, and we cannot know how many
lambdas are in the head normal form. The solution used in [1] is
to suspend the machine at this point, and to handle the ‘Lambda’
case external to the machine definition. We take a different tack: as
well as generalising environments to substitutions, we generalise
the stack to a context. This deviation will prove useful in §4.3,
where it drastically simplifies the operation of the machine.

Definition 9. A zipper [5] is a term representation of a context, or
a suspended traversal through a term. A zipper for the λ-calculus is
a first-order term with the following signature:

@α
l : Context(α)× α→ Context(α)

@α
r : α× Context(α)→ Context(α)

Λα : Context(α)→ Context(α)

>α : Context(α)

We omit the superscript type parameter where it may be inferred.
Each symbol has a meaning as a context, and may be thought of as
a traversal through a term.

• @l(C, t) represents the context (�t ;C).
• @r(t, C) represents the context (t� ;C).
• Λ(C) represents the context (λ� ;C).
• > represents the trivial context �.

Example 1. A context (λ�)K is represented by the zipper term
Λ(@l(>,K)), and (λ0)� the zipper term @r(λ0,>).

Where the K-machine has 〈t, e〉 :: stack, the Kσ-machine has
�(t[σ]) ;C, i.e. @l(C, t[σ]). Yet we can also add lambdas through

2 2014/9/22

Figure 1. K-machine

〈〈t1t2, e〉 | stack〉 → 〈〈t1, e〉 | 〈t2, e〉 :: stack〉 Apply

〈〈λt1, e1〉 | 〈t2, e2〉 :: stack〉 → 〈〈t1, 〈t2, e2〉 :: e1〉 | stack〉 Beta

〈〈0, 〈t, e2〉 :: e1〉 | stack〉 → 〈〈t, e2〉 | stack〉 Head

〈〈n+1, 〈t, e2〉 :: e1〉 | stack〉 → 〈〈n, e1〉 | stack〉 Tail

Figure 2. Kσ-machine

〈(t1t2)[σ] | C〉 → 〈t1[σ] | �(t2[σ]) ;C〉 Left

〈(λt)[σ] | �(u[ρ]) ;C〉 → 〈t[(u[ρ] · σ) ; id] | C〉 Beta

〈(λt)[σ] | C〉 → 〈t[(0[id] · (σ ; ↑)) ; id] | λ� ;C〉 Lambda

〈n[(π ; ρ) ;σ] | C〉 → 〈n[π ; (ρ ;σ)] | C〉 Associate

〈0[(u[π] · ρ) ;σ] | C〉 → 〈u[π ;σ] | C〉 Head

〈n+1[(u[π] · ρ) ;σ] | C〉 → 〈n[ρ ;σ] | C〉 Tail

〈n[↑ ;σ] | C〉 → 〈n+1[σ] | C〉 Shift

〈n[id ;σ] | C〉 → 〈n[σ] | C〉 Id

〈(t1t2)[σ] | C〉 → 〈t2[σ] | (t1[σ])� ;C〉 Right

〈(t[ρ])[σ] | C〉 → 〈t[ρ ;σ] | C〉 Closure

which we have passed with λ� ;C, i.e. Λ(C). The Kσ-machine is
therefore of the type,

(µα.T× Subst(α))× Context(µα.T× Subst(α))

The Kσ-machine is defined in Figure 2. The machine definition
has overlapping rules with which it is capable of any standard
reduction [2], but during normal operation (β-normalisation) we
assume that the ‘Beta’ rule is favoured over ‘Lambda’, and that
the ‘Left’ rule is used instead of the optional ‘Right’. There is also
a ‘Closure’ rule for composing two substitutions into one; this is
only necessary if the term structure itself may contain closures of
the λσ-calculus. Note that the machine’s ‘thunks’ are separate from
the term structure itself.

When reducing a term t, we run the machine 〈t[id] | �〉 until it
halts. Similar to the K-machine, the Kσ-machine simulates strong
β-reduction;

〈t[σ] | C〉 ∼ C[t[σ]]

4. Higher-order term sharing
Here we use Nipkow’s Higher-order Rewrite Systems (HRSs) [9],
or strictly speaking higher-order pattern rewrite systems, to which
they are most commonly restricted.

Definition 10. A higher-order pattern [8] is a β-normal term with
a constant at its head, and in which any free variable f may only in
the form ft1 . . . tk where each ti is η-equivalent to a distinct bound
variable.

Definition 11. A Higher-order Rewrite SystemH is a set of rewrite
rules 〈l, r〉 where l is a pattern and r a term of the same atomic
type, and FV(l) ⊇ FV(r). Each rule R induces a rewrite relation
t →R t′ where θ̂(l) ↔∗γ t and t′ ↔∗γ θ̂(r). H then induces the
union→H =

⋃
R∈H→R.

Although HRSs rewrite modulo the simply-typed λ-calculus,
it is generally assumed that the term is β-normalised after each

rewrite step. But if it is not, then the β-reduction potential of the
term acts as a kind of term sharing mechanism. For instance, a first-
order β-redex (λt1)t2 ‘shares’ the term t2 amongst all instances of
the variable 0 in t1; a rewrite step may take place in t2 and it will in
effect have occurred in any number of positions in t1 in the term’s
β-normal form.

Example 2. Given a rewrite system {〈B,C〉}, a term (λA00)B
can be written in one step to (λA00)C, the β-normal form of which
is ACC. But if we β-normalise the term first to ABB, it takes two
steps, via eitherABC orACB, to reachACC. This demonstrates
that B is being shared by the β-redex in the initial term.

The sharing arrangement in Example 2 can also be achieved
by representing a term as a dag, such that after the β-reduction of
a term (λt1)t2 all residual instances of t2 in t1 are references to
the same term, which can then be rewritten. This form of sharing
was formalised by Wadsworth [11]. However, the sharing offered
by the simply-typed λ-calculus as a whole, higher-order β-redexes
included, is in general more powerful than Wadsworth’s dags. With
dags, only full terms may be shared; if two terms are almost iden-
tical, but one has one term where the other has another, then they
cannot be shared despite their similarities.

Example 3. Given a term (λC(0A)(0B))(λt), reducing the root
β-redex would yield C((λt)A)((λt)B); with dag sharing the two
instances of λt would be shared. But further reduction to Ct1t2
would require t1 and t2 to become unshared, as the former contains
A where the latter does B. That the simply-typed λ-calculus can
share t1 and t2, in the single instance of t, demonstrates that it is
in general more powerful than dag sharing.

The question, then, is how to perform higher-order rewriting
without unsharing unnecessarily. This is related to Lévy’s optimal
reduction [7], but is not the same: we are using the λ(σ)-calculus
as the sharing mechanism, not as the term rewriting system being
shared. The notion that rewriting between non-normalised terms

3 2014/9/22

in a higher-order rewriting system can be seen as a kind of term
sharing is mentioned in [10].

4.1 β-traversals
Since β-reduction introduces no term structure (its right-hand side
as an HRS comprising only variables and applications), given a
reduction t →∗β t′, every atom (variable or constant) present in
t′ will have originated somewhere in t, and through the process
of reduction a copy will have been placed in its new position in t′.
During this process, its arguments and the value to which itself is an
argument may both have changed in any number of ways. If we are
to understand how the atom arrived at its position in t′, we would
like to keep a track of the context of reductions and substitutions
by which it got there.

Definition 12. A β-traversal may be thought of as a path through
the β-reduction of a term. A β-traversal is a first-order term with
the following signature:

@l : A→ A > : A

@r : A→ A B : A→ A

Λ : A→ A Σ : A×A→ A

β-traversals are akin to the zipper, but the @l and @r symbols
have as a subterm only a continuation of the context and not an
extra α value as with @α

l and @α
r . Furthermore, substitutions (Σ)

may cause there to be more than one top (>). In addition to the
symbols in the signature of the zipper,

• B indicates a β-reduction having occurred in its subterm, which
is itself somewhat ‘inside-out’, the lambda occurring outside
the application with which it formed a β-redex.

• Σ indicates a substitution having occurred as a result of some
β-reduction. It has two subterms, the first the traversal to the
variable, the second to the substitute.

Example 4. The β-traversal to the head of the reduct of a reduc-
tion (λ0)K →∗β K is Σ(B(Λ(@l(>))),@r(>)). The β-traversal
Λ(@l(>)) represents the traversal down to the body of the lambda
on the left-hand side of the application at the top, i.e. (λ�)K, al-
though unlike Example 1 the right-hand side of that application is
not made explicit: (λ�) .

The B symbol then shows that there has been a β-reduction be-
tween the application and the lambda, similar to a proof term, e.g.
β((λ�)). Finally, Σ(α, β) substitutes for the variable at traversal
α the value at β, in this case effectively β((λ�)K) ←Σ (λ0)�.
The complete traversal term thus describes the position of the head
‘through’ the reduction.

Definition 13. A β-traversal over t →∗β t′ may be converted into
a path, a list of symbols identifying a subterm. Two paths of a
traversal are particularly distinct: the dynamic path, the destination
of the traversal relative to t′; and the static path, that relative to t.
The dynamic path for a traversal αmay be obtained by path1(α, ε),
the static path path2(α, ε):

pathi(>, p) = p

pathi(@l(α), p) = pathi(α,@l :: p)

pathi(@r(α), p) = pathi(α,@r :: p)

pathi(Λ(α), p) = pathi(α,Λ :: p)

pathi(B(α), p) = pathi(α, p)

path1(Σ(α, β), p) = path1(α, p)

path2(Σ(α, β), p) = path2(β, p)

t|p represents the subterm of the term t reached via path p.

t|ε = t

(t1t2)|@l::p = t1|p
(t1t2)|@r ::p = t2|p

(λt)|Λ::p = t|p
We can also refer to a subterm reached modulo β-reduction,

t|p/β , which is the same as t|p except that β-redexes along the path
are reduced. This means that t →∗β t↓β [u]p ⇐⇒ t →∗β t[u]p/β .
Also note that t|p·q ≡ t|p|q .

In order for a pattern to match in a reduct of twe require that the
reductions necessary to assemble its (strict) subterms in the right
positions have all been performed. However, not all reductions that
can be done need be done, and if we identify the horizon of the
match — the outermost point at which a substitution contributes
to the atoms comprising the match — then we can ignore all
reductions beyond that point.

Definition 14. Two paths p and q are compatible if there exists a
third path r such that both p and q are prefixes of r. The horizon
of a β-traversal α is the supremum of the lengths of the paths
compatible with all elements of the set reach(α):

reach(>) = {path1(>, ε)}
reach(@l(α)) = {path1(@l(α), ε)} ∪ reach(α)

reach(@r(α)) = {path1(@r(α), ε)}
reach(Λ(α)) = {path1(Λ(α), ε)} ∪ reach(α)

reach(B(α)) = reach(α)

reach(Σ(α, β)) = reach(α) ∪ reach(β)

If all paths in the set are compatible with one another then the set
and the length will both be infinite. Thus the horizon is a member
of the set of “tropical natural numbers” N∞ = N ∪ {∞}.

The horizon for the match t[θ̂(u)]p/β of a pattern u is then
the minimal horizon of all β-traversals corresponding to non-free-
variable atoms in u, treating the head of the match as having the
horizon∞ (since it does not need to be in any particular position
for the pattern to match).

Theorem 1. If the β-traversal α over t →∗β t↓β [θ̂(u)]p·q has the
horizon |p|, and p̄ is the static path path2(α), then,

t→∗β t[θ̂(u)](p·q)/β =⇒ t→∗β t[θ̂′(u)]p̄·(q/β)

With this in mind, given a rewrite ruleR = 〈l, r〉, we see that,

t[θ̂(l)](p·q)/β →R t[θ̂(r)](p·q)/β

=⇒ t[θ̂′(l)]p̄·(q/β) →R t[θ̂′(r)]p̄·(q/β)

What is needed is a process by which to calculate the values of
p̄ and q for a given β-traversal, requiring an alteration to the Kσ-
machine. We then need to be able to, given these values, reveal the
match so that it may be rewritten; this requires one final alteration
to the machine.

4.2 Kσ`
⇑-machine

A variant of the Kσ-machine is the Kσ`⇑-machine, in which each
thunk is labelled with (an algebraic interpretation of) its β-traversal,
which is computed as the machine runs. As it stands, introducing
labels into the Kσ-machine reveals a potential problem in the σ-
calculus: when a substitution passes under a lambda, its variable
is not left untouched, but is rather replaced with a new variable
constructed from whole cloth and given the appropriate De Bruijn
index. Variables in the λσ-calculus are nothing but their index, so
no troubles arise, but if this is not the case — such as in our new

4 2014/9/22

Figure 3. Kσ`⇑-machine

〈(t1t2)[σ]α | C〉 → 〈t1[σ]@l(α) | �(t2[σ]@r(α)) ;C〉 Left

〈(λt)[σ]α | �(u[ρ]β) ;C〉 → 〈t[(u[ρ]β · σ) ; id]B(Λ(α)) | C〉 Beta

〈(λt)[σ]α | C〉 → 〈t[⇑(σ) ; id]Λ(α) | λ� ;C〉 Lambda

〈n[(π ; ρ) ;σ]α | C〉 → 〈n[π ; (ρ ;σ)]α | C〉 Associate

〈0[(u[π]β · ρ) ;σ]α | C〉 → 〈u[π ;σ]Σ(α,β) | C〉 Head

〈n+1[(u[π]β · ρ) ;σ]α | C〉 → 〈n[ρ ;σ]α | C〉 Tail

〈0[⇑(ρ) ;σ]α | C〉 → 〈0[σ]α | C〉 Naught

〈n+1[⇑(ρ) ;σ]α | C〉 → 〈n[(ρ ; ↑) ;σ]α | C〉 Lift

〈n[↑ ;σ]α | C〉 → 〈n+1[σ]α | C〉 Shift

〈n[id ;σ]α | C〉 → 〈n[σ]α | C〉 Id

machine, where a closure has a label — then a variable with one
label is replaced with one with another label, which is unsound.
In order to fix this, we will introduce the lift operator from the
λσ⇑-calculus of Hardin, et al. [4]. The σ⇑-substitution ⇑(σ) is
equivalent to the σ-substitution 0 · (σ ; ↑), except that it allows us
to genuinely not substitute the variable, and so its label is also left
unchanged.

The Kσ`⇑-machine is defined in Figure 3. If the term structure
may contain σ⇑-closures, those closures’ substitutions are unla-
belled and have to be mapped into the labelled term space; they
cannot just be composed with a labelled substitution. This process
is fairly straightforward, mirroring the standard traversal over the
term structure, but it is tedious so we shall not discuss it here.

Definition 15. A cord is a structure of type P × List(P) × N∞.
It acts as a map from steps along the path p · q of a β-traversal, to
their static path counterparts, together with the traversal’s horizon.
The cord may be split into a pair of paths corresponding to p̄ and q.

split(〈q, ps,∞〉) = 〈ε, q〉
split(〈q, p̄ :: ps, 0〉) = 〈p̄, ε〉

split(〈F :: q, :: ps, k+1〉) = 〈p̄, F :: q′〉
where 〈p̄, q′〉 = split(〈q, ps, k〉)

By running the Kσ`⇑-machine with the algebraic interpretation
of β-traversals described in Figure 4, when the machine halts we
are left with the cord belonging to an atom of the reduct. When
recursing over thunks in the context, we must re-initialise each cord
label 〈q, ps, k〉 to 〈q, ps,∞〉, as the horizon of an atom is always
relative to the head of the spine to which it belongs.

If in the reduct we find a match for a pattern l (the method for
which is outside the scope of this paper, though any higher-order
matching algorithm should do), we collect together the cords of all
atoms corresponding to non-free-variables in the matching pattern.
We can then calculate the cord for the whole match, 〈q, ps, k〉
where q and ps are from the cord for head of the match and k is
the horizon of the match, calculated as described in Definition 14.
By splitting this cord we get the paths p̄ and q for Theorem 1.

At this point we will not yet have modified the term structure
in any way, but rather ‘peeked’ into the term’s β-normal form in
order to find a term matching a pattern to reduce. What we need to
do now is to take the paths corresponding to that match and with
them compute t→∗β t[θ̂′(l)]p̄·(q/β).

4.3 Kσ]
⇑-machine

The final Kσ]⇑-machine is a simple extension of the Kσ-machine
(albeit with the lift operator to bring it in line with the calculus of
the Kσ`⇑-machine), taking a ‘track’ as an extra component. This
track is a path telling the machine the position of the subterm we
wish to evaluate to. The Kσ]⇑-machine is described in Figure 5. As
an example, we might initialise the machine with the configuration
〈t|p̄[id] | �〉q . Running this machine until it halts will result in a
configuration 〈t′[σ] | C〉ε, with the components t′[σ] ≡ t|p̄·(q/β)

and C ≡ t|p̄[�]q/β .
If we intend to perform a rewrite step we may now replace the

matching θ̂′(l) with its contractum θ̂′(r) at this location, as is con-
ventionally done at β-normal form. Assembling these components
into the term t[C[θ̂′(r)]]p̄ then completes the full rewrite step.

5. Conclusion
We have introduced an abstract machine, the Kσ-machine, for eval-
uating terms of the λ-calculus. Building on this, we have introduced
a pair of variants, Kσ`⇑ and Kσ]⇑, which together enable higher-
order term sharing by ‘peeking’ into a term’s normal form to find
a subterm matching a pattern, and then reducing enough of the
term to reveal the match for rewriting without fully normalising the
term. In this way the term sharing described by the simply-typed
λ-calculus is made use of, instead of being lost by normalisation,
or otherwise restricted to sharing with dags, which are equivalent
to first-order β-redexes alone.

The value of the machinery being used here is that, as it in no
way modifies the term structure itself, it does not reduce the term
as it travels, but instead navigates through the unmodified term
by building up a substitution environment. This parallels common
approaches to sharing first-order terms with dags, in which a redex
is found ‘modulo sharing’ and then the necessary components are
unshared to make the rewrite possible. However, the simply-typed
λ-calculus provides more sophisticated sharing than dags, and we
make steps towards its treatment as a mechanism for ‘higher-order
term sharing’.

The way we make use of the sharing of the λ-calculus here is,
however, relatively primitive. Although it is necessary to determine
the horizon of a match, as the Kσ`⇑-machine does, in order to
avoid rewriting in one location when it could be done in multiple,
sharing information is still lost when subsequent β-reductions are
performed by the Kσ]⇑-machine. This is not about optimality à la
Lévy [7], but about managing higher-order sharing in the same

5 2014/9/22

Figure 4. An algebraic interpretation of a β-traversal

> = 〈ε, ε :: ε,∞〉 Top

B(〈α, ps, k〉) = 〈α, ps, k〉 Beta

Σ(〈α, p :: ps, k〉, 〈@r :: β, q :: qs, k′〉) = 〈α, q :: ps,min(k, |qs|)〉 Substitute

@l(〈α, p :: ps, k〉) = 〈@l :: α, (@l :: p) :: p :: ps, k〉 Left

@r(〈α, p :: ps, k〉) = 〈@r :: α, (@r :: p) :: p :: ps, k〉 Right

Λ(〈α, p :: ps, k〉) = 〈Λ :: α, (Λ :: p) :: p :: ps, k〉 Lambda

Figure 5. Kσ]⇑-machine

〈(t1t2)[σ] | C〉@l::α → 〈t1[σ] | �(t2[σ]) ;C〉α Left

〈(t1t2)[σ] | C〉@r ::α → 〈t2[σ] | (t1[σ])� ;C〉α Right

〈(λt)[σ] | �(u[ρ]) ;C〉Λ::α → 〈t[(u[ρ] · σ) ; id] | C〉α Beta

〈(λt)[σ] | C〉Λ::α → 〈t[⇑(σ) ; id] | λ� ;C〉α Lambda

〈n[(π ; ρ) ;σ] | C〉α → 〈n[π ; (ρ ;σ)] | C〉α Associate

〈0[(u[π] · ρ) ;σ] | C〉α → 〈u[π ;σ] | C〉α Head

〈n+1[(u[π] · ρ) ;σ] | C〉α → 〈n[ρ ;σ] | C〉α Tail

〈0[⇑(ρ) ;σ] | C〉α → 〈0[σ] | C〉α Naught

〈n+1[⇑(ρ) ;σ] | C〉α → 〈n[(ρ ; ↑) ;σ] | C〉α Lift

〈n[↑ ;σ] | C〉α → 〈n+1[σ] | C〉α Shift

〈n[id ;σ] | C〉α → 〈n[σ] | C〉α Id

fashion as Wadsworth [11] does first-order sharing. By comparing
the behaviour of Wadsworth’s dags, and first-order β-redexes in our
sharing scheme, we can see that there is still work to be done on this
front. This is the subject of ongoing research.

References
[1] Martı́n Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques

Lévy. Explicit substitutions. Journal of Functional Programming,
1(04):375–416, 1991.

[2] Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics,
volume 103 of Studies in Logic and the Foundations of Mathematics.
North Holland, 1984.

[3] Nicolaas de Bruijn. Lambda calculus notation with nameless dum-
mies: a tool for automatic formula manipulation, with application
to the Church–Rosser theorem. In Indagationes Mathematicae, vol-
ume 75, pages 381–392, 1972.

[4] Thérèse Hardin and Jean-Jacques Lévy. A confluent calculus of
substitutions. In France–Japan Artificial Intelligence and Computer
Science Symposium, volume 106, 1989.

[5] Gérard Huet. Functional pearl: The zipper. Journal of Functional
Programming, 7(05):549–554, 1997.

[6] Jean-Louis Krivine. A call-by-name lambda-calculus machine.
Higher-Order and Symbolic Computation, 20(3):199–207, 2007.

[7] Jean-Jacques Lévy. Optimal reductions in the lambda-calculus. To HB
Curry: Essays on Combinatory Logic, Lambda Calculus and Formal-
ism, pages 159–191, 1980.

[8] Dale Miller. A logic programming language with lambda-abstraction,
function variables, and simple unification. Journal of Logic and
Computation, 1(4):497–536, 1991.

[9] Tobias Nipkow. Higher-order critical pairs. In Proceedings of the 6th
Annual IEEE Symposium of Logic in Computer Science, 1991.

[10] Vincent van Oostrom. Confluence for abstract and higher-order
rewriting. PhD thesis, Vrije Universiteit, 1994.

[11] Christopher Wadsworth. Semantics and pragmatics of the lambda
calculus. PhD thesis, University of Oxford, 1971.

6 2014/9/22

draft

Church Encoding of Data Types
Considered Harmful for Implementations

– Functional Pearl –

Pieter Koopman Rinus Plasmeijer
Institute for Computing and Information Sciences
Radboud University Nijmegen, The Netherlands

pieter@cs.ru.nl rinus@cs.ru.nl

Jan Martin Jansen
Netherlands Defence Academy (NLDA)

The Netherlands
jm.jansen.04@nlda.nl

Abstract
From the λ-calculus it is known how to represent (recursive) data
structures by ordinary λ-terms. Based on this idea one can repre-
sent algebraic data types in a functional programming language by
higher-order functions. Using this encoding we only have to im-
plement functions to achieve an implementation of the functional
language with data structures. In this paper we compare the fa-
mous Church encoding of data types with the less familiar Scott
and Parigot encoding.

We show that one can use the encoding of data types by func-
tions in a Hindley-Milner typed language by adding a single con-
structor for each data type. In an untyped context, like an efficient
implementation, this constructor can be omitted. By collecting the
basic operations of a data type in a type constructor class and pro-
viding instances for the various encodings, these encodings can co-
exist in a single program. This shows the differences and similari-
ties of the encodings clearly. By changing the instance of this class
we can execute the same algorithm in a different encoding.

We show that in the Church encoding selectors of constructors
yielding the recursive type, like the tail of a list, have an undesir-
able strictness in the spine of the data structure. The Scott encoding
does not hamper lazy evaluation in any way. The evaluation of the
recursive spine by the Church encoding makes the complexity of
these destructorsO(n). The same destructors in the Scott encoding
requires only constant time. Moreover, the Church encoding has
serious problems with graph reduction. The Parigot encoding com-
bines the best of both worlds, but in practice this does not offer an
advantage.

Categories and Subject Descriptors D [1]: 1; D [3]: 3Data types
and structures

Keywords Implementation, Data Types, Church Numbers, Scott
Encoding, Parigot Encoding

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction
In the λ-calculus it is well-known how to encode data types by λ-
terms. The most famous way to represent data types by functions
in the λ-calculus is based on the encoding of Peano numbers by
Church numerals [2, 3]. In this paper we review the Church encod-
ing of data types and show that it causes serve problems complexity
problems and spoils laziness. These problems can be prevented by
using the far less known Scott encoding of data types.

Based on this approach we can transform the algebraic data
types from functional programming language like Clean [30] and
Haskell [17] to functions. These algebraic data types are first in-
troduced in the language HOPE [10]. The algebraic data types are
equivalent to the polynomial data types used in type theory. Repre-
senting all data types by plain functions simplifies the implementa-
tion of the programming language. The implementation only has to
cope with plain higher order functions, instead of these functions
and data types. Most abstract machines [22] used to implement
programming languages contain special instructions to handle data
types, e.g., the SECD machine [24], the G-machine [21, 29] and
the ABC-machine [23]. When we represent data types by functions
the transformed programs only contain functions. Since the imple-
mentation of the transformed programs does not have to cope with
algebraic data types, they are easier to implement.

Barendregt [3] explains in chapter 6 how the Church encoding
was transformed to the typed λ-calculus in papers of Böhm and
various coauthors [5–9]. The Church encoding adapted to the typed
λ-calculus is also known as the Böhm-Berarducci encoding. Baren-
dregt introduces an alternative encoding called the standard repre-
sentation in [2]. This is a two step approach to represent λ-terms.
First, the λ-terms are represented as Gödel numbers. Next, these
Gödel numbers are represented as Church Numerals.

The oldest description of an alternative encoding is in a set of
unpublished notes of Dana Scott, see [12] page 504. This encoding
is reinvented many times in history. For instance, the implementa-
tion of the language Ponder is based on this idea [13]. Also the
language TINY from Steensgaard-Madsen uses the Scott encoding
[32]. The representation of data types by Mogensen is an extension
of the Scott encoding that enables reflection [3, 25]. For the im-
plementation of the simple programming language SAPL we rein-
vented this encoding [18, 19]. SAPL is used to execute Clean code
of an iTask program in the browser [31]. Naylor and Runciman
used the ideas from SAPL in the implementation of the Reduceron
[26]. Despite these publications the Scott encoding is still much
less famous than the Church encoding. Moreover, we do not know
a paper in which these encodings are thoroughly compared. Parigot
proposed an encoding for data types that is a combination of the
Church and Scott encoding [27, 28].

Church Encoding of Data Types Considered Harmful for Implementations 1 2014/9/23

Using one additional constructor for each type and encoding,
the encodings of the data types become valid types in the Hindley-
Milner type system. This enables experiments with the encodings
in typed functional languages like Clean and Haskell.

In this paper we use a type constructor class to capture all basic
operations on algebraic data types, constructors as well as match-
ing and selector functions. All manipulations of the data type in
the source language are considered to be expressed in terms of the
functions in this type class. By switching the instance of the type
class, we obtain another encoding of the data type. We add a sin-
gle constructor to the implementation of an algebraic data type by
functions. This constructor is necessary to make the encoding ty-
pable in the Hindley-Milner type system. This is necessary in order
to experiment with these encodings in a strongly typed language
like Haskell or Clean. Moreover, the constructor enables us to dis-
tinguish the various encodings as different instances of a type class.
Just like a newtype in Haskell there is no reason to use these con-
structors in an actual implementation based on these encodings.
The uniform encoding based on type classes helps us to compare
the various encodings of the data type.

In the next section we review the encoding of non-recursive
data types in the λ-calculus. In Section 3 the λ-calculus is replaced
by named higher-order functions. The named function makes the
notation of recursive algorithms easier. We show how recursive
data types can be represented by named function in Section 4. The
Church and Scott encodings will be different instances of the same
type constructor class. This makes the differences in the encoding
very clear. Optimisations of the encodings are discussed in Section
5. In Section 6 we conclude that algorithmic complexity of the
Church encoding is for recursive selector functions higher than the
complexity of the Scott encoding.

2. Data Types in the λ-calculus
Very early in the development of λ-calculus it was known how
to use λ-terms for manipulations handled nowadays by algebraic
data types in functional programming languages. Since one does
not want to extend the λ-calculus with new language primitives,
λ-terms achieving the effect of the data types were introduced.

For an enumeration type with n constructors without arguments,
the λ-term equivalent to constructor Ci, selects argument i from
the given n arguments: Ci ≡ λ x1 . . . xn . xi. For each function
over the enumeration type we supply n arguments corresponding
to results for the constructors. The simplest nontrivial example is
the type for Boolean values.

2.1 Booleans in λ-calculus
The Boolean values True and False can be represented by a data
type having just two constructors T and F 1. We interpret the first
argument as true and the second one as false.

T ≡ λ t f . t
F ≡ λ t f . f

For the Boolean values the most famous application of these terms
is probably the conditional.

cond ≡ λ c t e . c t e

Using Currying the conditional can also be represented as the iden-
tity function: cond ≡ λ c . c. We can even apply the Boolean value
directly to the then- and else-part. This is used in the following def-

1 In this paper we will use names starting with a capital for functions
mimicking constructors and names starting with a lowercase letter for all
other functions. Hence a boolean is a function with two arguments.

inition of the logical and-operator.

and ≡ λ x y . x y F
If the first argument x is true the result of the and-function is
determined by the argument y. Otherwise, the result of the and-
function is F (false).

2.2 Pairs in λ-calculus
This approach can be directly extended to data constructors with
non-recursive arguments. The arguments of the constructor in the
original data type are given as arguments to the function represent-
ing this constructor. A pair is a data type with a single constructor.
This constructor has two arguments. The functions e1 selects the
first element of such a pair and e2 the second element. The λ-terms
encoding such a pair are:

Pair ≡ λ x y p . p x y
e1 ≡ λ p . p (λx y . x)
e2 ≡ λ p . p (λx y . y)

With these terms we can construct a term that swaps the elements
in such a pair as:

swap ≡ λ p . Pair (e2 p) (e1 p)

3. Representing Data Types by Named Functions
It seems to be straightforward to transform the λ-terms represent-
ing Booleans and pairs to functions in a functional programming
language like Clean or Haskell. In this paper we will use Clean,
but any modern lazy functional programming language with type
constructor classes will give very similar results.

3.1 Encoding Booleans by Named Functions
The functions form Section 2.1 for the Booleans become23:

T :: a a → a
T t f = t

F :: a a → a
F t f = f

cond :: (a a → a) a a → a
cond c t e = c t e

3.2 Encoding Pairs by Named Functions
The direct translation of the λ-terms in Section 2.2 for pairs yields4:

Pair‘ :: a b → (a b → c) → c
Pair‘ x y = λp.p x y

e1‘ :: ((a b → a) → a) → a
e1‘ p = p (λx y.x)

e2‘ :: ((a b → b) → b) → b
e2‘ p = p (λx y.y)

swap‘ :: ((a a → a) → a) → (a a → b) → b
swap‘ p = Pair‘ (e2‘ p) (e1‘ p)

Unfortunately, the type for swap‘ requires that both elements of
the pair have the same type a. This is due to the fact that the
type for Pair‘ states the type of the access function as a b→c and

2 For typographical reasons we generally prefer a function like T t f = t
over the equivalent T = λt f.t.
3 In Haskell the type a a→a is written as a→a→a.
4 In Haskell the anonymous function λp.p x y is written as \p->p x y.

Church Encoding of Data Types Considered Harmful for Implementations 2 2014/9/23

the Hindley-Milner type system requires a single type for such an
argument [3]. The encoding with additional constructors and type
constructor classes developed below in Section 4.1 will remove this
limitation.

This restriction only limits the possibility to execute the encod-
ing in functions in a strongly typed language. In an untyped context
these functions will behave correctly.

4. Recursive Data Types
For recursive types we show two different ways to represent data
types by functions. The first approach is a generalisation of the
well-known Church numbers [2]. Here the recursive occurrences of
a function representing a constructor are all equal. This implies that
a recursive data structure mirrors an expanded fold as pointed out
by Hinze in [16]. This is especially convenient in λ-calculus since
recursive functions require that the function itself is passed around
as an additional argument. This recursion is usually achieved by an
application of the Y-combinator.

The second approach does nothing special for recursive argu-
ments of constructors. Hence, it uses explicitly recursive manipu-
lation functions for recursive data types, just like the algebraic data
types in functional programming languages like Haskell and Clean.
This arbitrary recursion pattern of these functions is not limited to
folds of the Church encoding. The oldest source of this approach is
a set of unpublished notes from Dana Scott, hence this approach is
called the Scott encoding.

Since we have named functions, arbitrary recursion is no prob-
lem at all. For this reason we state both encodings of the data type
and the associated manipulation functions directly as named func-
tions. In order to compare both encodings easily and to be able
to write functions that work for both encodings we construct type
(constructor) classes for the data types in our description. The type
constructor class will contain the constructors and the selection
functions for elements of the constructors.

These type classes require a constructor in the functions repre-
senting data types. We already want to insert constructors to enable
the use of the functional encodings in a strongly typed language.
The constructors are still unnecessary when we fix the encoding
and work in an untyped setting.

4.1 Pairs Revisited
In our new approach Pair is a type constructor class with a con-
structor Pair and two destructors e1 and e2. These destructors select
the first and second argument.

class Pair t where
Pair :: a b → t a b
e1 :: (t a b) → a
e2 :: (t a b) → b

Using the primitives from this class, the swap function becomes5:

swap :: (t a b) → t b a | Pair t
swap p = Pair (e2 p) (e1 p)

Note that the use of the type class yields better readable types
and eliminates the problem with the types of the arguments in the
function swap. Here it is completely valid to use different types for
the elements of the pair. In fact, it is even possible to yield a pair
that is a member of another instance of the type constructor class
swap :: (t a b) → (u b a) | Pair t & Pair u.

5 The class restriction | Pair t in the type of the function swap
states that this function works for any type t that is an instance of
the type constructor class Pair. This ensures that Pair, e1 and e2
are defined for t. In Haskell such a class constraint is written as
swap :: (Pair t) ⇒ (t a b) → t b a.

4.1.1 Pairs with Native Tuples
The instance of Pair for 2-tuples is completely standard.

instance Pair (,) where
Pair a b = (a , b)
e1 (a , b) = a / / equal to the function fst from StdEnv
e2 (a , b) = b / / equal to the function snd from StdEnv

4.1.2 Pairs with Functions
Since Pair is not recursive, both encodings of such a pair with func-
tions coincide. We introduce a placeholder type FPair to satisfy the
type class system. This also allows use to introduce a universally
quantified type variable t for the result of manipulations of the type.

:: FPair a b = FPair (∀t: (a b→t) → t)

instance Pair FPair where
Pair a b = FPair λp.p a b
e1 (FPair p) = p λa b.a
e2 (FPair p) = p λa b.b

In order to give FPair the kind required by the type constructor class
Pair the type of the result t is an universal quantified type in this
definition. This makes the definition of swap typable in a Hindley-
Milner type system, even without a type constructor class, while
the definition of swap‘ in Section 3.2 restricts the elements e1 and
e2 of the pair to have identical types.

4.2 Peano Numbers
The simplest recursive data type is a type Num for Peano numbers.
This type has two constructors. Zero is the non recursive construc-
tor that represents the value zero. The recursive constructor Succ
yields the successor of such a Peano number, it has another Num
as argument. There are two basic manipulation functions, a test on
zero and a function computing the predecessor of a Peano number.

class Num t where
Zero :: t
Succ :: t → t
isZero :: t → Bool
pred :: t → t

It is of course possible to replace the basic type Bool by the type
representing Booleans in this format introduced in Section 3. We
use here a basic type to show that both type representation perfectly
mix.

4.2.1 Peano Numbers with Integers
An implementation of these numbers based on integers is:

instance Num Int where
Zero = 0
Succ n = n+1
isZero n = n == 0
pred n = i f (n > 0) (n - 1) undef

4.2.2 Peano Numbers with an Algebraic Data Type
The implementation of Num with an ordinary algebraic data type
Peano has no surprises. We use case expressions instead of separate
function alternatives to make the definitions a little more compact.

:: Peano = Z | S Peano

instance Num Peano where
Zero = Z
Succ n = S n
isZero n = case n of Zero = True ; _ = False
pred n = case n of S m = m ; _ = undef

Church Encoding of Data Types Considered Harmful for Implementations 3 2014/9/23

4.2.3 Peano Numbers in the Church Encoding
The first encoding with functions is just the encoding of Church
numbers in this format. The type Peano has two constructors.
Hence, each constructor function has two arguments. The first ar-
gument represents the case for zero, the second one mimics the
successor. A nonnegative number n is represented by n applica-
tions of this successor to the value for zero. The constructor Succ
adds one application of this function.

The test for zero yields True when the given number n is Zero.
Otherwise, the result is False. The predecessor function in the
Church encoding is somewhat more challenging. The number n is
represented by n applications of some higher order function s to a
given value z. The predecessor must remove one of the function
s. The first solution for this problem is found by Kleene while
his wisdom teeth were extracted at the dentist [11]. The value
zero is replaced by a tuple containing undef, the predecessor of
zero6, and the predecessor of the next number: zero. The successor
function recursively replaces the tuple (x ,s x) by (s x ,s (s x))
starting at z. The result of this construct is the tuple (pred n ,n). The
predecessor function selects the first element of this tuple. Since
the predecessor is constructed from the value zero upwards to n,
the complexity of this operation is O(n).

Just like in the representation of pairs we add a constructor CNum
to solve the type problems of this representation in the Hindley-
Milner type system of Clean. The universally quantified type vari-
able b ensures that the functions representing the the constructors
can yield any type without exposing this type in CNum. This type is
very similar to the type cnat := ∀X.X→ (X→X)→ X used
for Church numbers in polymorphic λ-calculus, λ2 [14].

The pattern FPair _ in the pred function is an artefact of our
encoding by type classes, it solves the overloading of Pair.

:: CNum = CNum (∀b: b (b→b) → b)

instance Num CNum where
Zero = CNum λzero succ.zero
Succ n = CNum λzero succ.succ ((λ(CNum x).x) n zero succ)
isZero (CNum n) = n True λx.False
pred (CNum n)
= CNum λz s.e1 (n (Pair undef z)

(λp=:(FPair _).Pair (e2 p) (s (e2 p))))

Notice that the successor itself passes the values for zero and succ
recursively to the given number n. Removing the constructor CNum
from the argument of Succ is done in its right-hand side to prevent
this argument that the argument is strict. This enables the proper
evaluation of expressions like isZero (Succ undef).

The function Succ has to add one application of the argument
succ to the given number. Since all functions are equal this can
be done in two ways. Above we add the additional application of
succ to the encoding of n. It is in this encoding also possible to re-
place the given value of zero in the recursion by succ zero. That
is Succ (CNum n) = CNum λzero succ.n (succ zero) succ. The di-
rect access to both side of the sequence of applications of succ is
unique for the Church encoding. We will use this below in Section
5 to optimise fold like operations over recursive types in the Church
encoding.

4.2.4 Peano Numbers in the Scott Encoding
The type SNum to represent the Scott representation of numerals uses
a constructor and a universally quantified type variable for exactly

6 Every now and then people use zero instead of undef as predecessor
of Zero. This prevents runtime errors, but it does not correspond to our
intuition of numbers and complicates reasoning. For instance, the property
pred n == pred m ⇒ n == m does not hold since pred (succ zero)
becomes equal to pred zero.

the same reasons as the Church encoding. This type is related to the
types assigned to Scott numerals by Abadi et al., [1]. This type is
again similar to snat := ∀X.X→(snat→X)→ X used for Scott
numbers in λ2µ [14]. Since we have recursive functions in our core
language, the external recursion in this problem is no problem. In
λ-calculus we need for instance a fixed point-combinator for the
recursion.

The Scott encoding for the non-recursive cases Zero and isZero
is equal to the Church encoding. For the recursive functions Succ
and pred the Scott encoding is simpler than the Church encoding.
The recursion pattern of the Scott encoding is very similar to the
definitions for the type Peano.

:: SNum = SNum (∀b:b (SNum→b) → b)

instance Num SNum where
Zero = SNum λzero succ.zero
Succ n = SNum λzero succ.succ n
isZero (SNum n) = n True λx.False
pred (SNum n) = n undef λx.x

Since the implementation of pred in this Scott encoding is a simple
selection of an element of a constructor its complexity is O(1).
This is much better than the O(n) complexity of the same operator
in the Church encoding.

4.2.5 Peano Numbers in the Parigot Encoding
Parigot proposed a different encoding of data types in an attempt to
enable reasoning about algorithms as well as an efficient implemen-
tation of these algorithms [27, 28]. These papers do not mentioning
the Scott encoding. In addition for a recursive type the constructors
contain the Church-Style fold argument, as well as the Scott-style
plain recursive argument. For numbers this reads:

:: PNum = PNum (∀b:b (PNum b→b) → b)

instance Num PNum where
Zero = PNum λz s.z
Succ p = PNum λz s.s p ((λ(PNum n).n) p z s)
isZero (PNum n) = n True λp x.False
pred (PNum n) = n undef (λp x.p)

It will be no surprise that this type resembles the type in λ2µ:
pnat := ∀X.X → (pnat → X → X) → X used for Parigot
numbers in [14] (called Church-Scott numbers there).

Notice that pred is implemented here in the more efficient Scott
way. The second argument of Succ is more suited for a fold-like
operation.

4.2.6 Using the Type Class Num
Using the primitive from the class Num we can define manipula-
tion functions for these numbers. The transformation of any of
these number encodings to one of the other encodings is given by
NumToNum. This uniform transformation is a generalisation of the
transformations between Church and Scott numbers in [20]. The
context determines the encodings n and m. Using a very similar re-
cursion pattern we can define addition for all instances of Num by
the function add.

NumToNum :: n → m | Num n & Num m
NumToNum n | isZero n

= Zero
= Succ (NumToNum (pred n))

add :: t t → t | Num t
add x y | isZero x

= y
= add (pred x) (Succ y)

Church Encoding of Data Types Considered Harmful for Implementations 4 2014/9/23

Using details of the encoding it is possible to optimise these func-
tions. Although the definitions work for all instances, the algorith-
mic complexity depends on the encoding selected. In particular the
processor function pred is O(n) in the Church encoding and O(1)
for the other implementations of Num. In Section 5 we discuss how
this can be improved for these examples.

4.3 Lists
In the Peano numbers all information is given by the number of
applications of Succ in the entire data structure. Recursive data
types that contain more information are often needed. The simplest
extension of the Peano numbers is the list. The Cons nodes of a list
corresponds to the Succ in the Peano numbers, but in contrast to the
Peano numbers a Cons contains an element stored at that place in the
list. This is modelled by type class List. Compared to Num there is
an additional argument a in the constructor for the recursive case,
and there is an additional primitive access function head to select
this element from the outermost Cons.

class List t where
Nil :: t a
Cons :: a (t a) → t a
isNil :: (t a) → Bool
head :: (t a) → a
tail :: (t a) → t a

4.3.1 List with the Native List Type
The instance for the native lists in Clean is very simple7

instance List [] where
Nil = []
Cons a x = [a:x]
isNil xs = case xs of [] = True ; _ = False / / isEmpty
head xs = case xs of [a:x] = a ; _ = undef / / hd
tail xs = case xs of [a:x] = x ; _ = undef / / tl

4.3.2 List in the Church Encoding
The instance inspired on the Church numbers is rather similar to
the instance for CNum. The definition for Nil is completely similar
to the instance for Zero. The constructor Cons has the list element
to be stored as additional argument. Here it does matter whether
we insert the new element at the head or the tail of the list. It is
actually quite remarkable that we can add an element to the tail
of the list without explicit recursion. Note that the arguments for
nil and cons are passed recursively to the tail x of the list. The
manipulation functions isNil and head directly yield the desired
result by applying the function xs to the appropriate arguments.
The implementation of tail is more involved. We use the approach
known from pred. From the end of the list upwards a new list
is constructed that is the tail of this list. Note that this is again
O(n) work with n the length of the list. Moreover, it spoils lazy
evaluation by requiring a complete evaluation of the spine of the
list. This also excludes the use of infinite list as arguments of this
version of the tail.

:: CList a = CList (∀b: b (a→b→b) → b)

instance List CList where
Nil = CList λnil cons.nil
Cons a x = CList λn c.c a ((λ(CList l).l) x n c)
isNil (CList l) = l True λa x.False
head (CList l) = l undef λa x.a
tail (CList l)
= CList λnil cons.e1 (l (Pair undef nil)

(λa p=:(FPair _).Pair (e2 p) (cons a (e2 p))))

7 In Haskell the list [a:x] is written as (a:x). The expression [a:x] is valid
Haskell, but it is a singleton list containing the list (a:x) as its element.

4.3.3 List in the Scott Encoding
The implementation of lists based on Scott numbers differs at the
recursive argument of the Cons constructor. Here we use a term of
type SList a. In the list based on Church numbers this argument has
type b, the result type of the list manipulation. As a consequence,
we do not pass the arguments nil and cons as arguments to the tail
x in the definition for the constructor Cons. This makes the access
function tail a simple O(1) access function.

:: SList a = SList (∀b: b (a→(SList a)→b) → b)

instance List SList where
Nil = SList λnil cons.nil
Cons a x = SList λnil cons.cons a x
isNil (SList xs) = xs True λa x.False
head (SList xs) = xs undef λa x.a
tail (SList xs) = xs undef λa x.x

4.3.4 List in the Parigot Encoding
Just as for numbers the Parigot encoding of Cons contains an argu-
ment for Scott type of recursion (i.e. x), as well as for the Church
type recursion (i.e. ((PList l).l) x n c).

:: PList a = PList (∀b: b (a (PList a) b→b) → b)

instance List PList where
Nil = PList λnil cons.nil
Cons a x = PList λn c.c a x ((λ(PList l).l) x n c)
isNil (PList l) = l True λa t x.False
head (PList l) = l undef (λa t x.a)
tail (PList l) = l undef (λa t x.t)

4.3.5 Using the List Type Class
Using the primitives from List the list manipulations fold-right and
fold-left can be defined in the well-known way.

foldR :: (a b→b) b (t a) → b | List t
foldR op r xs | isNil xs

= r
= op (head xs) (foldR op r (tail xs))

foldL :: (a b→a) a (t b) → a | List xs
foldL op r xs | isNil xs

= r
= foldL op (op r (head xs)) (tail xs)

Due to the O(n) complexity of tail in the Church represen-
tation, the folds have O(n2) complexity in the Church encoding
when the operators op is strict in both arguments. In the other in-
stances of List the complexity is only O(n). In Section 5 we show
how this complexity problem can be fixed for foldR.

The transformation from one list encoding to any other instance
of List is done in ListToList by an application of this foldR.
The summation of a list is done by a fold-left since the use of
an accumulator enables a constant memory implementation. This
function works for any argument type a having an addition operator
+ and a unit element zero.

ListToList :: (t a) → u a | List t & List u
ListToList xs = foldR Cons Nil xs

suml :: (t a) → a | List t & + , zero a
suml xs = foldL (+) zero xs

4.3.6 Measuring Execution Time
Using these definitions we can easily verify the described be-
haviour of the implementations of the class List. Our first ex-
ample is extremely simple; it takes the head of the tail of a list.

Church Encoding of Data Types Considered Harmful for Implementations 5 2014/9/23

By just changing the type at a strategic place, here the function
headTail, we enforce another implementation of List. When we
replace CList in this function by SList, PList or [] that type in-
stance of List is used. The length of the list is controlled by the
definition of m.

headTail :: !(CList Int) → Bool
headTail l = head (tail l) == 2

fromTo :: Int Int → t Int | List t
fromTo n m | n > m

= Nil
= Cons n (fromTo (n+1) m)

Start = headTail (fromTo 1 m)

All experiments are done with 32-bit Clean 2.4 running on
windows 7 in a virtual box on a MacBook Air with 1.8 GHz Intel
Core i5 under OS X version 10.9.4. For reliable measurements the
computation is repeated such that the total execution time is at least
10 seconds.

head (tail (fromTo 1 m))

m CList Int SList Int PList Int [Int]

2 6.5 10−8 3.3 10−8 5.5 10−8 1.1 10−8

10 2.8 10−7 3.3 10−8 5.5 10−8 1.1 10−8

102 2.5 10−6 3.3 10−8 5.5 10−8 1.1 10−8

103 2.6 10−5 3.3 10−8 5.5 10−8 1.1 10−8

104 2.8 10−5 3.3 10−8 5.5 10−8 1.1 10−8

105 4.7 10−5 3.3 10−8 5.5 10−8 1.1 10−8

Figure 1. Execution time in seconds as function of the length for
the encodings of List. Note the double logarithmic scale.

It is no surprise that the execution time for SList Int and [Int]
is completely independent of the upper bound, m, of the list. Due to
lazy evaluation the list is only evaluated until its second element.
As predicted the execution time for CList Int is linear in the length
of the list since tail enforces evaluation until the Nil. For very
long lists in the Church representation, e.g. 105 elements, garbage
collection causes an additional increase of the execution time.

In the second experiment we enforce evaluation of the entire list
by computing the sum of the numbers 1 to m and check whether
this sum is indeed m(m− 1)/2 for various values of m. We use a
tail recursive definition for the function Sum:

sum :: (t Int) → Int | List t
sum l | isNil l

= 0
= head l + sum (tail l)

sum (fromTo 1 m)

m CList Int SList Int PList Int [Int]

1 1.2 10−7 6.6 10−8 9.7 10−8 2.0 10−8

10 3.7 10−5 5.4 10−7 7.5 10−7 1.4 10−7

102 2.8 10−2 5.9 10−6 8.2 10−6 2.0 10−6

103 3.3 10+1 5.8 10−5 8.3 10−5 2.1 10−5

104 6.2 10−4 9.0 10−4 2.1 10−4

105 6.5 10−3 9.6 10−3 2.2 10−3

Figure 2. Execution time in seconds as function of the length for
the encodings of List.

As expected the execution time for SList Int and [Int] grows
linear with the the number of elements in the list. The version
for CList Int is again much slower. Since the tail inside sum is
O(n) for a list in the Church representation, the sum itself is at
leastO(n2). The measurements show that the actual execution time
grows as O(n3) in the Church representation. Since the tail in the
Church representation yields a function application, the reduction
of an application tail l cannot be shared. This expression is re-
evaluated for each use of the resulting list. Each of these tail

functions is O(n). This makes the total complexity of sum O(n3)
in the Church representation and O(n) in the Scott representation
and in the native lists of Clean.

In the final example we apply the quick-sort algorithm to a
lists of pseudo random integers in the range 0..999. Quick-sort is
implemented for all list implementations in the class List by the
function qs.

qs :: (l a) → (l a) | List l & < , == a
qs l | isNil l

= Nil
= append (qs (fltr (λx.x < y) l))

(append (fltr (λx.x == y) l)
(qs (fltr (λx.y < x) l))) where y = head l

append :: (t a) (t a) → (t a) | List t
append l1 l2 | isNil l1

= l2
= Cons (head l1) (append (tail l1) l2)

fltr :: (a→Bool) (l a) → l a | List l
fltr p l | isNil l

= Nil
| p x

= Cons x (fltr p (tail l))
= fltr p (tail l) where x = head l

qs (take m randomInts))

m CList Int SList Int PList Int [Int]

1 7.5 10−7 5.2 10−7 6.0 10−7 1.8 10−7

10 1.8 10−4 1.0 10−5 1.3 10−5 4.1 10−6

102 1.5 10−1 2.1 10−4 2.8 10−4 8.9 10−5

103 1.6 10+2 3.0 10−3 3.9 10−3 1.3 10−3

104 3.3 10−2 4.4 10−2 1.4 10−2

105 3.9 10−1 5.3 10−1 1.7 10−1

Figure 3. Relation between execution time in seconds and length
of the list for four different implementations of List.

The measurements show the expected O(n log n) growth with
the length of the list for the Scott representation of lists and native
lists in Clean. The Church representation shows again a O(n3)
growth with the length of the list. Since Quick-sort requires more
list operations than sum, the increase in execution time is even
bigger than for sum.

The Scott representation, SList Int, is on average a factor 2.8
slower than the native Clean lists, [Int]. This additional execution
time is caused by the additional constructors SList need to convince
the type system of correctness of this representation. This factor is
independent of the size of the lists.

Functions like sum, append and fltr used in these examples can
be expressed as applications of fold. It is possible to optimise a
fold in the Church representation as outlined in Section 5. Since we
study the representation of data structures by functions for a simple
compiler, it is unrealistic to expect such a compiler to perform the

Church Encoding of Data Types Considered Harmful for Implementations 6 2014/9/23

required transformations. Moreover, this does not solve the prob-
lems with laziness, in examples like head (tail (fromTo 1 m)) ,
and the complexity problems in situations where the tail function
is not part of a foldr, like qs_o2.

4.4 Tree
We demonstrate how the approach is extended to data types with
multiple recursive arguments such as binary trees. The construc-
tor for nonempty trees, Fork, has now two recursive instances as
argument instead of just one. There are now two selectors for the
recursive arguments, left and right, instead of just tail.

class Tree t where
Leaf :: t a
Fork :: (t a) a (t a) → t a
isLeaf :: (t a) → Bool
elem :: (t a) → a
left :: (t a) → t a
right :: (t a) → t a

4.4.1 Tree with an Algebraic Data Type
The instance for a two constructor algebraic data type is again
standard.

:: Bin a = Empty | Node (Bin a) a (Bin a)

instance Tree Bin where
Leaf = Empty
Fork x a y = Node x a y
isLeaf t = case t of Empty = True ; _ = False
elem t = case t of (Node x a y) = a ; _ = undef
left t = case t of (Node x a y) = x ; _ = undef
right t = case t of (Node x a y) = y ; _ = undef

4.4.2 Tree in the Church Encoding
The instance based on Church numbers passes the arguments for
leaf and node now to two recursive occurrences in the constructor
Fork for nonempty trees. The selector functions for the recursive
arguments, left and right, use the same pattern as pred and tail.
The difference is that there are two recursive cases. Fortunately,
they can be handled with a single function. For readability we use
tuples from Clean instead of a Pair as introduced in Section 2.2.
Like above this selection function visits all n nodes in the subtree.
Hence, its complexity is O(n) while the version using ordinary
algebraic data types does the job in constant time, O(1).

:: CTree a = CTree (∀t: t (t a t→t) → t)

instance Tree CTree where
Leaf = CTree λleaf fork
Fork (CTree x) a (CTree y)
= CTree λleaf fork. fork (x leaf fork) a (y leaf fork)
isLeaf (CTree t) = t True λx a y.False
elem (CTree t) = t undef λx a y.a
left (CTree t)
= CTree λe f.e1 (t (undef ,e) (λ(s ,t) a (x ,y).(t ,f t a y)))
right (CTree t)
= CTree λe f.e1 (t (undef ,e) (λ(s ,t) a (x ,y).(y ,f t a y)))

4.4.3 Tree in the Scott Encoding
The version based on the Scott encoding of numbers is again much
more similar to the implementation based on plain algebraic data
types. In the constructor Fork for nonempty trees the arguments
leaf and node are not passed to the recursive occurrences of the
tree, x and y. This makes the selection of the recursive elements
identical to the selection of the non recursive argument, elem. The
complexity of the three selection functions is the desired O(1).

:: STree a = STree (∀t: t ((STree a) a (STree a)→t) → t)

instance Tree STree where
Leaf = STree λleaf node.leaf
Fork x a y = STree λleaf node.node x a y
isLeaf (STree t) = t True λx a y.False
elem (STree t) = t undef λx a y.a
left (STree t) = t undef λx a y.x
right (STree t) = t undef λx a y.y

4.4.4 Using the Tree Type Class
Using the primitives from Tree we can express insertion for binary
search trees by the function insertTree.

insertTree :: a (t a) → t a | Tree t & < a
insertTree a t

| isLeaf t = Fork Leaf a Leaf
| a < x = Fork (insertTree a (left t)) x (right t)
| a > x = Fork (left t) x (insertTree a (right t))
| otherwise = t / / x == a

where x = elem t

Note that the recursion pattern in this function is dependent of the
value of the element to be inserted, a, and the element in the current
node, elem t.

When the selectors left and right operate in constant time the
average cost of an insert in a balanced tree are O(log n), and in
worst case the insert is O(n) work. For the implementation based
on Church numbers however, the complexity of the selectors left
and right is O(n). This makes the average complexity of an insert
in a balanced tree O(n log n), in worst case the complexity is
even O(n2). In testing basic properties of trees this is very well
noticeable. Even with small test cases tests with the data structures
based on the Church numbers take at least one order of magnitude
more time than all other tests for the definitions in this paper
together.

4.5 General Transformations
The examples in the previous sections illustrate the general trans-
formation scheme from a constructor based encoding to a function
based encoding. In the transformations below we omit the addi-
tional type and constructors used in this paper to handle the various
versions in a single type constructor class. A type T with a argu-
ments and n constructors named C1 . . . Cn will be represented by
n functions. The transformation T specifies the functions needed
to represent a type T .

T JT x1 . . . xa = C1 a11 . . . a1m | . . . |Cn an1 . . . anm K
= CJC1 a11 . . . a1m K n · · · CJCn an1 . . . anm K n

The function for constructor Ci with m arguments has the same
name as this constructor and has n + m arguments. C yields the
function for the given constructor.

CJCi ai1 . . . aim K n
= Ci a1 . . . am x1 . . . xn = xi AJ a1 K n . . . AJ am K n

For all arguments in the Scott encoding and the non recursive argu-
ments in the Church encoding, the transformation A just produces
the given argument.

AJ a K n = a

For recursive arguments in the Church encoding however, all argu-
ments of the function C are added:

A2J a K n = (a x1 . . . xn)

These definitions show that a constructor is basically just a
selector that picks the continuation corresponding to its constructor

Church Encoding of Data Types Considered Harmful for Implementations 7 2014/9/23

number. In a function over type T we provide a value for each
constructor, similar to a case distinction in a switch expression.

SJ case e of
C1 a11 . . . a1m = r1;

. . .

Cn an1 . . . anm = rn; K
= e (λa11 . . . a1m . r1) . . . (λan1 . . . anm . rn)

Due to recursive passing of arguments in the Church encoding, a
recursive argument aj will be transformed to an expression of the
result type R of the case expression. In the Scott encoding it will
still have type T . This implies that we can still decide in the body
ri whether we want to apply the function recursively or not. In the
Church encoding the function is alway applied recursively.

5. Optimisations
In a real implementation of a functional language that represents
data types by functions, the type constructor classes introduced
here and the constructors required by those type classes should be
omitted. They are only introduced in this paper to allow experi-
ments with the various representations.

A version of the Church encoding for lists without additional
constructors can be expressed directly in Clean.

:: ChurchList a r :== r (a r→r) → r

cnil :: (ChurchList a r)
cnil = λn c.n

ccons :: a (ChurchList a r) → (ChurchList a r)
ccons a x = λnil cons.cons a (x nil cons)

ctail :: (ChurchList a (r ,r)) → (ChurchList a r)
ctail xs = λn c.fst (xs (undef ,n) (λa (x ,y).(y ,c a y)))

clToStrings::(ChurchList a [String]) → [String]|toString a
clToStrings xs = xs ["[]"] λa x.[toString a , ": ": x]

Although these function are accepted by the compiler, there are
severe limitations to this approach. The type system rejects many
combinations of these function. This is due to the monomorphism
constraint on function arguments. These problems are very similar
those encountered by the function swap‘ in Section 3.2.

The Hindley-Milner type system does not accept the Scott en-
coding of data types without additional constructors, see Baren-
dregt [3] or Barendsen [4] for a proof. Geuvers shows that this can
be typed in λ2µ: λ2 + positive recursive types [14]. Nevertheless,
these functions work correctly in an untyped world with higher or-
der functions.

snil = λnil cons.nil
scons a x = λnil cons.cons a x
stail xs = xs undef (λa x.x)

5.1 Using the Structure of the Type Representations
The destructors of the implementations of data constructors based
on Church numbers are all very expensive operations, typically
O(n) where n is the size of the recursive data structure. When
the shape of the computation matches the recursive structure of
the Church encoding we can achieve an enormous optimisation by
replacing definitions based on the interface provided by the type
constructor classes by direct implementations. Since the encoding
based on Church numbers is basically a foldr, as explained by
Hinze in [16], these optimisations will work for manipulations that
can be expressed as a foldr.

5.2 Peano Numbers
Many operations on Peano numbers can be expressed as a fold op-
eration. For instance, a Peano number of the form λzero succ.succ
(succ .. zero) can be transformed to an integer by providing the
argument 0 for zero and the increment function, inc, for integers for
succ. For the same operation on number in the Scott encoding we
need to specify the required recursion explicitly. This is reflected
in the tailor made instances of the class toInt for these number
encodings.

instance toInt CNum where toInt (CNum n) = n 0 inc
instance toInt SNum where toInt (SNum n) = n 0 (inc o toInt)

The complexity of both transformations is O(n). For the Church
encoding this is a serious improvement compared to using NumToNum
to transform a CNum to Int. Due to the O(n) costs of pred for CNum
the complexity of this transformation is O(n2). For the other en-
coding we can at best gain a constant factor. This can be generalised
in a translation of CNum to other instances of Num.

CNumToNum :: CNum → n | Num n
CNumToNum (CNum n) = n Zero Succ

Similar clever definitions are known for the addition and multipli-
cation of Church numbers. We express the optimised addition as an
instance of the operator + for CNum. We achieve addition by replac-
ing the zero of x by the number y zero succ. In exactly the same
way we can achieve multiplication by replacing the successor such
of x by λz.y z succ.

instance + CNum where
(+) (CNum x) (CNum y) = CNum λz s.x (y z s) s

instance * CNum where
(*) (CNum x) (CNum y) = CNum λz s.x z (λz2.y z2 s)

It is obvious that this reduces the complexity of these operations
significantly. However, the addition is not the constant O(1) ma-
nipulation it might seem to be. The result is a function and any ap-
plication determining a value with this function will be O(n×m)
work. This is of course a huge improvement to O(n2 ×m) for the
addition for CNum using the function add from Section 4.2.6.

Those optimisations are only possible when the structure of the
manipulation can be expressed by the structure of the encoding of
CNum. No solutions of this kind are known for operations like prede-
cessor and subtraction. For the predecessor it might look attractive
to transform the encoding from CNum to SNum and perform the prede-
cessor here in O(1) instead of in O(n) in CNum. Unfortunately, this
transformation itself is O(n), even using the optimised CNumToNum
function. Nevertheless, such a transformation is worthwhile when
we need to do more operation with higher cost in the CNum encoding
that in the SNum encoding. This occurs for instance in subtractionm
from n by repeated applications of the predecessor function, here
the complexity drops from O(n × m) to O(n + m). This is still
more expensive that the O(m) for the other encodings.

5.3 Lists
The Church encoding of lists is based on a fold-right. Also the
Parigot encoding contains such a fold. By making an optimised
fold function instead of the simple recursive version from Section
4.3.5 we can take advantage of this representation.

class foldR_o t :: (a b→b) b !(t a) → b

instance foldR_o CList where
foldR_o f r (CList l) = l r f

instance foldR_o PList where
foldR_o f r (PList l) = l r λa t x.f a x

Church Encoding of Data Types Considered Harmful for Implementations 8 2014/9/23

instance foldR_o SList where
foldR_o f r (SList l) = l r λa x.f a (foldR_o f r x)

instance foldR_o [] where
foldR_o f r l = case l of []=r ; [a:x]=f a (foldR_o f r x)

For the Church and Parigot encoding of lists we directly use the
given function f the the fold of this representation. The Scott
encoding and the native lists of Clean does not have such a direct
fold. Hence, we define an explicit recursive function.

5.4 Effect of the Optimisations
In order to determine the effect of the optimised fold implementa-
tion we replaced the functions append and filter in the function qs
by their fold based variant shown above.

qs_o :: (t a) → (t a) | < , == a & foldRo , List t
qs_o l | isNil l

= Nil
= appendo (qs_o (fltro (λx.x < h) l))

(appendo (fltro (λx.x == h) l)
(qs_o (fltro (λx.h < x) l))) where h = head l

append_o :: (t a) (t a) → t a | foldRo , List t
append_o l1 l2 = foldR_o Cons l2 l1

fltr_o :: (a→Bool) (t a) → t a | foldRo , List t
fltr_o p l = foldR_o (λa x.if (p a) (Cons a x) x) Nil l

The results of this experiment are listed in Figure 4.

qs_o (take m randomInts))

m CList Int SList Int PList Int [Int]

1 3.2 10−7 4.5 10−7 3.5 10−7 1.1 10−7

10 5.8 10−6 6.2 10−6 6.5 10−6 2.1 10−6

102 1.2 10−4 1.3 10−4 1.3 10−4 4.7 10−5

103 1.7 10−3 1.9 10−3 1.9 10−3 7.2 10−4

104 1.8 10−2 2.0 10−2 2.0 10−2 7.9 10−3

105 2.4 10−1 2.9 10−1 2.9 10−1 1.0 10−1

Figure 4. Execution time in seconds as function of the length for
the encodings of List.

When all recursive list operations are replaced by an optimised
fold-right all encodings of lists show very similar execution results.
The small differences are explained by the additional arguments
that have to be passed around in the Parigot encoding, and the addi-
tional constructors needed by this simulation of the Scott encoding.

These gains work only properly when every list manipulation
is a fold-right. Introducing a single other operation can completely
spoil the performance. Consider for instance a somewhat different
formulation of our Quick-sort algorithm.

qs_o2 :: (t a) → (t a) | < , == a & foldRo , List t
qs_o2 l | isNil l

= Nil
= appendo (qs_o2 (fltro (λx.x < h) t))

(Cons h (qs_o2 (fltro (λx.h ≤ x) t)))
where h = head l ; t = tail l

The measurements in Figure 5 show that behaves similar to fold-
based Quick-sort for most encodings. For small lists two instead
of three filters over the list yields a gain. For long lists there will
be many duplicates of the numbers between 0 and 999, hence
the additional of equal elements yields a small gain. The overal
complextity isO(n logn). For the Church-lists however, the single
tail is a complete party breaker. For the same reasons as before the
complexity is O(n3) in this Church encoding.

qs_o2 (take m randomInts))

m CList Int SList Int PList Int [Int]

1 2.1 10−7 2.2 10−7 1.8 10−7 7.2 10−8

10 1.2 10−5 4.3 10−6 3.7 10−6 2.2 10−6

102 5.6 10−3 9.4 10−5 9.4 10−5 5.8 10−5

103 5.6 100 1.5 10−3 1.5 10−3 1.1 10−3

104 6.0 10+3 2.3 10−2 2.3 10−2 1.8 10−2

105 9.1 10−1 8.2 10−1 5.8 10−1

Figure 5. Execution time in seconds as function of the length for
the encodings of List.

5.5 Optimization of other Operations
This kind of optimisation works only for operations that can be
expressed as a fold-right. This implies that we cannot use it for
many common list manipulations like, fold-left (foldl), take, drop,
and insertion in a sorted list. For many operations that require a
repeated application of tail it is worthwhile to transform the CList
to a SList, perform the transformation on this SList, and finally
transform back to the CList when we really want to use the Church
encoding. This route via the lists in Scott encoding still force the
evaluation of the spine of the entire list.

In some programming tasks it is possible to construct also in
the Church encoding an implementation that executes the given
task with a better complexity than obtained by applying the default
deconstructs. For instance, the function to take the first n elements
of a list using the functions from the class List is:

takeL :: Int (t a) → t a | List t
takeL n xs | n > 0 && not (isNil xs)

= Cons (head xs) (takeL (n - 1) (tail xs))
= Nil

For the Church encoding this has complexity O(n × L) where n
is the number of elements to take and L is the length of the list.
The complexity for the Scott encoding is O(n), just like a direct
definition in Clean. In contrast with the Church encoding, the Scott
encoding is not strict in the spine of the list. Using a tailor-made
instance of the fold in the Church encoding, the complexity of the
take function can be reduced to O(L):

takeC :: Int (CList a) → CList a
takeC n (CList xs)
= fst (xs (Nil , xs 0 (λa x.x + 1) - n)

(λa (ys , m).(i f (m > 0) Nil (Cons a ys) , m - 1)))

The expression xs 0 (λa x.x+1) computes the length of the lists.
The outermost fold produces length xs − n times Nil. When
the counter m becomes non-positive, the fold starts copying the
list elements. For finite lists, this is the same result as takeL m. It
is not obvious how to derive such an optimised algorithm from
an arbitrary function using the primitives from a class like List.
Hence, constructing an optimised version requires in general non-
trivial human actions. Even when this problem would be solved,
the Scott encoding still has a better complexity and more appealing
strictness properties.

5.6 Deforestation of Lists
Function fusion is a program transformation that tries to achieve the
result of two separate functions f and g applied after each other by
a single function h. That is we try to generate a function h such that
f · g ≡ h ⇒ ∀x . f(g x) = h x. Especially when fusion manages
to eliminate a data structure this transformation will reduce the
execution time significantly.

Church Encoding of Data Types Considered Harmful for Implementations 9 2014/9/23

Wadler introduced a special form of fusion called deforestation
[33]. In deforestation we recognise producers and consumers. For
lists, any function forcing evaluation and processing the list like
foldr is a good consumer. A producer is a similar recursive func-
tion that generates a list. When there is an immediate composition
of a producer and a consumer these functions can be fused and the
intermediate list is not longer needed. That is a function compo-
sition like foldR g r (foldR (Cons o f) Nil xs) can be fused to
foldR (g o f) r xs. This is a standard transformation in many ad-
vanced compilers for functional programming languages, e.g. the
GHC as described by Gill et. al. [15].

Since any CList is essentially a foldR that forces evaluation,
all Church lists are good consumers. When the list is generated
by a foldRC the function applied to as Cons-constructor can be
written as Cons o f. Hence functions like mapC are good producers.
This implies that there will be relatively many opportunities for
deforestation in a program based on Church lists. Although the gain
of deforestation can be a substantial factor, it does not change the
complexity of the algorithm.

5.7 Optimisation of Tree Manipulations
The results from lists immediately carry over to trees. Any fold over
a tree in the Church encoding can be optimised by to call of foldTC.

foldTC :: (b a b→b) b (CTree a) → b
foldTC f r (CTree t) = t r f

Using this fold we can collect all elements in a search tree by
a single in-order traversal of the Church tree in a Church list by
inorderC.

inorderC :: (CTree a) → CList a
inorderC t = foldTC (λx a y.appendC x (Cons a y)) Nil t

This works only for tree manipulations that can be expressed
efficiently by a fold over the tree. As a consequence it does not
solve the complexity problems for insertion, lookup and deletion
from binary search trees.

6. Summary
For simple implementations of functional programming languages
it is convenient to transform the data types to functions. By translat-
ing all data types to functions, we only need to implement functions
on the core level in our implementation. The implemented language
still provides algebraic data types like lists and trees to the user, but
there is no runtime notion of these types needed. Such transforma-
tions are well known in λ-calculus. In this paper we use a language
with named functions and basic types like numbers and characters,
instead of pure λ-calculus. The named functions enable us to use
recursion in an easier way than in the λ-calculus. In this paper we
showed and compared three different implementation strategies for
recursive data types by functions. The first strategy is an extension
of the well known Church numerals. These Church numerals are
treated in nearly all introductory texts about the λ-calculus. The
second encoding is based on an idea originating from unpublished
notes of Scott. Due to the lack of a good reference, this encoding is
reinvented several times in history. The third encoding in a combi-
nation of the previous two known as the Perigot encoding.

The difference between these encodings is in the way they han-
dle recursion. In the Church encoding the functions representing
the data type contain a fold-like recursion pattern to process the
list. In the Scott encoding the recursive manipulations are done by
a recursive function that resembles the recursive functions in ordi-
nary functional programming languages much closer.

By using some additional constructors we were able to imple-
ment instances of a type constructor class capturing the basic oper-

ations of lists or trees for an algebraic data type, an encoding based
on Church numerals and an encoding of Scott numbers.

The comparison shows us that the functions producing the re-
cursive branch in a constructor, like the tail of a list or a subtree
of in a binary tree, are troublesome in the Church encoding. These
operations become spine strict in the recursion. This undesirable
strictness of the Church encoding ruins lazy evaluation and gives
the selection operators an undesirable high complexity. The amount
of work to be done is proportional to the size of the data structure
instead of constant. This is caused by fold-based formulation of the
selector functions. In the Scott encoding the selectors are simple
non recursive λ-expressions, hence they do not have the strictness
and complexity problems of the Church encoding.

The complexity problems of the Church representation are in-
creased by the fact that the reduction of a recursive selector is not
shared in graph reduction. A selector in the Church representation
is a higher order function that needs the next manipulation as argu-
ment before it can be evaluated.

When the manipulation used is essentially a fold it is possible
to optimise the functions implementing the data structure in the
Church encoding to achieve the required complexity. For manipu-
lations that are not a fold, the fold-like recursion pattern enforced
by the Church encoding really hampers. Since many useful pro-
grams are not only executing folds over their recursive data struc-
tures, we consider the Church encoding of data structures harmful
for the implementation purposes discussed in this paper.

The Perigot encoding contains both a Scott encoding and a
Church encoding. Compared with the Church encoding it solves
the complexity problems of selecting the recursive branch and
it prevents the undesired strict evaluation. However, the Perigot
encoding does not bring us the best of both worlds. The additional
effort and space required to maintain both encodings spoils the
potential benefits of the native fold-right recursion compared with
Scott encoding.

Acknowledgments
Special thanks to Peter Achten from the Radboud University for
useful feedback on draft versions of this work and stimulating
discussions. Aaron Stump form the university of Iowa stimulated us
to look again at the Parigot encoding. The feedback of anonymous
referees helped us to improve the reading frame of this paper.

References
[1] M. Abadi, L. Cardelli, and G. D. Plotkin. Types for

the scott numerals. Unpublished note, 1993. URL
http://lucacardelli.name/Papers/Notes/scott2.pdf.

[2] H. Barendregt. The Lambda Calculus: Its Syntax and Semantics. Stud-
ies in Logic and the Foundations of Mathematics. Elsevier Science,
1985. ISBN 9780080933757.

[3] H. Barendregt, W. Dekkers, and R. Statman. Lambda Calculus with
Types. Perspectives in Logic. Cambridge University Press, 2013.
ISBN 9780521766142.

[4] E. Barendsen. An unsolvable numeral system in lambda calculus. J.
Funct. Program., 1(3):367–372, 1991.

[5] A. Berarducci and C. Böhm. Automatic synthesis of typed Lambda-
programs on term algebras. Theoretical Computer Science, 39
(820076097):135–154, 1985.

[6] A. Berarducci and C. Böhm. A self interpreter of Lambda-calculus
having a normal form. In E. Börger, G. Jäger, H. Kleine Büning,
S. Martini, and M. M. Richter, editors, Computer Science Logic. 6th
Workshop, CSL ’92, volume 702 of LNCS, pages 85–99. Springer,
1993. ISBN 978-3-540-56992-3.

[7] C. Böhm. The CUCH as a formal and description language. In T. Steel,
editor, Formal Languages Description Languages for Computer Pro-
gramming, pages 179–197. North-Holland, 1966.

Church Encoding of Data Types Considered Harmful for Implementations 10 2014/9/23

[8] C. Böhm and W. Gross. Introduction to the CUCH. In E. Caianiello,
editor, Automata Theory, pages 35–65, London, UK, 1966. Academic
Press.

[9] C. Böhm, A. Piperno, and S. Guerrini. Lambda-definition of func-
tion(al)s by normal forms. In D. Sannella, editor, ESOP, volume 788
of LNCS, pages 135–149. Springer, 1994. .

[10] R. M. Burstall, D. B. MacQueen, and D. T. Sannella. HOPE: An
experimental applicative language. In Proceedings of the 1980 ACM
Conference on LISP and Functional Programming, LFP ’80, pages
136–143. ACM, 1980.

[11] J. Crossley. Reminiscences of logicians. In J. Crossley, editor, Algebra
and Logic, volume 450 of Lecture Notes in Mathematics, pages 1–62.
Springer, 1975. ISBN 978-3-540-07152-5.

[12] H. B. Curry, J. R. Hindley, and J. P. Seldin. Combinatory Logic,
Volume II. North-Holland, 1972.

[13] J. Fairbairn and U. of Cambridge. Computer Laboratory. Design and
Implementation of a Simple Typed Language Based on the Lambda-
calculus. Computer Laboratory Cambridge: Technical report. Univer-
sity of Cambridge, Computer Laboratory, 1985.

[14] H. Geuvers. The Church-Scott representation of inductive and
coinductive data. Types 2014, Paris, Draft, 2014. URL
http://www.cs.ru.nl/∼herman/PUBS/ChurchScottDataTypes.pdf.

[15] A. Gill, J. Launchbury, and S. L. Peyton Jones. A short cut to defor-
estation. In Proceedings of the Conference on Functional Program-
ming Languages and Computer Architecture, FPCA ’93, pages 223–
232. ACM, 1993.

[16] R. Hinze. Theoretical pearl church numerals, twice! J. Funct. Pro-
gram., 15(1):1–13, Jan. 2005. ISSN 0956-7968.

[17] P. Hudak, S. L. P. Jones, P. Wadler, B. Boutel, J. Fairbairn, J. H. Fasel,
M. M. Guzmán, K. Hammond, J. Hughes, T. Johnsson, R. B. Kieburtz,
R. S. Nikhil, W. Partain, and J. Peterson. Report on the programming
language haskell, a non-strict, purely functional language. SIGPLAN
Notices, 27(5):1–, 1992.

[18] J. Jansen, P. Koopman, and R. Plasmeijer. Efficient interpretation
by transforming data types and patterns to functions. In H. Nilsson,
editor, Revised Selected Papers of the 7th TFP’06, volume 7, pages
73–90, Nottingham, UK, 2006. Intellect Books.

[19] J. Jansen, P. Koopman, and R. Plasmeijer. From interpretation to
compilation. In Z. Horváth, editor, Proceedings of the 2nd CEFP’07,
volume 5161 of LNCS, pages 286–301, Cluj Napoca, Romania, 2008.
Springer.

[20] J. M. Jansen. Programming in the λ-calculus: From Church to Scott
and back. In P. Achten and P. Koopman, editors, The Beauty of
Functional Code, volume 8106 of LNCS, pages 168–180. Springer,
2013. ISBN 978-3-642-40354-5.

[21] T. Johnsson. Compiling Lazy Functional Languages. PhD thesis,
Chalmers University of Technology, 1987.

[22] W. Kluge. Abstract computing machines: a lambda calculus perspec-
tive. Texts in theoretical computer science. Springer, 2005. ISBN
3-540-21146-2.

[23] P. W. M. Koopman, M. C. J. D. V. Eekelen, and M. J. Plasmeijer. Oper-
ational machine specification in a functional programming language.
Software: Practice and Experience, 25(5):463–499, 1995. ISSN 1097-
024X.

[24] P. J. Landin. The mechanical evaluation of expressions. The Computer
Journal, 6(4):308–320, 1964.

[25] T. Æ. Mogensen. Efficient self-interpretations in lambda calculus. J.
Funct. Program., 2(3):345–363, 1992.

[26] M. Naylor and C. Runciman. The reduceron: Widening the von
neumann bottleneck for graph reduction using an fpga. In O. Chitil,
Z. Horváth, and V. Zsók, editors, IFL, volume 5083 of LNCS, pages
129–146. Springer, 2007. ISBN 978-3-540-85372-5.

[27] M. Parigot. Programming with proofs: A second-order type theory. In
Proc. ESOP ’88, LNCS 300, pages 145–159. Springer, 1988.

[28] M. Parigot. Recursive programming with proofs. Theor. Comput. Sci.
94, pages 335–336, 1992.

[29] S. L. Peyton Jones and J. Salkild. The spineless tagless g-machine.
In Proceedings of the Fourth International Conference on Func-
tional Programming Languages and Computer Architecture, FPCA
’89, pages 184–201. ACM, 1989. ISBN 0-89791-328-0.

[30] R. Plasmeijer and M. van Eekelen. Clean language report (version
2.1). http://clean.cs.ru.nl, 2002.

[31] R. Plasmeijer, P. Achten, and P. Koopman. iTasks: executable spec-
ifications of interactive work flow systems for the web. In R. Hinze
and N. Ramsey, editors, Proceedings of the ICFP’07, pages 141–152,
Freiburg, Germany, 2007. ACM.

[32] J. Steensgaard-Madsen. Typed representation of objects by functions.
ACM Trans. Program. Lang. Syst., 11(1):67–89, Jan. 1989. ISSN
0164-0925.

[33] P. Wadler. Deforestation: Transforming programs to eliminate trees.
In Proceedings of the Second European Symposium on Programming,
pages 231–248, Amsterdam, The Netherlands, The Netherlands, 1988.
North-Holland Publishing Co.

Church Encoding of Data Types Considered Harmful for Implementations 11 2014/9/23

Bidirectional parsing
a functional/logic perspective

Peter Kourzanov
NXP Eindhoven/TU Delft, Netherlands

kourzanov@acm.org

Abstract
We introduce PURE3, a pure declarative approach to implementing
declarative transformations with declarative tools. This Domain-
Specific Language (DSL), inspired by the Definite Clause Gram-
mar (DCG) and Parsing Expression Grammar (PEG) formalisms,
is implemented using the Revised5 Report on the Algorithmic Lan-
guage Scheme (R5RS). Thanks to its use of the MINIKANREN logic
programming system it supports fully reversible and extensible
syntax-semantics relations. In this paper we highlight the usability
and simplicity of PURE3’s approach, address the problem of left-
recursion and show how its features help in defining custom and
extensible typing systems for JavaScript Object Notation (JSON).

Categories and Subject Descriptors D.1.6 [Programming tech-
niques]: Logic programming; D.3.2 [Language Classifications]:
Applicative (Functional) languages; D.3.4 [Processors]: Parsing

General Terms (embedded) domain specific languages, auto-
matic program generation, type systems/checking/inferencing

1. Introduction
The declarative approach to programming unifies logic/relational
and functional communities in the shared vision of tools that need
only be told what should be done rather than how that must be
accomplished.1 Ideally, these tools should (inter)actively partici-
pate in the creative process, i.e., art of computer programming by
performing parsing of the human input, checking and inference
[DM82] of the various properties of such inputs,2 manipulation,
refactoring and optimization of programs [BD77], compilation to
machine code [App06] and last but not least, should provide feed-
back to the user.

Because humans inevitably are still in the loop of this develop-
ment cycle, it is important that each stage remains palpable - that
is, can be understood semantically and manipulated using syntac-
tically simple terms. First and foremost this concerns parsing, a
well-researched domain where many well-established methods ex-

1 we set machine learning community aside for now
2 this is commonly known as type-checking and type-inference

[Copyright notice will appear here once ’preprint’ option is removed.]

ist [ALSU06] and [GBJL02], and yet, very few practical tools pos-
sess that elusive mathematical elegance that can immediately ap-
peal to practitioners. Further down the transformation chain, com-
plexity quickly rises and at the level of inference already presents
formidable challenges [Wel94] to human understanding.

In this paper we present PURE3 as a declarative approach to
declarative transformations using declarative tools. The focus is on
parsing as a particular kind of transformation of a linear stream
of tokens into a set of Abstract Syntax Tree (AST) instances con-
taining terminals (literal values), non-terminals (expressions, state-
ments), types, assembly etc.

The approach is declarative in that we take the Backus-Naur
Formalism (BNF) as a starting point and do not restrict ourselves to
a specific way of codifying it. The transformations are declarative
because they stay largely independent from the evaluation strategy.
The tools are declarative in that we take MINIKANREN [FBK],
a logic programming system embedded in R5RS [ABB+98] and
abstain from overusing the extra-logical features that are available.

We shall first use a running example of an expression gram-
mar/parser to explain our technical contributions and then switch
to an extensible JSON grammar/parser to successively illustrate
parsing, type checking, type inference and generation of syntax-
semantics pairs constrained by types, all within a single framework.

Our main contributions are: the clean-room declarative imple-
mentation of PURE3 (using the hygienic syntax-rules macro sys-
tem and MINIKANREN) relying on naturally declarative semantics:

• featuring logical laziness,
• (full) reversibility-by-default,
• on-line behavior for left-recursion, and
• binding schemes for controlled (weak) hygiene “breaking”

This paper is structured as a flow that first addresses the back-
ground aspects in the introduction, explains the ideas and the imple-
mentation of the new formalism in section 2 and then highlights the
use of the formalism by specifying an admittedly simple, yet con-
cise and flexible typing system in section 3. The problems in im-
plementing and using extensible transformations are addressed in
section 4. Related work is reviewed in section 5, while the conclu-
sions can be found in section 6. Full implementation using BIGLOO
and conforming to R5RS plus two relevant SRFI libraries is avail-
able at github [Kou].3

1.1 Definite Clause Grammars
DCG is a technique originating in Prolog that allows one to embed
a parser for a context-sensitive language into logic programming,

3 note that our use of R5RS is flavored by macro-expressible pattern-
matching as well as a few syntactic liberties for recursive (def) and non-
recursive (defn) bindings, brackets and lexical syntax (viz. reader-macros)

draft 1 2014/9/24

via Horn clauses. Logic programming languages such as Prolog
and MINIKANREN also support relational programming. Instead of
functions and procedures there are predicates that specify relations
between terms. Rather than enforcing a particular way of evalua-
tion, these languages specify a resolution (i.e., a search) procedure
that can be applied and controlled in many ways. We explain the
way how this is done in MINIKANREN in section 2.1. These fea-
tures imply that a carefully designed grammar/parser can be run
forwards (i.e., generating semantics from syntax), backwards (i.e.,
generating syntax from semantics) and sideways (e.g., constrained
generation of syntax-semantics pairs).

A particularly nice feature of DCGs is its declarative nature and
yet executable semantics [PW80]. This can be seen in the BNF
specification as well as in the following Prolog code for a trivial
context-free grammar/recognizer with precedence below.

<factor> ::= <literal> | <factor> ’^’ <literal>
<term> ::= <factor> | <term> ’*’ <factor>

| <term> ’/’ <factor>
<expr> ::= <term> | <expr> ’+’ <term>

| <expr> ’-’ <term>

Assuming a suitable definition of the literal predicate, the
BNF can be automatically converted to the corresponding Prolog
DCG rules, or, as shall be shown in section 2.2, to R5RS and
MINIKANREN using the syntax-rules. Both kinds of encodings
are “almost” directly executable, modulo left-recursion - a problem
that plagues many recursive descent systems, and which we address
by a novel technique of logical laziness in section 2.4.

%% An ideal Prolog DCG for a trivial expression grammar
factor --> factor, [^], literal.
factor --> literal.
term --> term, [*], factor.
term --> term, [/], factor.
term --> factor.
expr --> expr, [+], term.
expr --> expr, [-], term.
expr --> term.

As shall be become apparent shortly, the DCGs are more pow-
erful than just Chomsky Type-2 systems (context-free grammars,
or non-deterministic push-down automata) and in fact can express
attribute grammars by allowing the predicates to take arguments
that are used to compute variables bottom-up (i.e., a feature iden-
tical to synthesized attributes) or to generate and pass around
non-instantiated variables (i.e., a feature identical to inherited at-
tributes). This opens the door to concise [FBK05], declarative spec-
ification of typing systems, relational interpreters [Byr10] as well
as a way towards a practical DSL for bidirectional transformations.

1.2 Parsing Expression Grammars
This grammar formalism [For04] dispenses with complexities of
LL/LR grammars, takes a step back to recursive descent, and then
extends it with a few combinators inspired by Type-3, regular lan-
guages. In addition, the PEG formalism introduces syntactic and-
and not-predicates as well as prioritized choice (used for grammar
disambiguation). This is an improvement over plain recursive de-
scent because explicit recursion is often avoided (by turning it into
primitive recursion via the Kleene-∗ and + operators).

One nice aspect of PEGs is better surface syntax for common
patterns of programming parsers and transformations. For exam-
ple, the expr predicate from the section above can be concisely
specified as the following recognizer.

(pcg expr ([] ⇔ [term] [([’+ / ’-] : [term]) *]))

Looking ahead, we might define a recognizer for a context-
sensitive language (using our pcg rules introduced in the next
section) with PEG combinators and syntactic predicates as follows:

;; A context-sensitive grammar with PEG combinators
(defn anbnan (pcg ⇔ S

(S ([] ⇔ when([A] ’a) (’a +) [B] unless([’a / ’b])))
(A ([] ⇔ ’a ([A] ?) ’b))
(B ([] ⇔ ’b ([B] ?) ’a))
))

It is apparent that PEGs and DCGs share many of the same ben-
efits and shortcomings. Syntactic predicates as well as the priori-
tized/ordered choice of PEG are naturally expressible as committed
choice in logic programming. Left-recursion, however, is still trou-
blesome and has to be either avoided, eliminated or solved by ad-
hoc methods such as cancellation tokens, curtailment or memoing
(see section 5).

2. Parsing Clause Grammars
In this chapter we introduce our implementation of DCGs which
we dub the Parsing Clause Grammar (PCG) as a tribute to the other
source of inspiration, the PEG. First, we introduce MINIKANREN
and provide a way to specify first-order predicates concisely us-
ing only the syntax-rules of R5RS. Then we show a few ex-
amples of the usefulness of higher-order predicates. Controlled ac-
cess to hygiene (i.e., weak hygiene “breaking”) is then used to let
syntax-rules implement an equational theory for name bindings
across disparate code fragments. Finally, we highlight PCG’s sup-
port for left-recursion in a pure, on-line fashion.

We make use of the macro-expressible pattern-matching (intro-
duced in [KS13]) in BIGLOO - a practical implementation of R5RS
[SW95]. The Scheme reader is extended with reader macros via
set-sharp-read-syntax! (see the Chicken Scheme wiki: Unit
library [Sch]) and provides a handler for #h form (see section 4
for a few examples) in order to obtain a stream of lexical tokens
unconstrained by the conventional Scheme syntax.

;; A recognizer, each clause a separate predicate
(pcg Factor

([] ⇔ [Factor] ˆ [literal])
([] ⇔ [literal]))

(pcg Term
([] ⇔ [Term] * [Factor])
([] ⇔ [Term] / [Factor])
([] ⇔ [Factor]))

(pcg Expr
([] ⇔ [Expr] + [Term])
([] ⇔ [Expr] - [Term])
([] ⇔ [Term]))

The translation of the expression grammar from the previous
section is straightforward with the pcg macro and is given above.
It defines several clause groups and binds a given name to the pred-
icate/function implementing a disjunction for each group. Please
see the code in section 2.4 for an illustration of MINIKANREN code
that is automatically generated for the Expr part of this recognizer.

• we assume that the Scheme read procedure has performed
lexical analysis on the input, that is, we deal only with syntactic
and semantic analysis of tokens produced by the reader
• BNF terminals are assumed to be interned Scheme atoms

such as literals (#true and #false), numbers, “strings” and
’symbols, which might include characters such as ([,]{.})
when wrapped in |vertical bars|. Terminals are auto-quoted.
• BNF non-terminals are translated to MINIKANREN predicates

(which are just regular, pure Scheme functions), where the first

draft 2 2014/9/24

two arguments represent PCG monadic state, the difference-
list. Note that unlike original DCGs we prepend the pair of
Lin/Lout variables comprising the diff-list at the beginning of
the argument list because our predicates are possibly variadic

2.1 Declarative logic programming with MINIKANREN

In this section we briefly introduce the way in which we use
MINIKANREN’s primitives [FBK05] such as success and failure
(#s and #u), binding of logic variables (fresh), unification (≡),
disjunctions (fair choice conde, soft-cutting conda, committed
choice condu), conjunctions (all), impure predicates (project
for reifying variables) and finally run/run* that provide the inter-
face between Scheme and the non-determinism monad that lies at
the heart of MINIKANREN.

;; the swiss army knife of logic programming

(def append0 (predicate
([‘() b b])

([‘(,x . ,a1) b ‘(,x . ,c1)] :- [append0 a1 b c1])
))

Predicates are introduced by either predicate or pcg macros
(these share many design aspects), and may have many clauses
inside. Each clause contains a head followed by an optional body.
We borrow the syntax from Prolog, separate the head from the body
by a (:-) form and introduce an implicit disjunction between all
clauses. By convention shared with syntax-rules, predicate
clause heads may begin with any tag identifying the clause or with
just a wildcard [] while pcg clause heads (e.g., for recognizers)
may be empty [], in which case they don’t unify any passed
arguments. If the pcg head is not empty but contains only the
[] tag then the (thus variadic) predicate will unify exactly one
argument with each consumed token in the input, point-wise.

;; e is somewhere in t ;; using explicit disjunction

(def member0 (predicate (def member0 (predicate
([e ‘()] :- #u) ([e ‘()] :- #u)
([e ‘(,e . ,t)]) ([e ‘(,h . ,t)] :-
([e ‘(,h . ,t)] :- ([≡ e h] / [member0 e t]))

[member0 e t])))))

By design shared with MINIKANREN, juxtaposition of goals
(in the body) and clause attributes (in the head) corresponds to
the conjunction. As is observed from 2 versions of the member0

predicate above, explicit PEG-style disjunction in clause bodies is
often essential,4 avoiding duplication of clause bodies and heads.

In contrast to MINIKANREN, PURE3 advocates Prolog-style
automatic inference of bindings. Unlike Prolog, however, in all
predicate examples, variable names are extracted from clause
heads and then are equated with the corresponding bindings from
clause bodies using the Term-Rewriting System (TRS) equational
theory that is explained in section 2.3.

Because of this, no binding can be used in a clause body without
it being mentioned first in the clause head, which enforces fully re-
versible predicates which are “correct-by-construction”. For some
predicates, there may be fresh bindings introduced in the head but
not used in the body (e.g., fresh0 in section 2.4) or there may be
bindings (see locals: spec) that are not explicitly named in the
head but used in the body to build some synthesized attribute that
is mentioned in the head (e.g., the prefix0 in section 2.4)

2.2 Macro-expressibility of PCG rules
The pcg macro builds upon the structure introduced in the previous
section and provides (1) natural representation of the syntax for
terms of the expression grammar - to the right of ⇔, (2) natural

4 note that our disjunction is pure (conde) by default. Soft-cut resp. commit-
ted/ordered choice are introduced explicitly by *-> resp. -> combinators

representation of semantics, i.e., an AST - to the left of ⇔, (3)
direct-style operator associativity and precedence and (4) inverse
for free (note that we separate the clause head from the clause body
by⇔ to indicate full reversibility). Our final version of a reversible
syntax-semantics relation for expressions is given in figure 1.

(pcg
(Factor
([‘(ˆ ,x ,y)] ⇔ [Factor x] ˆ [literal y])
([x] ⇔ [literal x]))

(Term
([‘(* ,x ,y)] ⇔ [Term x] * [Factor y])
([‘(/ ,x ,y)] ⇔ [Term x] / [Factor y])
([x] ⇔ [Factor x]))

(Expr
([‘(+ ,x ,y)] ⇔ [Expr x] + [Term y])
([‘(- ,x ,y)] ⇔ [Expr x] - [Term y])
([x] ⇔ [Term x])

))

Figure 1. Pure, declarative PCG parser analyzer

The design of PCG (see figure 2) is centered around a set
of syntax-rules macros: seq for processing clause bodies,
process-args for clause heads, predicate and pcg that glue
everything together.5

miniKanren

Parsing

Clause

Grammar

R5RS Scheme

PCG

standard library

unify+projectfresh+cond*

syntax−rules

PCG

Figure 2. PURE3 DSL architecture

The seq macro (see figure 5) implements the threading of
a difference-list, per-clause sub-goal sequencing, introduction of
a new logical temporary for each step and dispatching on the
shape of forms encountered as sub-goals (non-terminals, quasi-
data, atoms, escapes, ε, PEG combinators). By the very nature of
hygienic syntax-rules, both components of the difference list
(i.e., monadic state bindings) as well as all logical temporaries can
not leak to user code, making the PCG formalism safe. This macro
also performs a few optimizations such as skipping the introduction
of a new logical temporary at the end of the sub-goal list.

Since each temporary is introduced by a different invocation
of the seq macro, and yet 2 bindings get referred to by the gen-
erated code at each step (see section 2.4 for an example), an ex-
pander6 compatible with the Scheme Request for Implementation
(SRFI)#46: “Basic Syntax-rules Extensions” [Cam05] shall au-
tomatically rename it, while gratuitous bindings thus introduced
shall be removed by the BIGLOO compiler’s constant β-reduction
pass, as they are immediately shadowed by the fresh binder. The
syntax-rules therefore give us gratis, pure, declarative gensym!

Both predicate and pcg flavors of our syntax-rules macros
support named (see the pcg expr from section 1.2) as well as

5 due to space limits we can only refer to snippets of these in the appendix
6 we use the ALEXPANDER library ported to, and integrated with BIGLOO
as it still lacks a native and compatible syntax-rules expander

draft 3 2014/9/24

anonymous (see e.g., section 2.1) predicate abstractions. In addi-
tion, pcg macros allow specification of a group of possibly mutu-
ally recursive predicates where each is named and visible from the
top-level (see figure 1), as well as a group where a distinguished
predicate is selected as a start predicate (see the anbnan recog-
nizer from section 1.2) with the rest hidden from the top-level.

2.2.1 Higher-order rules
Since MINIKANREN predicates are represented by normal Scheme
functions, all the benefits of working in a Functional Programming
(FP) language are retained. The ne-list predicate shown below
supports repeated matching of the user-supplied elem predicate,
with the literal represented by the value of the comma argument
matched as a list separator.7

;; ... Passing functions into predicates ...
;; Monomorphic lists (for JSON), used in section 3.1
(defn [ne-list comma elem] (pcg ⇔ s
(s ([‘(,v)] ⇔ [elem v])

([‘(,v . ,vs)] ⇔
[elem v] [idem comma] [s vs])

)))

The recursion works out of the box for predicates such as
ne-list, which employ right-recursion. However, some gram-
mars such as the one from the notorious expression parser of figure
1, need to use left-recursion if the associativity of operators and the
naturality of the parser representation is to be maintained. We shall
present a “logical” solution for this problem in section 2.4.

;; ... Returning functions from predicates ...
;; Left-recursion avoidance (higher-order patching)
(pcg Factor
([π(λ (z) (y (if [null? z] x ‘[ˆ ,z ,x])))]
⇔ [literal x] ˆ [Factor y])

([π(λ (z) (if [null? z] x ‘[ˆ ,z ,x]))]
⇔ [literal x])

)

An example of a “functional” solution would be left-recursion
avoidance by returning functions from higher-order predicates
[For02]. A pcg representation of the Factor fragment of the
expression grammar illustrating this technique is shown above.
Note the similarity of this to the emulation of fold-left by
fold-right (see e.g., [Hut99]) and the technique introduced in
[DG05]. The use of the impure project (π) form,8 which requires
that variables are grounded (i.e., instantiated), precludes the use of
this predicate in reverse.

2.3 Breaking hygiene (look ma, no gensym)
In section 2.1 we explained why PURE3 uses inference of logic
variable bindings in order to promote (full) reversibility and to
avoid code clutter by explicit fresh introductions (see section 2.4
for a convincing case). In this section we show how inference can
be implemented in our process-args macro by “breaking” the
weak hygiene of syntax-rules.

It is well known that the promise of syntax-rules never to
cause the capturing of bindings (hygiene) can be subverted [Kis02].
The extract and extract* macros implementing the so-called
Petrofsky’s extraction are typically used to capture the bindings
regardless of their color (scope information) and pass them further
to the other macros. The feature of syntax-rules that makes this
possible is the semantics of macro literals [ABB+98].

A first step towards an equational theory of name binding across
disparate code fragments using a TRS consists of extracting the

7 via explicit lifting using the idem predicate, defined in the appendix
8 the straightforward implementation of π is elided in this paper

free variables from a tree of terms (w syntax-rules macro). We
assume the weak hygiene where all bindings are intended to be
local and are not redefined outside of the terms being processed.
This is exactly the same assumption that extract macro makes
(see [Kis02] for further details).

;; Ignoring (some) Scheme primitives
(def-syntax (scheme-bindings (k a b [s ...] . d))

(k a b [s ... if cond begin null? list first second
pair? car cdr + - * / ˆ = ≡ : ...] . d))

Of course, all binders must be known to this macro (and names
thus introduced must be skipped in appropriate scopes), in addition
to all of the eigen primitives that must not be considered free in
given terms. This is accomplished using the macro given above,
which employs the macro-level Continuation Passing Style (CPS)
[HF00] to bootstrap the w macro by including common Scheme
primitives in a list of bindings already processed.

2.3.1 Handling attributes
In the process of generating fresh and projected predicate ar-
guments for the inferred attribute bindings we need to make sure
that the bindings given to the binder correspond to the bindings
captured from the body. If there are no bindings then we default to
some construct like begin or all. For project, we verify that all
attributes are grounded and vacuously succeed otherwise.

;; Introducing the fresh and project binders
(def-syntax make-scopes (syntax-rules (project)

([] #s) ;; nothing to do - just succeed
([() default . body] (default . body))
([project (var ...) . body]

(project (var ...)
(or (and (ground? var) body) #s)

))
([binder vars . body]
(let-syntax-rule ([K args terms]

(binder args . terms))
(extract* vars body (K [] body))

))
))

Now we’re ready to complete the third step: attacking the
process-args macro, which makes sure that the resolution of
the synthesized attributes in the clause head, the clause body, log-
ical actions, and finally - evaluation of projected code - are all
scheduled appropriately. Correct sequencing is essential for re-
versibility - when run in reverse the synthesized attributes actually
provide the inputs, and hence must resolve first. When running
forwards, resolving them first does no harm, since clause heads
can only indirectly employ constructs made available through the
process-args implementation - unification using quasi-data and
conjunction using all (disjunctions and recursion are not available
inside clause heads). Projections (π) can only run in forward mode
and always after resolving the clause body.

Reversible logical actions (not explained in this paper in detail,
but see section 3.2 for a use-case) have to run after clause body
terms when running forwards but before when run in reverse. Non-
reversible actions, as implemented by escapes in the seq macro,
are left to be explicitly scheduled by the user in clause bodies.

We ignore (inherited) attributes that are explicitly bound from
outside when looking for free bindings, but do include them into
the list of attributes to generate using the make-scopes macro.
Each attribute in the clause head gets unified with the respective
argument of the clause function,9 while the final void attribute tail
gets syntax-bound (i.e., renamed) to ’() as is customary in Scheme
variadic functions.

9 using a technique similar to the seq macro described above

draft 4 2014/9/24

Now we can bring together the full reversibility-by-default
and attribute bindings inference (as implemented by the seq and
process-args macros), and actually complete our TRS for the
predicate clause forms as it is implemented by the pcg/predicate
macro. Each clause is translated to a separate R5RS function which
implements all aforementioned aspects of the corresponding pred-
icate logic. Despite the seeming restriction that each clause is vis-
ible from the top-level, Scheme’s define form actually is macro-
expressible by the letrec binder when it precedes all other forms
in a block. This is useful for implementing the pcg variants that
hide internal predicates and expose a single starting predicate func-
tion to the top-level.10

Synthesized attributes Similar to the S-attributed grammars,
where inherited attributes are not allowed, PURE3 also is tuned for
seamless expression of grammars with only synthesized attributes.
In fact, all examples introduced so far used no local: attribute
specifications, inferring the attributes in clause bodies from clause
heads. Together with the ban on project (π), this enforces the
fully reversible behavior in a “correct-by-construction” way.

Inherited attributes Having no possibility of generating and
passing non-instantiated logic variables severely restricts the ex-
pressiveness of the formalism. There are examples of when such
a strategy for implementing semantics is essential, e.g., predicates
from section 3.2. Here we illustrate PURE3’s implementation of
inherited attributes using a particular way of solving left-recursion
by left-factoring that is commonly used in e.g., Prolog community.

;; Left-recursion elimination by left-factoring
(defn exprs (pcg ⇔ expr
(factor locals: (x)
([y] ⇔ [literal x] [factor’ x y]))

(factor’ locals: (y)
([x z] ⇔ ˆ [literal y] [factor’ ‘(ˆ ,x ,y) z])
([x x] ⇔ ε))

(term locals: (x)
([y] ⇔ [factor x] [term’ x y]))

(term’ locals: (y)
([x z] ⇔ * [factor y] [term’ ‘(* ,x ,y) z])
([x z] ⇔ / [factor y] [term’ ‘(/ ,x ,y) z])
([x x] ⇔ ε))

(expr locals: (x)
([y] ⇔ [term x] [expr’ x y]))

(expr’ locals: (y)
([x z] ⇔ + [term y] [expr’ ‘(+ ,x ,y) z])
([x z] ⇔ - [term y] [expr’ ‘(- ,x ,y) z])
([x x] ⇔ ε))

))

Left-factoring is usually understood as the process of introduc-
ing additional predicates for matching common prefix terms of
a number of clauses and then factoring them out from the orig-
inal predicates. Although most often used for optimization, this
technique proves helpful in converting left-recursion into right-
recursion. One has to be careful, however, not to change the as-
sociativity of the operators when applying left-factoring.

Let us implement left-recursion elimination using PCG. Here,
the parent predicate (e.g., expr’) binds a fresh variable for the
inherited attribute using the locals: spec and then passes it to
the child predicate (e.g., term) which resolves the attribute and
communicates it to its sibling. The recursive call then unifies the
semantics with a newly formed AST node upon completion. Note
that this bears strong resemblance to the L-attributed grammars.

Although PURE3 definitely supports it, this approach does not
possess naturally declarative semantics, since the semantic ac-
tions are now interwoven with the syntax. Also, similarly to left-

10 we refer to our github for further details about select and pcg

recursion avoidance in section 2.2.1, the attribute resolution is de-
layed until the end of the input, which prohibits on-line, incremen-
tal parsing. Section 2.4 presents a better approach to left-recursion.

2.3.2 Handling binding in combinators
Consider the semantics of Scheme’s (-) function: it is left-
associative and accepts non-zero number of arguments. One might
define both the syntax and semantics of (-) using the PEG’s ∗
combinator as follows, assuming the variadic handling of the oper-
ator in the AST:

;; Minus in Scheme has arity >= 1
(pcg -’ ([‘(- ,t . ,ts)]⇔[term t] [(’- : [term ts])*]))

Note that this avoids explicit recursion. However, now the ∗
combinator has to collect all elements of the input matching the
term ts predicate invocation into a list, while each invocation of
the term predicate still unifies with a single term only. This implies
that representing each attribute as it is being synthesized with a
single logical variable is not sufficient. In fact, we need 4 logical
variables for each attribute: one for returning the final result, one
when matching on each term, one for the accumulator and another
one for the intermediate results as needed for looping in the seq
rule that implements the Kleene-∗ operator.

2.4 Pure, on-line left-recursion
Now we’re well-equipped to attack left-recursion in PCG rules by
applying the technique of logical laziness. This problem arises due
to the infinite regress when a predicate recurses while not having
consumed anything from the input. Still, direct-style associativity
prevents us from applying left-recursion elimination or avoidance
while the need to support left-recursion in a pure, on-line and fully
reversible fashion precludes usage of impure techniques such as
curtailment or memoing. Looks like we’re stuck.

;; Diverging R5RS code generated for Expr (+) clause:
(define head 422 (λ (Lin Lout . vars)

(fresh (y x) (≡ vars (cons (list ’+ x y) ’()))
(fresh (temp 505 temp)

(Expr Lin temp x)
(≡ temp (cons ’+ temp 505))
(Term temp 505 Lout y)

))))
;; ... head 424 and head 426 elided ...
(def Expr (λ vs (conde ((apply ([extend] ’Expr) vs))
((apply head 422 vs)) ;; ([‘(+ ,x ,y)] ⇔ ...)
((apply head 424 vs)) ;; ([‘(- ,x ,y)] ⇔ ...)
((apply head 426 vs)) ;; ([x] ⇔ ...)

)))

Looking at the diverging generated code for the Expr gram-
mar fragment from figure 1 (see above) we immediately observe
the problem: the base case of this non-well-founded recursion
(head 426) is never reached. Fortunately, the problem has a sur-
prisingly simple solution which we dub “logical laziness”. It com-
prises several steps all of which are automated using the pcg and
the seq - both pure and declarative syntax-rules macros.

1. identifying (mutually) recursive clauses (section 2.2)

2. marking of such clauses using the lift form (can also be explic-
itly marked by the user if needed, as e.g., in section 4.3)

3. untying the recursive knot and insertion of replacement calls to
append0 (section 2.1) with dummies (variable d below)

4. delaying of the resolution and subsequent dropping of recursive
calls at the very end (or very beginning) of a clause body

5. tying the knot by unifying the difference list with [d ’()]

draft 5 2014/9/24

In essence, here we apply a predicate transformation where the
order of predicate resolution is adapted to suit the resolution proce-
dure. The grammar designer is not required to apply workarounds
for left-recursion and can regain a high-level view as in figure 1,
as long as the set of mutually recursive predicate clauses can be
automatically identified by our pcg macro. The code below that is
generated for the same grammar fragment exhibits the technique.

;; Reversible R5RS code generated for Expr clause:
;; ([‘(+ ,x ,y)] ⇔ [Expr x] + [Term y])
(define head 422 (λ (Lin Lout . vars)
(fresh (y x) (≡ vars (cons (list ’+ x y) ’()))

(fresh (temp 505 temp d)
(project (Lin) (if (ground? Lin) #s (Expr d ’() x)))

(append0 d temp Lin)
(≡ temp (cons ’+ temp 505))
(Term temp 505 Lout y)
(project (Lin) (if (ground? Lin) (Expr d ’() x) #s))

))))

This technique has the advantage of maintaining both naturality
of the grammar as well as full reversibility of the resulting parser.
When the input Lin is grounded (i.e., the parser is running for-
wards), the recursive call is delayed to the very end of the clause, ef-
fectively making it tail-recursive. When the parser is running back-
wards (i.e., the input Lin is fresh), the recursive call has to run first
in the clause, because otherwise the recursion becomes non-well-
founded, this time due to semantic destructuring of the vars.

;; (prefixed) infinite streams of logic variables

(def (fresh0 x) (def fresh0 (predicate
(conde ([≡ x ’()]) ([’()])

(else (fresh (y z) ([‘(,y . ,z)] :-
(fresh0 z) (fresh0 z)
(≡ x ‘(,y . ,z)))))

))))

(defn (prefix0 a b) (defn prefix0

(fresh (x) (predicate locals: (x)

(fresh0 x) ([a b] :- (fresh0 x)

(append0 a x b) (append0 a x b)
)))))

Does this work as promised, in an on-line fashion? Lets generate
an infinite input using predicates above (where both MINIKANREN
and PURE3 versions are given) and verify by running!

;; Parsing prefixed infinite input stream
(verify Expr (run 1 (q)

(fresh (l)

(prefix0 ’(1 * 2 + 3 * 5) l)
(Expr l ’() q)))

===> (+ (* 1 2) (* 3 5)))

One disadvantage of this technique is the non-determinism (and
thus a quadratic-time slowdown) introduced by the append0. In
practice, however, this is not problematic because non-determinism
often is and/or can be easily constrained by putting the limit to the
lookahead by tokens that immediately follow the recursive call.

3. Type systems a la carte
Having introduced all the tools necessary to attack a more practical
problem of adding types to a fully reversible JSON parser, we now
turn to figure 3, which depicts a type-free implementation of the
JSON syntax.11 This PCG is our starting point for this section.

The semantics is represented by the AST where JSON literals
remain strings, symbols and numbers. Name-value pairs become
List Processing (LISP) pairs, while arrays and objects turn into

11 we rely on BIGLOO reader for symbol, string and number parsing

(pcg
(json-symbol ([x] ⇔ [strings x]))
(json-key = json-symbol)
(json-number = number)
(json-bool ([] ⇔ (’true / ’false)))
(json-value ([] ⇔ ’null)
([x] ⇔ [json-bool x])
([x] ⇔ ([json-symbol x] / [json-number x]))
([x] ⇔ ([json-object x] / [json-array x])))

(json-pair ([‘(,n . ,v)] ⇔
[json-key n] |:| [json-value v]))

(json-value-list ([’()] ⇔ ε)
([l] ⇔ [(ne-list |,| json-value) l]))

(json-pair-list ([’()] ⇔ ε)
([l] ⇔ [(ne-list |,| json-pair) l]))

(json-array
([‘(arr . ,es)] ⇔ |[| [json-value-list es] |]|))

(json-object
([‘(obj . ,es)] ⇔ |{| [json-pair-list es] |}|))

)

Figure 3. Type-free JSON

explicitly tagged lists of JSON values. This grammar is interesting
because of this recursion and the presence of various data-types.

3.1 Type checking

Base Types Pairs, Lists

Γ`null:U
(UNIT) T0={U,B,S,N},S×T1

T1=T0∪{A(T1),O(S,T1)}
x∈{true,false}

Γ`x:B
(BOOL) ∀t:T1,Γ`v1,...vn:t

Γ`[v1,...vn]:A(t)
(ARRI)

x∈Strings
Γ`x:S

(STR) ∀t:T1,Γ`k:S,Γ`v:t
Γ`(k,v):S×t

(PAIRI)

x∈R
Γ`x:N

(NUM) ∀t:T1,Γ`v1,...vn:S×t
Γ`{v1,...vn}:O(S,t)

(OBJI)

Table 1. Typing rules for monomorphic JSON

Thanks to the availability of unification, addition of types to the
grammars using PURE3 is easy. In figure 4 on the left-hand side
(i.e., the semantics), each clause is extended with an additional
attribute, while the right-hand side (i.e., the syntax) is essentially
not modified. The higher-order ne-list predicate (section 2.2.1)
is not touched for the monomorphic lists, a variant for introducing
types in JSON that ensures homogeneity of objects and arrays
through static typing.

;; Monomorphic JSON lists (i.e., arrays and objects)
(pcg ;; replace these in Figure 4. below
(json-value-list

([’() ‘(List ,t)] ⇔ ε)
([l ‘(List ,t)] ⇔
[(ne-list |,| (json-value t)) l]))

(json-pair-list
([’() ‘(PList (,t1 ,t2))] ⇔ ε)
([l ‘(PList (,t1 ,t2))] ⇔
[(ne-list |,| (json-pair ‘[Pair ,t1 ,t2])) l])

))

Conventional typing rules are given in table 1 while their trans-
lation to PURE3 is a straightforward extension of rules from figure 3
with typed versions of json-value-list and json-pair-list
predicates. The code above implements the ARRI, PAIRI and OBJI
typing rules (the rest of the rules can be found in figure 4). We rely
on sectioning to partially apply the json-value and json-pair
predicates to known types, and to introduce type schemes (con-
taining “fresh” types) for empty containers. The logical unification
ensures type correctness by applying the same types throughout the
lists once they are instantiated, leading to monomorphic containers.

draft 6 2014/9/24

(defn tjson-value (pcg ⇔ json-value
(json-symbol extend: extend ([x ’Str] ⇔
[strings x]))

(json-key extend: extend ([x t] ⇔
[json-symbol x t]))

(json-number ([x ’Num] ⇔ [number x]))
(json-value ([’null ’Unit] ⇔ ’null)
([x ’Bool] ⇔ [json-bool x])
([x t] ⇔ ([json-symbol x t] / [json-number x t]))
([x t] ⇔ ([json-object x t] / [json-array x t])))

(json-pair ([‘(,n . ,v) ‘(Pair ,tn ,tv)] ⇔
[json-key n tn] |:| [json-value v tv]))

(json-value-list ([’() ‘(List ,t)] ⇔ ε)
([l ‘(List ,ts)] ⇔
[(poly-ne-list |,| json-value) l ts]))

(json-pair-list ([’() ‘(PList (,t1 ,t2))] ⇔ ε)
([l ‘(PList . ,ts)] ⇔
[(poly-ne-list |,| json-pair) l ts]))

(json-array ;; promote List to an Array
([‘(arr . ,es) ‘(Array ,t)] ⇔
|[| [json-value-list es ‘(List ,t)] |]|))

(json-object ;; promote List to an Object
([‘(obj . ,es) ‘(Object ,ts)] ⇔
|{| [json-pair-list es ‘(PList . ,ts)] |}|))

))

Figure 4. Typed, extensible JSON

Note that we are making the json-symbol and json-key pred-
icates extensible via extend: spec. This shall prove its usefulness
in section 4 where we extend the set of JSON values by proper sym-
bols and JSON keys by numbers and booleans while preserving the
modularity and compositionality of the grammar above.

3.2 Type inference
The previous section has introduced type-checking to JSON for
monomorphic containers denoting objects such as arrays of num-
bers or objects of pairs of strings. Such types can be either
checked (provided they are given as instantiated attributes to the
tjson-value predicate), or inferred (provided they are given as
free logic variables). However, for homogeneous arrays and ob-
jects, inference in this context will typically mean that the type
shall be derived using the first element (pair), with the rest of the
elements simply checked against the already instantiated type.

T2=T1∪{
∑

(T2,T2)} ∃i:t=ti∑
(t,

∑
ti)=

∑
ti

(SUM1)

T3=T1∪{A(T2),O(S,T2)} ∀i:t6=ti∑
(t,

∑
ti)=

∑
ti+1

(SUM2)

T2∼=
∑

(T2) (VACU)

∀t∈T2

Γ`[]:A(t)
(ARR0) ∀t∈T3,Γ`x:t,y:A(

∑
ti)

Γ`[x]⊕y:A(
∑

(t,
∑

ti))
(ARR*)

∀t∈T2

Γ`{}:O(S,t)
(OBJ0) ∀t∈T3,Γ`x:t,y:O(S,

∑
ti)

Γ`(s,x)⊗y:O(S,
∑

(t,
∑

ti))
(OBJ*)

Table 2. Typing rules for polymorphic JSON

In this section we develop a more general notion of type in-
ference for JSON. Rather than insisting on monomorphic lists, we
allow polymorphism. The mechanisms included in PURE3 support
the declarative specification of a larger class of polymorphic typ-
ing rules. With such rules, a sum-type can appear in type terms,
expressing the set of possible value-types that might appear in a
given JSON list. The polymorphic typing rules are given in table 2.

To implement the SUM1 and SUM2 rules we introduce the
following predicate, which handles injection and insertion of types
into a set of types. This is easily accomplished using the soft-cut, or
logical “if-then-else” construction (also available in many Prolog
implementations). In the sigma predicate below, the type is first

checked for membership in a given union representing a set of
types. If found, the set is unified with the result. Otherwise, a new
set that is formed by insertion of the new type is returned.

;; Working with types
(defn sigma (predicate locals: (ts’)
([t ‘(Union . ,ts’) ‘(Union . ,ts)] :-
([member0 t ts’] *-> [≡ ts’ ts]

/ [insert0 t ts’ ts]))
([t t’ ts] :-
([≡ t t’] *-> [≡ t’ ts]

/ ([! car0 t’ ’Union]
:[≡ ts ‘(Union . ,ts’)]

:[insert0 t ‘(,t’) ts’])))
))

This predicate also keeps unions non-vacuous by collapsing
singleton sets to their isomorphic member (VACU rule) using “soft-
cuts” (*->) and enforces flat unions via “negation-as-failure” (!).

;; Polymorphic lists
(defn [poly-ne-list comma elem] (pcg ⇔ s
(s locals: (t ts’)
([‘(,v) t] ⇔ [elem v t])
([‘(,v . ,vs) ts] <=[(sigma t ts’ ts)]=>
[elem v t] [idem comma] [s vs ts’])

)))

Because the PCG predicate that matches a list of JSON values
is required to compute new types as it parses the input terms, it can
not remain homomorphic in the presence of polymorphic types, as
the ne-list predicate. A straightforward extension that uses the
sigma predicate above, and which implements the ARR* and OBJ*
rules from table 2 is shown above (poly-ne-list predicate). It
utilizes a reversible logical action (using the <=[actions ...]=>
syntax) to make sure that the type inference of the JSON values is
performed in a fully reversible way (see section 2.3.1 above).

3.3 Term generation
We make no distinction between the parsing and the typing phases
- both kinds of semantic attributes are computed together. Looking
at the figure 4, we observe that types are just like other semantic
attributes, obtained by removing some details from semantic terms
(the AST), in a way that parallels abstract interpretation [CC77].
Using PURE3, one might even compute a number of different types
or kinds of semantics via unification of PCG attributes in parallel.

;; Constrained generation of syntax-semantics pairs
(verify enum1 (run* (q) (fresh (x) (tjson-value

x ’() q ‘(Object (Pair Bool Num)))))
=>) ;; there are no terms of this type (yet)

;; there are infinitely many terms of this type
(verify enum2 (run 5 (q) (fresh (x) (tjson-value

x ’() q ‘(Object (Pair Str Num)))))
---> (obj ("a" . 0)) (obj ("b" . 0)) (obj ("a" . 1))

(obj ("a" . 0) ("a" . 0)) (obj ("a" . 2)))

Because of this, the constrained generation of syntax-semantics
pairs based on types is just a mode of running PCG predicates.

4. Extensibility
For JSON, one of common objections is the lack of human-friendly
surface syntax. CSON [Lup], for example, dispenses with the need
to quote all symbols as JSON strings. It is therefore useful to allow
contained extensibility for the specification of DSL families.

The PCG formalism as introduced so far supports a rather rigid
specification of syntax and semantics. Referential transparency of
the pure predicates implies that any local change done to a grammar
requires redefinition of all dependent predicates. Relying on im-
plicit reference cells as used by Scheme’s define primitive would

draft 7 2014/9/24

not work with pcg rules that hide internals. Also, there are difficul-
ties with this approach when running it on the BIGLOO interpreter
as well as with BIGLOO’s native, and Java Virtual Machine (JVM)
back-ends, which disallow redefinition of procedures [Se].

In PURE3 we would like to be able to introduce orthogonal (i.e.,
homomorphic) extensions to both syntax and semantics, in a com-
positional and modular fashion. For example, a natural extension
of the json-symbol predicate to include proper symbols as JSON
values should not require a reiteration of the full grammar from
figure 4. Also, some DSLs would benefit from an external JSON-
like representation of sparse arrays, i.e., maps where the object key
(json-key clause) can be numeric rather than always only a string.

;; Allow symbols as values
(defn [tjson-ext-sym] (let ([extend’ (extend)])

(fn-with [apply extend’] | ’json-symbol =>
(pcg ([x ’Sym] ⇔ [symbol x]))

)))
;; Allow numbers and booleans as keys
(defn [tjson-ext-key] (let ([extend’ (extend)])

(fn-with [apply extend’] | ’json-key =>
(pcg ([x ’Num] ⇔ [number x])

([x ’Bool] ⇔ [json-bool x]))
)))

Using the anonymous functions with pattern-matching (as de-
scribed in [KS13]), we can define extensions in a straightforward
fashion, as shown above. Here we make use of dynamic bind-
ing mechanism implemented by the SRFI#39: “Parameter objects”
[Fee03]. The current value of the extend parameter object is saved,
and the tag passed to the extension call is checked. If it matches the
extended predicate’s name, then new clause(s) generated by the pcg
macro are returned as the predicate extension. Otherwise, saved ex-
tension is invoked (via the [apply extend’] handler).

This way, the predicates can be row-extended seamlessly. The
Expr predicate function in the generated code from section 2.4
exposes the internals. As a first choice point introduced with
MINIKANREN’s conde, we invoke the extend parameter. By de-
fault, predicates returned by parameter objects fail, as below:

;; Implementing extensibility
(defn *def-extend* (λ (head) (λ (in out . results) #u)))
(defn extend [make-parameter *def-extend*])

In addition to the destructive updates expressed by calling the
parameter object with a single argument, the SRFI#39 supports
modifying dynamically scoped bindings with new values in a stati-
cally defined scope, specified via the parameterize form. This is
useful for expressing local, contained changes to PCG grammars.

;; Using extensible syntax
(parameterize ([extend (tjson-ext-sym)])
;; forwards
(verify test15.1 (run 1 (q) (fresh (x t) (tjson-value

’#h: [{foo:quux},{bar:snarf},1] ˆL ’() x t)
[≡ q ‘(,t ,x)]))

===> [(Array (Union (Object (Pair Sym Sym)) Num))
(arr (obj (foo . quux)) (obj (bar . snarf)) 1)])

;; backwards
(verify test15.2 (run* (q) (tjson-value

q ’() ’[obj (a . (arr "b" "2.3"))]
‘(Object (Pair Sym (Array Str)))))

===> (|{| a |:| |[| "b" |,| "2.3" |]| |}|)
))
(parameterize ([extend (tjson-ext-key)])
(verify test15.3 (run* (q) (fresh (x t) (tjson-value

’#h: [{12: "quux"},{42: "snarf"}] ˆL ’() x t)
[≡ q ‘(,t ,x)]))

===> [(Array (Object (Pair Num Str)))
(arr (obj (12 . "quux")) (obj (42 . "snarf")))]

))

4.1 Chaining extensions
Often, extensions make sense only when applied together, as a
group. PURE3 supports expression of extension dependencies by
static chaining of corresponding extension functions. This can be
achieved by simply capturing the dependent extension rather than
the current value of the parameter object in dependee’s definition:

;; A contrived example of chaining ext-key to ext-sym
(defn [ext-key] (let ([extend’ (ext-sym)]) ...))

4.2 Composing extensions
Because each extension hooks onto the current value of the extend
parameter object, we can also compose such extensions in a natural
way - simply by nesting appropriate parameterize scopes.

;; Composing JSON extensions
(parameterize ([extend (tjson-ext-sym)])
(parameterize ([extend (tjson-ext-key)])
(verify test16 (run* (q) (fresh (x t) (tjson-value

’#h: [{12:quux},{42:snarf}] ˆL ’() x t)
[≡ q ‘(,t ,x)]))

===> [(Array (Object (Pair Num Sym)))
(arr (obj (12 . quux)) (obj (42 . snarf)))])

))

While in section 4.1 the composition is static, here we apply
dynamic resolution and chaining of extensions referenced by the
extend parameter object. This improves the modularity for library-
based implementation of DSL families that support localization,
such as the JSON extensible parser grammar described here.

4.3 Power and danger
Combining extensions with committed choice (which can be forced
by the condo: PCG modifier), one can use extensions to sub-
vert existing grammar in a non-monotonic fashion. Although PCGs
only seem to support row-extensibility, addition of new clauses that
may take precedence over previous clauses is definitely possible.
The ability to recursively refer to previously defined clauses en-
ables extensions to the rows themselves. For example, the expres-
sion grammar can be extended with new operators as follows:12

;; Extending Term predicate
(defn Term+ (let ([extend’ (extend)][T’ Term])
(fn-with [apply extend’] | ’Term =>
(pcg ([π(@ x y)] ⇔ [lift T’ x] @ [Factor y]))

)))

Because we allow impure logical code here, and because the
escape to the Scheme level is made possible via MINIKANREN’s
run and project (π) primitives, the PCG predicates can be ex-
tended while parsing. For example, the @ in the clause head above
can be referring to any Scheme function or procedure, and that may
perform any (effectful) computation. Since the SRFI#39 allows de-
structive/imperative update to the extend reference cell, this alone
effectively makes the formalism Turing-complete (i.e., Chomsky
Type-0). This can be easily seen by translation to vW-grammars, or
2-level grammars whereby infinite context-free grammars can be
generated from a finite set of (Type-3, even) meta-rules [vW74].

5. Related work
A traditional approach to the problem of left-recursion is its effec-
tive elimination [HMU03]. The work that formalized PEGs avoids
left-recursion by putting it outside of the set of well-formed gram-
mars [For04]. With Prolog DCGs the problem is typically solved
via ad-hoc methods such as cancellation tokens [NK93], memoing

12 note that we need to explicitly lift the left-recursive call in this case

draft 8 2014/9/24

[BS08] or through elimination (see section 2.3.1 for a PCG ren-
dering of this). Parser combinators are often applying curtailment
[FH06] and [FHC08], an old idea to limit matches by the input
length [Kun65]. The work on OMETA has also advocated memo-
ing for solving left-recursion [WDM08].

Unlike prior art where programming was constrained to use
only reversible compositions of bijections [RO10] or where the re-
verse transformations are derived from the forward transformations
[Vis01] and OMETA [WP07], we maintain a single grammar/parser
that can be used in different modes: forwards, backwards, sideways
etc. Unlike the more restrictive formalism of lenses [FGM+05] and
[BFP+08] we do not rely on carrying the original sources along but
allow structural changes within the limits of the information theory.

Mode analysis, inference and scheduling of predicate resolu-
tions has been addressed, e.g., in Prolog [DW88] and in Mercury
[OSS02]. Our approach differs from those as it seamlessly inte-
grates with an existing FP language rather than relies on an abstract
interpretation framework implemented inside a dedicated compiler.

Of all proposals to improve the syntax of LISP going back
to “M-expressions”, “I-expressions” [M0̈5], sweet “t-expressions”
[DAW13] and CGOL [Pra73] the method of “enforestation”
[RF12] seems to be the closest to our approach. This work uti-
lizes the Pratt operator precedence parsing (which is less general
than PCG) that avoids rather than addresses issue of left-recursion.

6. Conclusions
Fully reversible syntax-semantics relations are enforced by a
“correct-by-construction” inference of logical variable bindings
from clause heads and equation of those with the bindings from
clause bodies. The information is not dissipated by default, so the
transformations remain reversible and in fact, might become very
inexpensive to run [Lan00] in the future. Parts of the information
may be hidden, which is useful for e.g., implementing updatable
views or for keeping programs invisibly statically typed.

The novel technique of logical laziness allows us to retain the
purely declarative style of on-line, left-recursive grammar specifi-
cations, without sacrificing either the direct-style associativity or
the naturality of the syntax, semantics and typing specifications.

We offer one possible answer to the question about what hy-
giene of syntax-rules actually means [Kis02]: it implements the
access to the name and binding in Scheme (i.e., scoping rules),
whereby hygiene is maintained by default while still supporting
equational theory of bindings across disparate code fragments. In
effect, (weak) hygiene breaking syntax-rules should be seen as
specifications of such theories [Her10] and not just as cool hacks.

PCGs are “macros no more”: we see no need to use arcane,
albeit elegant rewriting systems such as syntax-rules for pro-
gramming in a homoiconic language such as Scheme. The syn-
tax and the semantics are better specified using pure declarative
methods of PURE3, naturally expressing reversible (i.e., inferrable)
types, providing declarative disambiguation operators, enabling on-
line/incremental processing as well as providing support for essen-
tial error reporting and debugging interfaces for practical DSLs.

Acknowledgments
We would like to thank Oleg Kiselyov for noting the problem of
left-recursion in on-line parsers. This paper has benefited from the
discussions with Willam Byrd, Ralf Lämmel and Vadim Zaytsev.

References
[ABB+98] N. I. Adams, IV, D. H. Bartley, G. Brooks, R. K. Dyb-

vig, D. P. Friedman, R. Halstead, C. Hanson, C. T. Haynes,
E. Kohlbecker, D. Oxley, K. M. Pitman, G. J. Rozas, G. L.
Steele, Jr., G. J. Sussman, M. Wand, and H. Abelson. Revised5

report on the algorithmic language scheme. SIGPLAN Not.,
33(9):26–76, 1998. URL: http://doi.acm.org/10.1145/
290229.290234.

[ALSU06] Alfred V. Aho, Monica Lam, Ravi Sethi, and Jeffrey D. Ull-
man. Compilers: principles, techniques, and tools. Addison-
Wesley Longman Publishing Co., Inc., 2006.

[App06] Andrew W. Appel. Compiling with Continuations (corr. ver-
sion). Cambridge University Press, 2006.

[BD77] Rod M. Burstall and John Darlington. A transformation sys-
tem for developing recursive programs. J. ACM, 24(1):44–
67, 1977. URL: http://doi.acm.org/10.1145/321992.
321996.

[BFP+08] Aaron Bohannon, J. Nathan Foster, Benjamin C. Pierce,
Alexandre Pilkiewicz, and Alan Schmitt. Boomerang: re-
sourceful lenses for string data. In POPL, pages 407–419,
2008. URL: http://doi.acm.org/10.1145/1328438.
1328487.

[BS08] Ralph Becket and Zoltan Somogyi. Dcgs + memoing
= packrat parsing but is it worth it? In PADL, pages
182–196, 2008. URL: http://dx.doi.org/10.1007/
978-3-540-77442-6_13.

[Byr10] William E Byrd. Relational programming in miniKanren:
techniques, applications, and implementations. PhD thesis,
Department of Computer Science, Indiana University, 2010.

[Cam05] Taylor Campbell. Srfi 46: Basic syntax-rules extensions. Inter-
net, 2005. URL: http://srfi.schemers.org/srfi-46.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs by con-
struction or approximation of fixpoints. In Proceedings of the
4th ACM SIGACT-SIGPLAN symposium on Principles of pro-
gramming languages, POPL ’77, pages 238–252. ACM, 1977.
URL: http://doi.acm.org/10.1145/512950.512973.

[DAW13] Alan Manuel K. Gloria David A. Wheeler. Srfi 49: Sweet-
expressions (t-expressions). Internet, 2013. URL: http:
//srfi.schemers.org/srfi-110.

[DG05] Olivier Danvy and Mayer Goldberg. There and back again.
Fundam. Inform., 66(4):397–413, 2005.

[DM82] Luı́s Damas and Robin Milner. Principal type-schemes for
functional programs. In POPL, pages 207–212, 1982. URL:
http://doi.acm.org/10.1145/582153.582176.

[DW88] Saumya K. Debray and David Scott Warren. Automatic mode
inference for logic programs. J. Log. Program., 5(3):207–229,
1988.

[FBK] Daniel P. Friedman, William E. Byrd, and Oleg Kiselyov.
minikanren homepage. URL: http://minikanren.org.

[FBK05] Daniel P. Friedman, William E. Byrd, and Oleg Kiselyov. The
reasoned schemer. MIT Press, 2005.

[Fee03] Marc Feeley. Srfi 39: Parameter objects. Internet, 2003. URL:
http://srfi.schemers.org/srfi-39.

[FGM+05] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore,
Benjamin C. Pierce, and Alan Schmitt. Combinators for bi-
directional tree transformations: a linguistic approach to the
view update problem. In POPL, pages 233–246, 2005. URL:
http://doi.acm.org/10.1145/1040305.1040325.

[FH06] Richard A. Frost and Rahmatullah Hafiz. A new top-down
parsing algorithm to accommodate ambiguity and left recur-
sion in polynomial time. SIGPLAN Notices, 41(5):46–54,
2006. URL: http://doi.acm.org/10.1145/1149982.
1149988.

[FHC08] Richard A. Frost, Rahmatullah Hafiz, and Paul Callaghan.
Parser combinators for ambiguous left-recursive grammars. In
PADL, pages 167–181, 2008. URL: http://dx.doi.org/
10.1007/978-3-540-77442-6_12.

[For02] Bryan Ford. Packrat parsing: : simple, powerful, lazy, linear
time, functional pearl. In ICFP, pages 36–47, 2002. URL:
http://doi.acm.org/10.1145/581478.581483.

draft 9 2014/9/24

http://doi.acm.org/10.1145/290229.290234
http://doi.acm.org/10.1145/290229.290234
http://doi.acm.org/10.1145/321992.321996
http://doi.acm.org/10.1145/321992.321996
http://doi.acm.org/10.1145/1328438.1328487
http://doi.acm.org/10.1145/1328438.1328487
http://dx.doi.org/10.1007/978-3-540-77442-6_13
http://dx.doi.org/10.1007/978-3-540-77442-6_13
http://srfi.schemers.org/srfi-46
http://doi.acm.org/10.1145/512950.512973
http://srfi.schemers.org/srfi-110
http://srfi.schemers.org/srfi-110
http://doi.acm.org/10.1145/582153.582176
http://minikanren.org
http://srfi.schemers.org/srfi-39
http://doi.acm.org/10.1145/1040305.1040325
http://doi.acm.org/10.1145/1149982.1149988
http://doi.acm.org/10.1145/1149982.1149988
http://dx.doi.org/10.1007/978-3-540-77442-6_12
http://dx.doi.org/10.1007/978-3-540-77442-6_12
http://doi.acm.org/10.1145/581478.581483

[For04] Bryan Ford. Parsing expression grammars: a recognition-based
syntactic foundation. In POPL, pages 111–122, 2004. URL:
http://doi.acm.org/10.1145/964001.964011.

[GBJL02] Dick Grune, Henri E. Bal, Ceriel J. H. Jacobs, and Koen Lan-
gendoen. Modern Compiler Design. John Wiley, 2002.

[Her10] David Herman. A theory of typed hygienic macros. PhD thesis,
Northeastern University Boston, 2010.

[HF00] Erik Hilsdale and Daniel P. Friedman. Writing macros in
continuation-passing style. In Scheme Workshop, 2000.

[HMU03] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman.
Introduction to automata theory, languages, and computation
- international edition (2. ed). Addison-Wesley, 2003.

[Hut99] Graham Hutton. A tutorial on the universality and ex-
pressiveness of fold. J. Funct. Program., 9(4):355–372,
1999. URL: http://journals.cambridge.org/action/
displayAbstract?aid=44275.

[Kis02] Oleg Kiselyov. How to write seemingly unhygienic and ref-
erentially opaque macros with syntax-rules. In Scheme Work-
shop, 2002.

[Kou] Peter Kourzanov. purecube. Internet. URL: https://
github.com/kourzanov/purecube.

[KS13] Peter Kourzanov and Henk Sips. Lingua franca of functional
programming (fp). In Hans-Wolfgang Loidl and Ricardo Pena,
editors, Trends in Functional Programming, volume 7829 of
Lecture Notes in Computer Science, pages 198–214. Springer
Berlin Heidelberg, 2013. URL: http://dx.doi.org/10.
1007/978-3-642-40447-4_13.

[Kun65] Susumu Kuno. The predictive analyzer and a path elimination
technique. Commun. ACM, 8(7):453–462, 1965. URL: http:
//doi.acm.org/10.1145/364995.365689.

[Lan00] R. Landauer. Irreversibility and heat generation in the com-
puting process. IBM Journal of Research and Develop-
ment, 44(1):261–269, 2000. URL: http://dx.doi.org/10.
1147/rd.441.0261.

[Lup] Benjamin Lupton. Coffeescript-object-notation parser. Inter-
net. URL: https://github.com/bevry/cson.

[M0̈5] Egil Möller. Srfi 49: Indentation-sensitive syntax. Internet,
2005. URL: http://srfi.schemers.org/srfi-49.

[NK93] M.-J. Nederhof and Cornelis H.A. Koster. Top-down parsing
for left-recursive grammars. Technical Report 93-10, Univer-
sity of Nijmegen, Department of Computer Science, 1993.

[OSS02] David Overton, Zoltan Somogyi, and Peter J. Stuckey.
Constraint-based mode analysis of mercury. In PPDP, pages
109–120, 2002.

[Pra73] Vaughan R. Pratt. Top down operator precedence. In POPL,
pages 41–51, 1973. URL: http://doi.acm.org/10.1145/
512927.512931.

[PW80] Fernando C. N. Pereira and David H. D. Warren. Definite
clause grammars for language analysis - a survey of the for-
malism and a comparison with augmented transition networks.
Artif. Intell., 13(3):231–278, 1980. URL: http://dx.doi.
org/10.1016/0004-3702(80)90003-X.

[RF12] Jon Rafkind and Matthew Flatt. Honu: syntactic extension
for algebraic notation through enforestation. In GPCE, pages
122–131, 2012. URL: http://doi.acm.org/10.1145/
2371401.2371420.

[RO10] Tillmann Rendel and Klaus Ostermann. Invertible syntax de-
scriptions: unifying parsing and pretty printing. In Haskell,
pages 1–12, 2010. URL: http://doi.acm.org/10.1145/
1863523.1863525.

[Sch] Chicken Scheme. Unit library. Internet. URL:
http://wiki.call-cc.org/man/4/Unit%20library#
set-sharp-read-syntax.

[Se] Manuel Serrano and et.al. Bigloo homepage. URL: http:
//www-sop.inria.fr/indes/fp/Bigloo.

[SW95] Manuel Serrano and Pierre Weis. Bigloo: A portable and
optimizing compiler for strict functional languages. In SAS,
pages 366–381, 1995. URL: http://dx.doi.org/10.
1007/3-540-60360-3_50.

[Vis01] Eelco Visser. Stratego: A language for program trans-
formation based on rewriting strategies. In RTA, pages
357–362, 2001. URL: http://dx.doi.org/10.1007/
3-540-45127-7_27.

[vW74] Adriaan van Wijngaarden. The generative power of two-level
grammars. In ICALP, pages 9–16, 1974. URL: http://dx.
doi.org/10.1007/3-540-06841-4_48.

[WDM08] Alessandro Warth, James R. Douglass, and Todd D. Millstein.
Packrat parsers can support left recursion. In PEPM, pages
103–110, 2008. URL: http://doi.acm.org/10.1145/
1328408.1328424.

[Wel94] J. B. Wells. Typability and type-checking in the second-
order lambda-calculus are equivalent and undecidable. In
LICS, pages 176–185, 1994. URL: http://dx.doi.org/
10.1109/LICS.1994.316068.

[WP07] Alessandro Warth and Ian Piumarta. Ometa: an object-
oriented language for pattern matching. In DLS, pages 11–19,
2007. URL: http://doi.acm.org/10.1145/1297081.
1297086.

A. PCG syntax-rules

(def-syntax seq (syntax-rules (qq skip quote unquote
quasiquote unquote-splicing do ε when unless

? + * / : lift unlift)
;; handling escapes
([in out c acc ts hs do[acts ...] . rest]

(seq in out c (acts acc) ts hs . rest))
;; handling ε
([in out c acc tmps hs ε . rest]

(seq in out c ([≡ in out] . acc) tmps hs . rest))
;; handling sequencing (recursively)
([in out c acc temps [h(ac...)] (: . goals) . rest]

(let ([temp #false]);; generate a new temporary
(seq temp out c ((all

(seq in temp c () () [h(ac... . acc)]
. goals)) . acc)

(temp . temps) [h (ac ...)] . rest)
))

;; handling quasi-data (one-level only)
([in out c acc tmps heads (qq d) . rest]

(seq in out c acc tmps heads ‘d . rest))
([in out c acc tmps [h(ac ...)] ‘d . rest]

(let ([temp #false][data #false]);; new temporaries
(seq temp out c ((qs [] ;; remove quasi-quotation

(seq data ’() c () () [h(ac acc)]) ‘d)
[≡ in ‘(,data . ,temp)] . acc)

(temp data . tmps) [h (ac ...)] . rest)
))

;; handling non-terminals
([in out c acc temps heads [goal . args] . rest]

(let ([temp #false]);; generate a new temporary
(seq temp out c ([goal in temp . args] . acc)

(temp . temps) heads . rest)
))

;; handling atoms (this rule has to be the last one)
([in out c acc tmps heads datum . rest]
(let ([temp #false]);; generate a new temporary

(seq temp out c ([≡ in ‘(datum . ,temp)] . acc)
(temp . tmps) heads . rest)

))
))

Figure 5. TRS for threading PCG monadic state (abridged)

draft 10 2014/9/24

http://doi.acm.org/10.1145/964001.964011
http://journals.cambridge.org/action/displayAbstract?aid=44275
http://journals.cambridge.org/action/displayAbstract?aid=44275
https://github.com/kourzanov/purecube
https://github.com/kourzanov/purecube
http://dx.doi.org/10.1007/978-3-642-40447-4_13
http://dx.doi.org/10.1007/978-3-642-40447-4_13
http://doi.acm.org/10.1145/364995.365689
http://doi.acm.org/10.1145/364995.365689
http://dx.doi.org/10.1147/rd.441.0261
http://dx.doi.org/10.1147/rd.441.0261
https://github.com/bevry/cson
http://srfi.schemers.org/srfi-49
http://doi.acm.org/10.1145/512927.512931
http://doi.acm.org/10.1145/512927.512931
http://dx.doi.org/10.1016/0004-3702(80)90003-X
http://dx.doi.org/10.1016/0004-3702(80)90003-X
http://doi.acm.org/10.1145/2371401.2371420
http://doi.acm.org/10.1145/2371401.2371420
http://doi.acm.org/10.1145/1863523.1863525
http://doi.acm.org/10.1145/1863523.1863525
http://wiki.call-cc.org/man/4/Unit%20library#set-sharp-read-syntax
http://wiki.call-cc.org/man/4/Unit%20library#set-sharp-read-syntax
http://www-sop.inria.fr/indes/fp/Bigloo
http://www-sop.inria.fr/indes/fp/Bigloo
http://dx.doi.org/10.1007/3-540-60360-3_50
http://dx.doi.org/10.1007/3-540-60360-3_50
http://dx.doi.org/10.1007/3-540-45127-7_27
http://dx.doi.org/10.1007/3-540-45127-7_27
http://dx.doi.org/10.1007/3-540-06841-4_48
http://dx.doi.org/10.1007/3-540-06841-4_48
http://doi.acm.org/10.1145/1328408.1328424
http://doi.acm.org/10.1145/1328408.1328424
http://dx.doi.org/10.1109/LICS.1994.316068
http://dx.doi.org/10.1109/LICS.1994.316068
http://doi.acm.org/10.1145/1297081.1297086
http://doi.acm.org/10.1145/1297081.1297086

;; A snippet from the process-args macro implementation
;; base-case (generate code for args, terms and project)
([process-args k acc [] goals rest (e es ...)

aa res ps (locals ...)]
(let-syntax-rule ([K . vars] ;; collect the free vars
(let-syntax-rule ([K wv wp wt ws] ;; use extracted vars
(let-syntax ([K (syntax-rules () ;; use extracted pvars

;; ... other special cases elided ...
([pvars (ee . bis) pats (terms []) hots]
(make-scopes fresh bis all ;; schedule clause terms

(let-syntax ([ee ‘()]);; last ee=e must be empty
(all . pats)) ;; when resolving arguments,

terms ;; clause body in the middle,
(make-scopes project ;; projected terms delayed

pvars all . hots) ;; to the end of the clause
))
;; ... handlers for clauses with actions elided ...
)])
(extract* vars (wp wt) ;; extract all bindings

(K () wv wp wt ws)) ;; in projected terms
))
(extract* (e es ... locals vars) ;; extract all

(res goals) (K () res goals ps)) ;; fresh bindings
))
(scheme-bindings (w [] (K) (locals ...) aa))

))
;; recursive case: collect unifiers and attributes (e’s)
([process-args k acc [v . vs] goals rest (ee . es)

aa (res ...) ps locals]
(let ([e #false]) ;; generate a new temporary

(process-args k acc vs goals rest (e ee . es)
(v . aa)
(res ... [≡ ee ‘(,v . ,e)])
ps
locals)

))

Figure 6. TRS equational theory for name binding

;; A snippet from the predicate (pred) macro
;; ... top-level predicate generation elided ...
([(begin ks ..) params ([. args] ⇔ . body) . rest]

(let-syntax ([head #false]) ;; generate a new head
(let-syntax-rule ([K heads condo locals]
(pred (begin ks .. ;; collect all clause heads and
(define head (λ (Lin Lout . vars) ;; deliver to the

(process-args condo (ks ..) args ;; top-level
([seq Lin Lout condo () () [heads (ks ..)]

. body] [])
vars
locals)

))
) params . rest))
(select (K) (0 0 1 1 1) . params)

)))
;; ... elided combing params to order specifiers
;; ... such as condo:, locals: and extend: ...

Figure 7. Implementing PCG predicates

(def-syntax w (syntax-rules
(qq quote unquote quasiquote unquote-splicing λ)

([q (k ...) b [] . a] (k a))
([q k b ‘t . a] (w [qq . q] k b t . a))
([[qq . q] k b ,t . a] (w q k b t . a))
([[] k b ,t . a] (bad-unquote k b ,t))
([q k b ’t . a] (w q k b [] . a))
([[] k b [λ (var ...) . body] . a]
(w [] k (var b) body . a))

;; ... other binders such as let, do and project elided
([q k b [t . ts] . a] (w q (w q k b t) b ts . a))
([[] k b t a ...]

(symbol?? t
(member?? t (a b)

(w [] k b [] a ...)
(w [] k b [] a ... t))
(w [] k b [] a ...)
))

([[qq . q] k b t . a] (w q k b [] . a))
))

Figure 8. Extracting free variables from Scheme terms

...
([in out condo acc temps

[(r . heads) (ac ...)] (goals ... *)]
(let-syntax ([K (syntax-rules .. ()
([in out vars ..]
(let loop ([lin in][lout out] [vars ’()] ..)

(let-syntax ([K (syntax-rules ... ()
([res ...]
(let ([res #false] ...)

(make-scopes (res ...) begin
(letrec-syntax ([K (syntax-rules ()
([gls (v v1 v2 v3)]
(condo ([≡ lin lout]

[≡ v1 v])
([let ([temp #false][v3 #false])
(fresh (temp v3)

(let-syntax ([v v3])
(seq lin temp condo () ()
[(r . heads) (ac acc)] . gls

))

(append0 v1 ‘(,v3) v2)
(loop temp lout v2))]))))]

[K1 (syntax-rules ()
([var gls . args]
(zip4 (K gls) var . args)

))]
[K0 (syntax-rules ()
([. vs]
(extract* vs (goals ...)

(K1 [] (goals ...) (vars ..) (res ...) vs)
)))])

(scheme-bindings (w [] (K0) heads (goals ...)))
)))))])

(scheme-bindings (w [] (K) heads (goals ...)))
))))])

(seq in out condo acc temps [(r . heads) (ac ...)]
do[(scheme-bindings (w [] (K in out) heads

(goals ...)))])
))

...

Figure 9. Implementing the Kleene-* combinator

draft 11 2014/9/24

B. PCG standard library
;; miniKanren examples
(def *digits* [make-parameter (list-tabulate 10 values)])
(def (range start end)

(unfold [char>? end]
values
(◦ integer->char

[+ 1]
char->integer)

start))
(def *letters* [make-parameter (range #a #z)])
(def [lifto pred stream] (λ (x)

(conda ([project (x)
(or (and (ground? x) (pred x) #s) #u)])
([take-from (stream) x])
)))

(def numbers? [lifto number? *digits*])
(def symbols? [lifto symbol? (λ ()

(map (◦ string->symbol list->string list) [*letters*]))])
(def strings? [lifto string? (λ ()

(map (◦ list->string list) [*letters*]))])
(def (! p . args)

(condu ((apply p args) #u)
(else #s)))

(def (null0? x) [≡ x ’()])

(def (pair0? x) (fresh (x0 x1) [≡ x ‘(,x0 . ,x1)]))

(def (car0 x y) (fresh (t) [≡ x ‘(,y . ,t)]))

(def (cdr0 x y) (fresh (h) [≡ x ‘(,h . ,y)]))

(def (cons0 h t l) [≡ l ‘(,h . ,t)])

(def (number Lin Lout x) (all (cons0 x Lout Lin) (numbers? x)))

(def (symbol Lin Lout x) (all (cons0 x Lout Lin) (symbols? x)))

(def (strings Lin Lout x) (all (cons0 x Lout Lin) (strings? x)))
(def (literal Lin Lout x) (conde ([symbol Lin Lout x])

([number Lin Lout x])))

(def (idem Lin Lout v) (cons0 v Lout Lin))

C. Acronyms
AST Abstract Syntax Tree

BNF Backus-Naur Formalism

CPS Continuation Passing Style

DCG Definite Clause Grammar

DSL Domain-Specific Language

FP Functional Programming

JSON JavaScript Object Notation

JVM Java Virtual Machine

LISP List Processing

NXP Next Experience Semiconductors

PCG Parsing Clause Grammar

PEG Parsing Expression Grammar

R5RS Revised5 Report on the Algorithmic Language
Scheme

SRFI Scheme Request for Implementation

TRS Term-Rewriting System

TU Technical University

draft 12 2014/9/24

DRAFT

Type Families and Elaboration

Alejandro Serrano Jurriaan Hage
Department of Information and Computing Sciences

Utrecht University
{A.SerranoMena, J.Hage}@uu.nl

Patrick Bahr
Department of Computer Science

University of Copenhagen
paba@di.ku.dk

Abstract
Type classes and type families are key ingredients to Haskell pro-
gramming. Type classes were introduced to deal with ad-hoc poly-
morphism, although with the introduction of functional dependen-
cies, their use expanded to type-level programming. Type families
also allow encoding type-level functions, now as rewrite rules, but
they lack one important feature of type classes: elaboration, that
is, generating code from the derivation of a rewriting. This paper
looks at the interplay of type classes and type families, how to deal
with shortcomings in both of them, and discusses further relations
on the assumption that type families support elaboration.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications – Functional Languages; F.3.3
[Logics and Meanings of Programs]: Studies of Program Con-
structs – Type Structure

Keywords Type classes; Type families; Haskell; Elaboration;
Functional dependencies; Directives

1. Introduction
Type classes are one of the distinguishing features of Haskell, and
are widely used and studied (Peyton Jones et al. 1997). The initial
aim was to support ad-hoc polymorphism (Wadler and Blott 1989):
a type class gives a name to a set of operations along with their
types; subsequently, a type may become an instance of such class
by giving the code for such operations. Furthermore, an instance for
a type may depend on other instances (its context). The following is
a classic example of the Show type class and the instance for lists
which illustrate these features in action:

class Show a where
show :: a→ String

instance Show a⇒ Show [a] where
show lst = "["++ intersperse ’,’ (map show lst) ++ "]"

For each call to an operation such as show , the compiler must re-
solve what code corresponds to that call. Note that the search is
needed to find the correct code: above, show for type [a] depends
on the code for type a. The search and combination of code per-
formed by the compiler is called elaboration.

[Copyright notice will appear here once ’preprint’ option is removed.]

We remark at this point that we consider type classes without
support for overlapping instances. Overlapping instances are used
to override an instance declaration in a more specific scenario. The
best example is Show for strings, which are represented in Haskell
as [Char], and for which we usually want a different way to print
them:

instance [Char] where
show str = ... -- show between quotes

Overlapping instances make reasoning about programs more diffi-
cult, since the resolution of instances may change by later overlap-
ping declarations. Furthermore, their common usage patterns can
be express by using type families as shown in Section 4.

Type classes have been later extended to support multiple pa-
rameters: unary type classes describe a subset of types supporting
an operation, multi-parameter ones describe a relation over types.
For example, you can declare a Convertible class which describes
those pairs of types for which the first can be safely converted into
the second:

class Convertible a b where
convert :: a→ b

In many cases, though, parameters in such a class cannot be given
freely. For example, if we define a Collection class which relates
types of collections and the type of elements, it does not make sense
to have more than one instance per collection type. Such constraints
can be expressed using functional dependencies (Jones 2000), a
concept borrowed from database theory:

class Collection c e | c → e where
empty :: c
add :: e → c → c

instance Collection [a] a where
empty = []
add = (:)

If we try to add a new instance for [a], the compiler does not allow
it, since for each type of collection c , you can only have one e.

Using functional dependencies, functions can also be defined at
the level of types. Since their inception, functional dependencies
have been abused in that way, and it is now common folklore how
to do it: given a type level function of n parameters you want to
encode, define a type class with an extra parameter (the result)
and include a dependency of it on the rest. Each instance will then
define a rule in the function. Here is the archetypical Add function
defined as a type class:1

data Zero
data Succ a

1 Note that this example needs the UndecidableInstances extension to
work in GHC.

1 2014/9/9

class AddC m n r | m n→ r
instance AddC Zero n n
instance AddC m n r ⇒ AddC (Succ m) n (Succ r)

Type families (Schrijvers et al. 2007) were introduced as a more
direct way to define type functions in Haskell. Each family is
introduced by a declaration of its arguments (and optionally its
return kind) and the rules for the function are stated in a series of
type instance declarations. The Add function now becomes:

type family AddF m n
type instance AddF Zero n = n
type instance AddF (Succ m) n = Succ (AddF m n)

Type families have one important feature in common with type
classes: they are open. This means that in any other module, a new
rule can be added to the family, given that it does not overlap with
previously defined ones.

However, when thinking in terms of functions, we are not used
to wear our open-world hat. In a case like Add , we would want
to define a complete function, with a restricted domain. Eisenberg
et al. (2014) introduced closed type families to bridge this gap.
Closed families are matched in order, each rule is only tried when
the previous one is assured never to match. Thus, overlapping
between rules is not a problem. On the other hand, these families
cannot be extended in a different declaration. In GHC, closed type
families are introduced using the following syntax:

type family AddF ′ m n where
AddF ′ Zero n = n
AddF ′ (Succ m) n = Succ (AddF ′ m n)

As an aside, families can be associated with a type class. In that
way, for each class instance you need to define also a set of types
local to such instance. The Collection class is a good candidate to
be given an associated type, namely the type of elements:

class Collection2 c where
type Element c
empty2 :: c
add2 :: Element c → c → c

instance Collection2 [a] where
type Element [a] = a
empty2 = []
add2 = (:)

The discussion above illustrates that type classes and type fami-
lies have a lot of things in common, and in many cases choosing one
over the other for a task is a matter of convenience or style. In other
cases, though, their features differ. The following table summarizes
the similarities and differences between classes and families:

type classes type families
open X X
closed X
elaboration X
context X

The goal of this paper is to discuss whether it is possible to bridge
the gap, and bring type classes and type families even closer in
terms of functionality (Sections 2 and 3). Most of the techniques
presented in the those sections are folklore or have been used
as part of a larger technique, but we expect to show the tight
connection between them by focusing only in the tricks without
a larger problem behind it. We have already seen how to simulate
type families with functional dependencies.

Our main contribution, discussed in Section 4, is dealing with
the opposite situation: using type families to express type classes.
We shall see that a key ingredient for making type families as pow-

erful as type classes is to equip type families with an elaboration
mechanism. This extension does not only level the power of type
classes and families, but yields new use cases that are impossible
or difficult to express in terms of type classes.

2. Shortcomings of type families
Type families are usually described as a rewriting mechanism at
the level of types. By writing family instances, the compiler is able
to apply equalities between types to simplify them. As discussed
above, the main distinguishing feature of type families is their
support for closed definitions. At first sight, they lack the useful
feature of elaboration, and also the ability to depend on contexts;
here we show that we can simulate both of these aspects.

2.1 Elaboration
When the compiler resolves a specific instance of a type class, it
checks that typing is correct, and also generates the correspond-
ing code for the operations in the class. This second process is
called elaboration, and is the main reason for the usefulness of type
classes. Type families, on the other hand, only introduce type equal-
ities. Any witnesses of these equalities at the term level are erased.
Is it possible, however, to trick the compiler into elaborating a term
from a family application?

The solution has already been pointed out in several places,
e.g. by Bahr (2014), who uses it to implement a subtyping oper-
ator for compositional data types. Let us illustrate this idea with
an example: we want to define a function mkConst that creates
a constant function with a variable number of arguments. For in-
stance, given the type a → b → Bool , we want a function
mkConst :: Bool → (a→ b → Bool).

To start, we need a type-level function which returns the result
type of a curried function type of arbitrary arity:

type family Result f where
Result (s → r) = Result r
Result r = r

This is the point where, if we could elaborate a function during
rewriting, deriving our mkConst would be quite easy. Instead, we
have to define an auxiliary type family that computes the witness
of the rewriting of Result. The first step is creating a data type to
encode such witness. By using data type promotion (Yorgey et al.
2012) we can move a common data type “one level up” such that
its constructors are turned into types, and the type itself is turned
into a kind. 2

data ResultWitness = End | Step ResultWitness

We then define the closed type family Result′, which is responsible
for computing the witness. Note the use of a kind signature to
restrict its result to the types promoted before.

type family Result′ f :: ResultWitness where
Result′ (s → m) = Step (Result′ m)
Result′ r = End

Here comes the trick: using a type class that elaborates the desired
function in terms of the witness. The witness will be supplied via a
zero-data constructor Proxy , which serves the purpose of recording
the witness information:

data Proxy a = Proxy

class ResultE f r (w :: ResultWitness) where
mkConstE :: Proxy w → r → f

2 In GHC, this behavior is enabled by the DataKinds extension.

2 2014/9/9

Each instance of ResultE will correspond to a way in which
ResultWitness could have been constructed. Note that in the re-
curring cases, we need to provide a specific type argument using
Proxy :

instance ResultE r r End where
mkConstE r = r

instance ResultE m r l ⇒ ResultE (s → m) r (Step l) where
mkConstE r = λ(x :: s)→ mkConstE (Proxy :: Proxy l) r

However, we do not want the user to provide the value of Proxy w
in each case, because we can construct it via the Result′ type
family. The final touch is thus to create the mkConst function
which uses mkConstElab by providing the correct Proxy :

mkConst :: ∀ f r w .(r ∼ Result f ,w ∼ Result′ f ,
ResultE f r w)⇒ r → f

mkConst x = mkConstE (Proxy :: Proxy w) x

The main idea of this trick is to get hold of a witness for the type
family rewriting. This is usually produced by Haskell compilers as
a coercion, but the user does not have direct access to it. By reifying
it and promoting its constructors to the type-level, we become
able to use the normal type class machinery to define elaborated
operations.

2.2 Context
Within Haskell, instances may depend on a certain context being
available (for example, Show [a] holds if and only if 3 Show a),
whereas rewriting via type families does not allow any precondi-
tions. But once again, we can encode it with a bit more work, as-
suming we are using closed type families. Let us consider the case
of a serialization library. As part of its functionality, the library
must decide which representation to use for a specific data type.
Normally, the type will remain the same in this representation, but
for some special cases of “list-like” types (which are to be encoded
in the same way as lists) and “function-like” (whose domain and
target types must be recursively encoded). Those special cases are
recognized by the following families:4

type family IsListLike l :: Maybe ∗
type instance IsListLike [e] = Just e
type instance IsListLike (Set e) = Just e

type family IsFunctionLike f :: Maybe (∗, ∗) where
IsFunctionLike (s → r) = Just (s, r)
IsFunctionLike t = Nothing

The type family that constructs representations is intuitively
formulated by matching on the result of the previously introduced
families:

type family Repr t where
IsFunctionLike t ∼ Just (s, r)⇒ Repr t = Repr s → Repr r
IsListLike t ∼ Just e ⇒ Repr t = [Repr e]

Repr t = t

But the above definition is not valid Haskell syntax. Instead we
have to encode the conditional equations using a chain of auxiliary
type families, each of which treats a single context. As extra argu-
ments to the auxiliary type families, we incorporate the check that
should be done next. The Repr type family thus becomes:

3 We shall remind here that we are considering type classes without over-
lapping instances. If overlapping instances were allowed, the implication
would hold only in one direction.
4 In some cases, GHC needs a quote sign in front of type-level tuples to
distinguish them from the term-level tuples.

type family Repr t where
Repr t = Repr1 t (IsFunctionLike t)

type family Repr1 t l where
Repr1 t (Just (s, r)) = Repr s → Repr r
Repr1 t f = Repr2 t (IsListLike t)

type family Repr2 t l where
Repr2 t (Just e) = [Repr e]
Repr2 t l = t

Even though the code becomes larger, the translation could be made
automatically by the compiler. The main problem in this case is the
error reporting. Let us define a simple function that only works on
types which are already in their representative form:

alreadyNormalized :: (t ∼ Repr t)⇒ t → t
alreadyNormalized = id

If we try to use it on a Map, the compiler will complain:

*> alreadyNormalized Data.Map.empty
<interactive>:7:1:
Couldn’t match expected type ’Map k0 a0’
with actual type
Repr2 (Map k0 a0) (IsListLike (Map k0 a0))’

The type variables ’k0’, ’a0’ are ambiguous

The source of this problem is that we have not declared whether
Map is ListLike or not. However, the inner details of our imple-
mentation now escape to the outside world in this error message. If
contexts were added to type families, it would greatly benefit users
to treat them especially in terms of error reporting.

2.3 Open-closed families
An interesting pattern with type families is the combination of
open and closed type families to create a type-level function whose
domain can be enlarged, but where some extra magic happens at
each specific type. As a guiding example, let us construct a type
family to obtain the spiciness of certain type-level dishes:

data Water
data Nacho
data TikkaMasala
data Vindaloo

data SpicinessR = Mild | BitSpicy | VerySpicy
type family Spiciness f :: SpicinessR

The family instances for the dishes are straightforward to write:

type instance Spiciness Water = Mild
type instance Spiciness TikkaMasala = Mild
type instance Spiciness Nacho = BitSpicy
type instance Spiciness Vindaloo = VerySpicy

However, when we have lists of a certain food, we want to behave
in a more sophisticated way. In particular, if one is taking a list of
dishes which are a bit spicy, the final result be definitely be very
spicy. To rule this special case, we defer the Spiciness of a list to
an auxiliary type family SpicinessL:

type instance Spiciness [a] = SpicinessL (Spiciness a)

type family SpicinessL lst where
SpicinessL BitSpicy = VerySpicy
SpicinessL a = a

This trick has been used for more mundane purposes, such as
creating lenses at the type level (Izbicki 2014). The key point is
that the non-overlapping rules for open type families allow us to
add new instances for those types for which one is not yet defined.
But by calling a closed type family at a type instance rule, you can

3 2014/9/9

refine the behaviour of a particular instance. Section 4 will show
other interesting uses of this pattern.

3. Shortcomings of type classes
We have looked at one side of the coin, discussing idioms to deal
with shortcomings of type families with respect to type classes.
Looking back at our original table in Section 1, the only function-
ality unsupported by type classes is closedness. We shall see how
taking into account our previous results on type families, we can
handle that situation.

3.1 Closed type classes
In some cases, you know that for a certain type class only a limited
and known set of instances should be available. This is a situation
where Haskell does not have an inmediate solution: exposing a type
class without also allowing new instances to be defined. However,
this sort of functionality has received some attention in the litera-
ture: Heeren and Hage (2005) discuss a close type class directive
with this specific purpose in the framework of better error diagno-
sis; and Morris and Jones (2010) illustrate that their instance chains
also handle this case.

There is a handful of techniques to get closed type classes
known by Haskell practitioners (StackOverflow 2013). These tech-
niques boil down to the same idea: define a secret entity of some
sort (we shall see that this entity can either be a type class or a type
family), define an alias and export only this alias to the world.

Heeren and Hage (2005) present an example of closing the
Integral type class to only admit Int and Integer as instances,
which we use as a running example. Following the “secret class
+ type alias” idea, a first attempt is:5

module ClosedIntegral (Integral) where

class Integral ′ i
instance Integral ′ Int
instance Integral ′ Integer

type Integral i = Integral ′ i

Note that to create such an alias, we need the ConstraintKind ex-
tension in GHC, which allows treating instance and type equality
constraints as simple elements of the kind Constraint. This solu-
tion works fine until the moment of writing a new instance:

instance Integral Char

At that point, synonyms are expanded, and that code effectively
translates to a new instance of Integral ′. In conclusion, this method
does not work.

The core problem is that, by exposing Integral ′ via a synonym,
we have given access to it. Instead, we can use another type class,
and make the one we want to close be a prerequisite:

class Integral ′ i ⇒ Integral i
instance Integral ′ i ⇒ Integral i

If you now try to define a new instance of Integral in another file,
you get an error message:

Not in scope: type constructor or class Integral’

Once again, a disadvantage of this method is that error messages
are worded in terms of the internal elements, in this case Integral ′.

Instead of another type class, you can use a type family. In that
case, we combine the idea from Section 2.1 with the alias approach.
The first thing to do is to write a type family Integral ′ responsible
for building the witness – of type IntegralW – for the elaboration

5 We elided the methods to be elaborated in order to make the presentation
more concise.

phase. This encoding allows us to use the fact that type families can
be closed:

data IntegralW = None | IntW | IntegerW

type family Integral ′ i :: IntegralW where
Integral ′ Int = IntW
Integral ′ Integer = IntegerW
Integral ′ other = None

Note that we have included a final catch-all case for those types
which should not be in the type class. The next step is defining a
new type class which takes care of elaboration. In our case, this is
IntegralE :

class IntegralE i (witness :: IntegralW)

instance IntegralE Int IntW
instance IntegralE Integer (IntegerW)

An important remark at this point is that we do not have any
instance for the None case. Additionally, if the module in which
Integral is defined does not export IntegralE , no new case can
be added, effectively closing the set of possible cases, as we did
before by hiding Integral ′. The final step is generating the alias,
the one visible to the user, which takes care of calling Integral ′ and
elaborating based on the witness:

type Integral i = IntegralE i (Integral ′ i)

This alias connects the elaboration type class with the type family
responsible of building the witness.

As previously, internals of the implementation escape to the
outside world in case of error. For example, if a function f with
an Integral constraint is used with a Char value, the message
produced by GHC reads:

No instance for (IntegralE Char ’None)
arising from a use of ’f’

A solution which also involves type families, but in a different
way, uses in its core the ConstraintKind extension found in GHC.
Since Constraint is a kind like ∗ or any other promoted type,
writing a type family which returns one constraint is possible. This
family would work as an alias for a restricted set of types:

type family Integral i :: Constraint where
Integral Int = Integral ′ Int
Integral Integer = Integral ′ Integer

For those types which are stated in the type family, having Integral
is equivalent to Integral ′. But for those which are not members,
family rewriting gets stuck:

Could not deduce (Integral Float)

One nice effect of this type family is that error messages are termed
using the Integral type family, so fewer internals are exposed to the
programmer.

4. Type families with elaboration
In (Schrijvers et al. 2007), one of the earliest papers about type
families in Haskell, the authors did already consider how to express
type families using type classes and functional dependencies. Thus,
the question whether both sorts of type-level programming are
neccessary and desirable is posed since the very beginning. We
sketch in this section a new answer: type classes may not be needed,
given that we give type families some elaboration mechanism.

4.1 Encoding type classes
Let us skip for a moment the issue of elaborating functions in type
classes, and just focus on the typing parts. The aim is to find a

4 2014/9/9

translation of type classes into type families such that an instance
for a type is found if and only if the corresponding type family
rewrites to a certain type. For this latest type, which describes
whether an instance is defined, we shall use the promoted version
of Defined :

data Defined = Yes | No

For each type class C that we want to convert, we declare a new
type family IsC whose result is of kind Defined . Throughout the
section, Eq will be used as a guiding example:

type family IsEq (t :: ∗) :: Defined

Furthermore, each function which declares an instance constraint
must be changed to work with the new IsC type family. Now,
the constraint is an equality between an IsEq application and Yes .
The following code declares an identity function whose domain is
restricted only to those types which have Eq:

eqIdentity :: IsEq t ∼ Yes ⇒ t → t
eqIdentity = id

Of course, the whole point of declaring a type class is to pop-
ulate it with instances. The most simple cases, such as Char , are
dealt simply by defining a type instance which rewrites to Yes:

type instance IsEq Char = Yes
type instance IsEq Int = Yes
type instance IsEq Bool = Yes

Those cases whose definition depend on a context, such as Eq on
lists, can call IsC on a smaller argument to defer the choice:

type instance IsEq [a] = IsEq a

In the case of a more complex context, such as Eq on tuples, which
needs to check both of its type variables, we introduce a type family
And which checks for definedness of all its arguments:

type family And (a :: Defined) (b :: Defined) :: Defined where
And Yes Yes = Yes
And a b = No

type instance IsEq (a, b) = And (IsEq a) (IsEq b)

As with type classes, we are not constrained to ground types in
our type families, we can also use type constructors. A translation
of the Functor type class and some instances in this style reads:

type family IsFunctor (t :: ∗ → ∗) :: Defined
type instance IsFunctor [] = Yes
type instance IsFunctor Maybe = Yes

At this point it is important to remark that in some cases GHC needs
explicit kind signatures on some of the arguments of a type class.
If they are not included, GHC defaults to kind ∗ instead of giving
an ambiguity error, so the problem may be unnoticed until later
on. Having said so, in most of the cases where the declaration and
instances of a type family are written together, the compiler is able
to infer kinds correctly.

Finally, we are able to encode multi-parameter type classes in
the same way, as the Collection class in the introduction:

type family Collection t e :: Defined
type instance Collection [e] e = Yes
type instance Collection (Set e) e = Yes

We discuss the translation of functional dependencies into this new
scheme in Section 4.6. For a formal treatment of the full translation,
the reader is referred to Appendix A.

4.2 Elaboration at rewriting
The previous translation works well from a typing perspective, but
does not generate any code, and we do expect so when we use a
type class. Since our main goal is to get rid of classes, we cannot
use the same trick as we did in Section 2. Furthermore, in that case
type families rewrote to different witnesses depending on the rule
that was applied. But in this case we want all instances to return
the same Yes result. If that was not the case, we could not declare
a constraint such as IsEq t ∼ Yes which would not depend on the
type itself.

For those reasons, we propose the concept of elaboration at
rewriting. The idea is that at each rewriting step, the compiler
generates a dictionary of values (similar to the one for type classes),
which may depend on values from other inner rewritings. Part of
this idea is already in place when GHC generates coercions from
family applications.

The shape of dictionaries must be the same across all type
instances of a family. Thus, as with type classes, it makes sense to
declare the signature of such dictionary in the same place within
a type family. Without any special preference, we shall use the
dictionary keyword to introduce it.6 For example, the following
declaration adds an eq function to the IsEq type family:

type family IsEq (t :: ∗) :: Defined
dictionary eq :: t → t → Bool

A type instance declaration should now define a value for each
element in the dictionary, as shown below:

type instance IsEq Int = Defined
dictionary eq = primEqInt -- the primitive Int comparison

In the case of calling other type families on its right-hand side, a
given instance can access the value of its dictionaries to build its
own. As concrete syntax, we propose using name@ to give a name
to a dictionary in the rule itself, or to refer to an element of the
dictionary in the construction of the larger one. This idea is seen in
action in the declaration of IsEq for lists:

type instance IsEq [a] = e@(IsEq a) where
dictionary eq [] [] = True

eq (x : xs) (y : ys) = e@eq x y ∧ eq xs ys
eq = False

The same syntax can be used to access the dictionary in a function
which has an equality constraint. One example of this syntax is the
definition of non-equality in terms of the eq operation in the IsEq
family:

notEq :: e@(IsEq a) ∼ Yes ⇒ a→ a→ Bool
notEq x y = ¬ (e@eq x y)

We use e@ prefixes to make clear which dictionary we are using,
but it would be possible to drop the entire prefixes when there
is only one available possibility. Another option is making eq a
globally visible name, as type classes do.

As we have seen, elaboration at rewriting is possible and opens
new possibilities for type families. It is also the only piece missing
that we cannot directly encode in type families. In the rest of the
paper, though, we shall just focus on the typing perspective, which
in contrast with elaboration is available in Haskell compilers.

4.3 Type class directives
The good news about our encoding of type classes is that it brings
with it ways to encode some constraints over type classes that were
previously considered separate extensions of Haskell. We shall

6 We would have preferred the where keyword in consonance with type
classes, but this syntax is already used for closed type families.

5 2014/9/9

focus first on the type class directives of (Heeren and Hage 2005).
In short, these directives introduce new constructs to describe more
sharply the set of types which are instances of a type class, with the
aim of producing better error messages for the programmers.

The first of these directives is never: as its name suggests, a
declaration of the form never Eq (a → b) forbids any instance
of Eq for a function. Since by convention we translated Eq t as
IsEq t ∼ Yes , we only need to ensure that IsEq (a → b) does not
rewrite to Yes . We can do that easily with the following:

type instance IsEq (a→ b) = No

If we try to use Eq over a function, the compiler will complain:

Couldn’t match type ’No with ’Yes
Expected type: ’Yes

Actual type: IsEq (t -> t)

Furthermore, since compilers do not allow overlapping rules for a
type family, this also disallows anybody to write an instance for any
instantiation of a→ b, as we wanted.

The second directive is close, which limits the set of instances
for a type class to those which have been defined until that point.
We have already discussed how to deal with closed type classes in
Section 3.1, but with this new encoding, it becomes even easier. We
only need to define a closed type family which rewrites to No for
any forbidden instance. The example used above where Integral
has only Int and Integer is written as:

type family IsIntegral t where
IsIntegral Int = Yes
IsIntegral Integer = Yes
IsIntegral t = No

The main difference with the close directive is that we need to
define all instances in one place, whereas the directive defines a
point after which no more instances can be added. It is possible to
define a source-to-source processor which would rewrite an open
type family into a closed one with a fallback default case, which
would behave similarly to close if applied to those families which
simulate type classes.

Another directive available in (Heeren and Hage 2005) is
disjoint C D, which constraints any instance of C not to be in-
stance of D, and vice versa. For example, we could forbid a type
to be at the same instance of both Integral and Rational . A naive
encoding of this directive is done as follows for Integral , with a
similar structure for Rational :7

type family IsIntegral t where
IsIntegral t = IsICheckR t (IsRational t)

type family IsICheckR t (isRational :: Defined) :: Defined where
IsICheckR t Yes = No
IsICheckR t No = IsIntegral ′ t

type family IsIntegral ′ t :: Defined

The idea is that IsIntegral , by calling IsICheckR , checks whether a
Rational instance is present. If not, then it checks whether we have
an explicit Integral instance, represented by IsIntegral ′. Thus, for
adding new instances, the latter needs to be extended.

type instance IsIntegral ′ Int = Yes
type instance IsIntegral ′ Integer = Yes

7 If we try to define IsIntegral and IsRational as type synonyms, we get a
complaint of cyclic definition:

Cycle in type synonym declarations:
type IsIntegral t = IsICheckR t (IsRational t)
type IsRational t = IsRCheckI t (IsIntegral t)

Unfortunately, this naive encoding does not work. When trying
to deduce IsIntegral , the compiler loops: indeed, IsIntegral calls
IsRational , which in turn calls IsIntegral and so on. One possible
solution is changing IsIntegral to:

type family IsIntegral t where
IsIntegral t = IsICheckR t (IsRational ′ t)

The objective of this change is breaking the loop by directly de-
tecting whether we have a Rational instance. This works well in
the case in which we do not have an Integral instance because of a
Rational one, as GHCi shows:

*> :kind! IsIntegral Float
IsIntegral Float :: Defined
= ’No

But in those cases where an explicit IsIntegral rule is provided, the
system is unable to reduce the type, since it does not know what
IsRational ′ rewrites to:

*> :kind! IsIntegral Int
IsIntegral Int :: Defined
= IsICheckR Int (IsRational’ Int)

As a last attempt, we might try to check IsIntegral and IsRational
values at the same time. For this, we introduce an OnlyFirstDefined
closed family which describes the disjointess condition:

type IsIntegral t = OnlyFirstDefined (IsIntegral ′ t) (IsRational ′ t)

type family OnlyFirstDefined yes no :: Defined where
OnlyFirstDefined Yes no = Yes
OnlyFirstDefined yes Yes = No

But once again we encounter the same problem: if the type does not
have a defined IsIntegral ′ rule, the system is not able to continue to
the next branch in the type family. At this point, we admit defeat,
and have not found a good way to encode disjoint directly as type
families, as we have done for never and close.

4.4 Instance chains
Instance chains were introduced in (Morris and Jones 2010) as an
extension to type classes in which to encode certain patterns that
would otherwise require overlapping instances. The new features
are alternation, that is, allowing different branches in an instance
declaration, and explicit failure, which means that you can state
negative information about instances.

One case where overlapping instances are needed in common
Haskell is the definition of the Show instance for lists: in this
case, a special instance is used for strings, that is [Char]. With this
extension, the exception will be handled as an instance chain:

instance Show [Char] where
show = ... -- Special case for strings

else instance Show [a] if Show a where
show = ... -- Common case

Show also gives us an example of explicit failure: in general, we
cannot make an instance for functions a → b. However, if the
domain of the function supports the Enum class, we can give an
instance which traverse the entire set of input values. In any other
case, we want the system to explicitly know that no instance is
possible:

instance Show (a→ b) if (Enum a, Show a, Show b) where
show = ...

else instance Show (a→ b) fails

As we did for type class directives, we can encode these cases
using our type family translation. The first thing we notice is that
the Show instance chain follows the pattern of the open-closed

6 2014/9/9

type families: we must allow adding new rules for those types not
already covered by other rules, but for some cases we need to make
some ordered distinction, which takes the form of a closed family.
We also apply the transformation of contexts as seen in Section 2.2.
Putting it all together, the corresponding IsShow type family reads:

type family IsShow t :: Defined

type instance IsShow [a] = IsShowList a
type family IsShowList a where

IsShowList Char = Yes
IsShowList a = IsShow a

type instance IsShow (a→ b)
= IsShowFn (IsEnum a) (IsShow a) (IsShow b)

type family IsShowFn isEnum isShowA isShowB where
IsShowFn Yes Yes Yes = Yes
IsShowFn e a b = No

The family works nicely given some initial IsShow rules for Bool :

type instance IsShow Bool = Yes

*> :kind! IsShow (Bool -> [Char])
IsShow (Bool -> [Char]) :: Defined
= ’Yes

It is interesting to notice what happens if we ask for the information
of a type which we have not explicitly mentioned, such as Int:

*Main> :kind! IsShow (Maybe Bool -> [Char])
IsShow (Int -> [Char]) :: Defined
= IsShowFn (IsEnum Int) (IsShow Int) ’Yes

The rewriting is stuck in the phase of rewriting IsEnum Int and
IsShow Int. Intuitively, we may want the system to instead con-
tinue to the next branch, and return No as result. However, this
poses a threat to the soudness of the system: since the type infer-
ence engine is not complete in the presence of type families, it may
well be that IsEnum Int ∼ Yes , but the proof could not be found. If
we decided to continue, and that proof finally exists, then the infer-
ence step we made is not correct. For this reason, we forbid taking
the next branch until rewriting contradicts the expected results. A
similar reasoning holds for the use of apartness to continue with
the next branch in closed type families (Eisenberg et al. 2014).

Essentially, what we do by rewriting instance chains into type
families is making explicit the backtracking needed in these cases.
In principle, Haskell does not backtrack on type class instances, but
by rewriting across several steps, we simulate it.

4.5 Better error messages
Until now, the only possibilities for a type family corresponding to
a type class were to return Yes or No, or to get stuck. But this is
very uninformative, especially in the case of a negative answer: we
know that there is no instance of a certain class, but why is this
the case? The solution is to add a field to the Defined type to keep
failure information.

data Defined e = Yes | No e

We have decided to keep the error type e open, so each type class
could have its own way to report errors. In the case of a closed
one, it makes sense to have a specific closed data type. But in open
scenarios, like IsShow , we need something more extensible. A
good match is the Symbol kind, which is the type-level equivalent
of strings, and which has special support in GHC for writing type-
level literals. Thus, the IsShow type family is changed to:

import GHC .TypeLits -- defines Symbol
type family IsShow t :: Defined Symbol

An instance like functions could benefit from reporting different
errors depending on the constraint that failed: 8

type instance IsShow (a→ b)
= IsShowFn (IsEnum a) (IsShow a) (IsShow b)

type family IsShowFn (isEnum :: Defined Symbol)
(isShowA :: Defined Symbol)
(isShowB :: Defined Symbol) where

IsShowFn Yes Yes Yes = Yes
IsShowFn (No e) a b

= No "Function with non-enumerable domain"

IsShowFn e (No a) b
= No "Source type must be showable"

IsShowFn e a (No b)
= No "Target type must be showable"

The interpreter will now return the corresponding message if the
function is known to be not showable:

*> :kind! IsShow (Float -> Bool)
IsShow (Float -> Bool) :: Defined Symbol
= ’No "Function with non-enumerable domain"

Currently, Symbol values cannot be easily manipulated. In a sce-
nario where simple functions such as concatenation are present in
the standard libraries, more complete error messages could be ob-
tained by joining information from different sources. For exam-
ple, when IsEnum returns No, its message could be combined in
IsShownFn, assuming the presence of a (: ++ :) type family to
perform string concatenation:

IsShowFn (No e) a b
= No ("Function with non-enumerable domain"

: ++ : "\nbecause " : ++ : e)

In conclusion, the extra control we get by explicitly describing
how to search for Show instances via the IsShow type family also
helps us to better pinpoint to the user where things go wrong. This is
especially important in many scenarios, such as embedded domain-
specific languages (Hage 2014).

4.6 Functional dependencies
There is one feature of type classes that we have not yet covered in
the translation to type families, namely, functional dependencies. A
simple functional dependency, such as that relating c and e in:

class Collection c e | c → e where ...

can be split, as shown in (Schrijvers et al. 2007), into a type class
for the relation (which would in turn be translated into a type family
as discussed in this section), and another type function for defining
e in terms of c:

type family IsCollection′ c e :: Defined
type instance IsCollection′ [e] e = Yes

type family IsCollectionElement c
type instance IsCollectionElement [e] = e

However, this split does not guarantee that the types related by
IsCollection′ and IsCollectionElement satisfy any constraint. Of
course, you want the result of IsCollectionElement to be the same
as the e in IsCollection′. This can be enforced by defining a syn-
onym IsCollection which relates both type families via an equality
constraint over the element type:

8 As we discussed earlier, GHC needs kind signatures in some cases. Here,
had we not included Defined Symbol on IsShowFn arguments, GHC
would expect Defined∗ as its kinds, which is not correct.

7 2014/9/9

type IsCollection c e = And (IsCollection′ c e)
(EqDef e (IsCollectionElement c))

The EqDef type family just reifies type equality into Defined :

type family EqDef a b :: Defined where
EqDef a a = Yes
EqDef a b = No

Most uses of functional dependencies can be translated by the
above schema. The reason is that in most cases, functional depen-
dencies are just used to define type-level functions with instance
arguments.

Some cases are more difficult to cope with, though, like the
dependencies that you may add to addition. Essentially, when you
know two arguments that make up a sum, you know the other one
by simply adding or by cancellation law:

class AddFD m n r | m n→ r , r m→ n, r n→ m

Note that if you try to give instances for this type class, such as:

instance AddFD Zero n n
instance AddFD (Succ m) Zero (Succ m)
instance AddFD m n r
⇒ AddFD (Succ m) (Succ n) (Succ (Succ r))

the compiler will complain because of a conflict in functional
dependencies: if the second and third arguments are given, it cannot
deduce the first one, because there is always some overlap with the
first rule. However, let us suppose for a moment that we could use
functional dependencies in that way: how would it translate into
type families?

To get a complete answer, we need to look at the two different
ways in which functional dependencies influence the type system:9

• FD-improvement: if the context contains AddFD m1 n1 r1 and
AddFD m2 n2 r2 , and we know that m1 ∼ m2 and n1 ∼ n2 ,
then we have r1 ∼ r2 ;

• Instance improvement: if the context contains AddFD m n r ,
and for some substitution of m and n only one instance matches,
then we can use it to rewrite r . For example, if we have
AddFD Zero n r , we know inmediately that n ∼ r .

In type family terms (where we define the corresponding
IsAddFD family as shown above), FD-improvement translates
into obtaining r1 ∼ r2 knowing that m1 ∼ m2 , n1 ∼ n2
and, here comes the crux of the matter, IsAdd m1 n1 r1 ∼
IsAdd m2 n2 r2 . Thus, the functional dependency constraint be-
comes a partial injectivity constraint in the family: if the results of
a function, and some of its arguments (in this case, m and n) agree
for two applications, we know that remaining argument (here, r)
must also agree. A simple form of injectivity for type families has
been considered for GHC, but has not been implemented as of
version 7.8.10

On the other hand, instance improvements correspond to the
ability of defining and inverting type-level functions from the in-
stance relations. The functional dependency m n → r on AddFD
is doing nothing more than defining the addition function in the
type level (as shown in the Introduction), if we want to encode the
other two, we need to invert addition:

type family IsAddRNToM where
IsAddRNToM r Zero = r
IsAddRNToM (Succ r) (Succ n) = IsAddRNToM r n

9 Using the terminology from https://ghc.haskell.org/trac/
haskell-prime/wiki/FunctionalDependencies.
10 GHC Trac ticket on Injective type families: https://ghc.haskell.
org/trac/ghc/ticket/6018.

type family IsAddRMToN where
IsAddRMToN r Zero = r
IsAddRMToN (Succ r) (Succ m) = IsAddRMToN r m

While several approaches to bidirectionalization of functional pro-
grams have been proposed (Foster et al. 2012), it is not always
possible or desirable to use bidirectionalization. Looking at type
classes with our type family glasses can help decide when a certain
functional dependency will be useful: if you cannot get the cor-
responding function out of it, the instance improvement rule may
never be applied.

5. Comparison
5.1 Type families as functional dependencies
Sections 2 and 3 looked at how to deal with features not readily
available in type classes or families. In Section 4 we turned to type
families as an integrating framework for both concepts. In previ-
ous literature (Schrijvers et al. 2007) type classes with functional
dependencies were used as the integrating glue: why is our choice
any better?

The answer lies in the use of instance improvement by func-
tional dependencies, as discussed in 4.6. This type of improvement
makes type inference brittle: it depends on the compiler proving
that only one instance is available for some case, which can be in-
fluenced by the addition of another, not related, instance for a class.

Other different problems with functional dependencies have
been discussed in (Schrijvers et al. 2007; Diatchki 2007), usually
concluding that type-level functions are a better option. In this
paper we agree with that statement, and we show that families could
replace even more features of type classes by using other Haskell
extensions such as data type promotion and closed type functions.

5.2 Implicit arguments
In essence, in Section 4 we are describing a new way to deal
with type-level programming which needs to decide whether a
certain proposition holds while elaborating some piece of code.
This comes close to the instance arguments feature found in Agda
(Devriese and Piessens 2011), which was also proposed to simulate
type classes. Any argument marked as such in a function with
double braces, like:

myFunction : {A : Set } → {{p : Show A}} → A→ String

will be replaced by any value of the corresponding type in the
environment in which it was called. Thus, if you think of Show of
a class, you can provide an instance by constructing such a value:

showInt : Show Int
showInt x = ... -- code for printing an integer

Since these values are constructed at the term level, you can use
any construct available for defining functions. In that sense, it is
close to our use of type families, with the exception that in Haskell
type-level and term-level programming are completely separated. A
difference between both systems is that Agda does not do any proof
search when looking for instance arguments, whereas our solution
can simulate search with backtracking.

5.3 Tactics
The dependently type language Idris (Brady 2013) generalises the
idea of Agda’s instance arguments allowing the programmer to
customise the search strategy for implicit arguments. Similarly
to Coq, Idris has a tactic language to customise proof search.
Unlike Coq, however, Idris allows the programmer to use the same
machinery to customise the search for implicit arguments (The Idris
Community 2014).

8 2014/9/9

https://ghc.haskell.org/trac/haskell-prime/wiki/FunctionalDependencies
https://ghc.haskell.org/trac/haskell-prime/wiki/FunctionalDependencies
https://ghc.haskell.org/trac/ghc/ticket/6018
https://ghc.haskell.org/trac/ghc/ticket/6018

For example we can write a function of the following type,
where t is a tactic script that is used for searching the implicit
argument of type Show a:

myFunction : {default tactics {t } p : Show a} → a→ String

The tactic t itself is typically written using reflection such that it
can inspect the goal type – in this case Show a – and perform the
search accordingly:

myFunction : {default tactics {applyTactic findShow ; solve }
p : Show a} → a→ String

The search strategy is defined by findShow , which is an Idris
function of that takes the goal type and the context as argument
and produces a tactic to construct a term of the goal type.

This setup is similar to closed type families with elaboration as
presented in this paper. However, findShow has to operate on terms
of Idris core type theory TT, which is quite cumbersome. Moreover,
there is no corresponding setup for open type families.

6. Conclusion
Type classes and type families in Haskell have different sets of
features. However, with a little work we can support elaboration
and contexts in families, and closedness in instances. This suggests
that there exists a framework for integrating the two as instances of
a single concept: we show how type families can serve as such a
concept. By creating type families which simulate classes, we get
for free features such as type class directives, instance chains and
control over the search procedure. We have argued that it is possible
to add an elaboration mechanisms to type families to bridge the gap
for its use in ad-hoc polymorphism.

References
P. Bahr. Composing and decomposing data types: A closed type families

implementation of data types la carte. 10th ACM SIGPLAN Workshop
on Generic Programming, to appear, 2014.

E. Brady. Idris, a general-purpose dependently typed programming lan-
guage: Design and implementation. Journal of Functional Program-
ming, 23:552–593, 9 2013. ISSN 1469-7653. . URL http://
journals.cambridge.org/article_S095679681300018X.

D. Devriese and F. Piessens. On the bright side of type classes: Instance
arguments in agda. In Proceedings of the 16th ACM SIGPLAN Interna-
tional Conference on Functional Programming, ICFP ’11, pages 143–
155, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0865-6. .
URL http://doi.acm.org/10.1145/2034773.2034796.

I. S. Diatchki. High-level abstractions for low-level programming. PhD
thesis, OGI School of Science & Engineering, May 2007.

R. A. Eisenberg, D. Vytiniotis, S. Peyton Jones, and S. Weirich. Closed
type families with overlapping equations. In Proceedings of the 41st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’14, pages 671–683, New York, NY, USA, 2014.
ACM. ISBN 978-1-4503-2544-8. . URL http://doi.acm.org/10.
1145/2535838.2535856.

N. Foster, K. Matsuda, and J. Voigtlnder. Three complementary ap-
proaches to bidirectional programming. In J. Gibbons, editor,
Generic and Indexed Programming, volume 7470 of Lecture Notes
in Computer Science, pages 1–46. Springer Berlin Heidelberg, 2012.
ISBN 978-3-642-32201-3. . URL http://dx.doi.org/10.1007/
978-3-642-32202-0_1.

J. Hage. Domain specific type error diagnosis (DOMSTED). Technical
Report UU-CS-2014-019, Department of Information and Computing
Sciences, Utrecht University, 2014.

B. Heeren and J. Hage. Type class directives. In Proceedings of the
7th International Conference on Practical Aspects of Declarative Lan-
guages, PADL’05, pages 253–267, Berlin, Heidelberg, 2005. Springer-
Verlag. ISBN 3-540-24362-3, 978-3-540-24362-5. . URL http:
//dx.doi.org/10.1007/978-3-540-30557-6_19.

M. Izbicki. A neat trick for partially closed type fami-
lies. Blog post available at http://izbicki.me/blog/
a-neat-trick-for-partially-closed-type-families, 2014.

M. Jones. Type classes with functional dependencies. In G. Smolka, editor,
Programming Languages and Systems, volume 1782 of Lecture Notes
in Computer Science, pages 230–244. Springer Berlin Heidelberg, 2000.
ISBN 978-3-540-67262-3. . URL http://dx.doi.org/10.1007/
3-540-46425-5_15.

J. G. Morris and M. P. Jones. Instance chains: type class programming with-
out overlapping instances. In Proceedings of the 15th ACM SIGPLAN
International Conference on Functional Programming, pages 375–386,
New York, NY, USA, 2010. ACM. ISBN 978-1-60558-794-3. . URL
http://doi.acm.org/10.1145/1863543.1863596.

S. Peyton Jones, M. Jones, and E. Meijer. Type classes: exploring the design
space. In Haskell Workshop, 1997.

T. Schrijvers, M. Sulzmann, S. Peyton Jones, and M. Chakravarty. Towards
open type functions for haskell. In 19th International Symposium on
Implemantation and Application of Functional Languages, 2007.

StackOverflow. Closed type classes. Question and answers
available at http://stackoverflow.com/questions/17849870/
closed-type-classes, 2013.

The Idris Community. Programming in Idris: A tutorial. Avail-
able from http://eb.host.cs.st-andrews.ac.uk/writings/
idris-tutorial.pdf, 2014.

D. Vytiniotis, S. Peyton jones, T. Schrijvers, and M. Sulzmann.
Outsidein(x) modular type inference with local assumptions, Sept.
2011. ISSN 0956-7968. URL http://dx.doi.org/10.1017/
S0956796811000098.

P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc.
In Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’89, pages 60–76, New
York, NY, USA, 1989. ACM. ISBN 0-89791-294-2. . URL http:
//doi.acm.org/10.1145/75277.75283.

B. A. Yorgey, S. Weirich, J. Cretin, S. Peyton Jones, D. Vytiniotis, and J. P.
Magalhães. Giving haskell a promotion. In Proceedings of the 8th ACM
SIGPLAN Workshop on Types in Language Design and Implementation,
TLDI ’12, pages 53–66, New York, NY, USA, 2012. ACM. ISBN 978-
1-4503-1120-5. . URL http://doi.acm.org/10.1145/2103786.
2103795.

A. Formal translation from classes to families
In Section 4 we looked at the translation from type classes to fami-
lies, but left out the technical details. This section deals with those
details and the associated soundness and termination properties.
We leave functional dependencies out of this discussion, since they
come with their own set of difficulties, as shown in Section 4.6.

There are three Haskell constructs to translate: classes, contexts
and instances. Type class declarations are of the form class D t1 ...
tn. Each of them gives raise to a new type family encoded as:

type family IsD t1 ... tm :: Defined

Here, Defined is the kind which represents whether an instance is
available. It was introduced in Section 4.1 and refined in Section
4.5 to get better error messages. In addition, types t1 to tm may
include kind annotations inferred from their use in the elaborated
methods.

Note that we have not spoken about superclass contexts: they
do not interfere with instance resolution, just impose a constraint of
having to define an instance of each superclass. In this case, given a
class S ⇒ D, the constraint would translate to having to define IsS
to return Yes each time IsD returns Yes . Thus, superclasses impose
their conditions on a prior stage to type checking.

The second construct to translate are context declarations of the
form Q s1 .. sj , which may appear in function signatures, data types
or other instance declarations. The translation is IsQ s1 ... sj .

9 2014/9/9

http://journals.cambridge.org/article_S095679681300018X
http://journals.cambridge.org/article_S095679681300018X
http://doi.acm.org/10.1145/2034773.2034796
http://doi.acm.org/10.1145/2535838.2535856
http://doi.acm.org/10.1145/2535838.2535856
http://dx.doi.org/10.1007/978-3-642-32202-0_1
http://dx.doi.org/10.1007/978-3-642-32202-0_1
http://dx.doi.org/10.1007/978-3-540-30557-6_19
http://dx.doi.org/10.1007/978-3-540-30557-6_19
http://izbicki.me/blog/a-neat-trick-for-partially-closed-type-families
http://izbicki.me/blog/a-neat-trick-for-partially-closed-type-families
http://dx.doi.org/10.1007/3-540-46425-5_15
http://dx.doi.org/10.1007/3-540-46425-5_15
http://doi.acm.org/10.1145/1863543.1863596
http://stackoverflow.com/questions/17849870/closed-type-classes
http://stackoverflow.com/questions/17849870/closed-type-classes
http://eb.host.cs.st-andrews.ac.uk/writings/idris-tutorial.pdf
http://eb.host.cs.st-andrews.ac.uk/writings/idris-tutorial.pdf
http://dx.doi.org/10.1017/S0956796811000098
http://dx.doi.org/10.1017/S0956796811000098
http://doi.acm.org/10.1145/75277.75283
http://doi.acm.org/10.1145/75277.75283
http://doi.acm.org/10.1145/2103786.2103795
http://doi.acm.org/10.1145/2103786.2103795

Finally, we need to translate instance declarations. Each in-
stance may have a number of context declarations, say n:

instance (Q1, ...,Qn)⇒ D t1 ... tm

A type family instance is defined for each of them, of the form:

type instance IsD t1 ... tm = Andn Q1 ... Qn

For each number n of context declarations, we have a correspond-
ing Andn closed type family which checks that all the arguments
are Yes . More formally, we have:

type family And0 :: Defined
And0 = Yes

type family And1 d :: Defined
And1 x = x

type family Andn d1 ... dn :: Defined
Andn Yes ... Yes = Yes -- case everything Yes
Andn d1 ... dn = No

In the translation, Q1 to Qn refer to the translation of instance
constraints Q1 to Qn as given above.

A.1 OUTSIDEIN(X)

The current reference for type inference for Haskell, including type
classes, type families and other extensions such as generalized al-
gebraic data types is (Vytiniotis et al. 2011). The authors describe
the inference process in terms of a general framework, called OUT-
SIDEIN(X), which is parametrized by a constraint system X. Each
constraint system defines a concrete entailment Q W which
gives semantics to certain constraint Q under the axioms in the set
Q. Axioms are the generic name given to declarations such as class
and family instances.

In particular, we are interested in the case X = type classes and
type families, that is also discussed in (Vytiniotis et al. 2011). For
this case, many rules are given for the concrete entailment . Many
of them deal, such are those dealing with reflexivity, symmetry and
transitivity are quite straightforward:

REFLQ τ ∼ τ
Q τ1 ∼ τ2

SYMQ τ2 ∼ τ1

Q τ1 ∼ τ2 Q τ2 ∼ τ3
TRANSQ τ1 ∼ τ3

The rules related to type classes and type families are:

Q
∧

τ1 ∼ τ2
FCOMPQ F τ1 ∼ F τ2

Q D τ1 Q
∧

τ1 ∼ τ2
DICTEQ

Q D τ2

∀a.Q1 ⇒ Q2 ∈ Q Q [a 7→ τ]Q1
AXIOM

Q [a 7→ τ]Q2

The first two rules define how type equality distributes over in-
stance constraints and type family applications. The last one de-
scribes the application of axioms: if we can prove the preconditions
of an axiom for an specific substitution [a 7→ τ], then we can con-
clude the postcondition in the axiom. Note than in the case of type
family instances, Q1 is always empty, so the rule in that case reads:

∀a.F ρ ∼ σ ∈ Q
AXIOM’

F [a 7→ τ]ρ ∼ [a 7→ τ]σ

A.2 Soundness of translation
In OUTSIDEIN(X), entailment relations are parametrized by a set
of axioms Q, which can be either type class or type family in-
stances. We define Qtrans as the set of axioms obtained by trans-
lating each instance axiom as defined above.

Lemma 1. IfQ
∧

i Di τi ∼ Yes , thenQ Andn Di τi ∼ Yes .

Proof. By case analysis of the definition of Andn.

Theorem 1. IfQ D τ , thenQtrans IsD τ ∼ Yes .

Proof. By inversion of the rule applied to get Q D τ . There are
only two interesting cases, DICTEQ and AXIOM.

For DICTEQ, taking into account the translation, provingQtrans
IsD τ ∼ Yes boils down to proving the soundness of this rule:

Q IsD τ1 Q
∧

τ1 ∼ τ2

Q IsD τ2

The following derivation shows how to get it:

Q IsD τ1

Q
∧

τ1 ∼ τ2
FCOMPQ IsD τ1 ∼ IsD τ2 SYM, TRANS

Q IsD τ2

For AXIOM, first note that instance axioms of the form Q ⇒
Q∗ get translated into type family axioms of the form Q∗ ∼
Andn IsQ q. Thus, we need to prove soundness of the rule:

∀a.IsD σ ∼ Andn IsQ q ∈ Q Q
∧

IsQ [a 7→ τ]q ∼ Yes

Q IsD [a 7→ τ]σ ∼ Yes

We can derive the first premise by using AXIOM:

∀a.IsD σ ∼ Andn IsQ q ∈ Q
AXIOM

IsD [a 7→ τ]σ ∼ Andn IsQ [a 7→ τ]q

For the second premise, first apply the induction hypothesis to
convert the proofs of the context of the rule. Then, use the previous
lemma to get the version with Andn:

Q
∧

IsQ [a 7→ τ]q ∼ Yes

Q Andn IsQ [a 7→ τ]q ∼ Yes

Using SYM and TRANS we get the desired result.

A.3 Termination
An important issue to consider is whether termination characteris-
tics of class instances are also carried over to the translated fami-
lies. The most lenient conditions imposed by GHC over class in-
stances11 are the so-called Paterson conditions. For each constraint
Q s1 ... sj in the instance context:

1. No type variable has more occurrences in the constraint than in
the instance head.

2. The constraint has fewer constructors and variables (taken to-
gether and counting repetitions) than the head.

In the case of type families F t1 ... tm = s , the conditions imposed
by GHC ask that for each type family application G r1 ... rk

appearing in s , we have:

11 If the user does not turn on the UndecidableInstances , which turns off
any termination checking.

10 2014/9/9

1. Each of the arguments r1 .. rk do not contain any other type
family applications.

2. The total number of data type constructors and variables in
r1 .. rk is strictly smaller than in t1 .. tm.

3. Each variable occurs in r1 .. rk at most as often as in t1 .. tm.

The translation of a class instance which satisfies the Paterson
conditions into a type family instance:

type instance IsD t1 ... tm = Andn Q1 ... Qn

satisfies the terminations conditions (2) and (3) of type families.
However, condition (1) is not satisfied, because Andn contains
nested family applications. Note that these are the only nested
applications generated by the translation.

The key point is observing that each application of Andn adds
just one extra rewriting step. If type families fulfill their termination
conditions (2) and (3), Andn just adds a number of steps bounded
by the size of the derivation tree. Thus, termination is still guaran-
teed.

11 2014/9/9

Really Natural Linear Indexed Type Checking

Arthur Azevedo de Amorim
University of Pennsylvania

Marco Gaboardi
University of Dundee

Emilio Jesús Gallego Arias
University of Pennsylvania

Justin Hsu
University of Pennsylvania

Abstract
Recent works have shown the power of linear indexed type systems
for capturing complex safety properties. These systems combine
linear type systems with a language of indices that appear in the
types, allowing more fine-grained analysis. For example, linear
indexed types have been fruitfully applied to verify differential
privacy in the Fuzz type system.

A natural way to enhance the expressiveness of this approach
is by allowing the indices to depend on runtime information, in
the spirit of dependent types. This approach is used in DFuzz, an
extension of Fuzz. The DFuzz type system relies on an index-level
language supporting real and natural number arithmetic over con-
stants and dependent variables. Moreover, DFuzz uses a subtyping
mechanism to semantically manipulate indices. By themselves, lin-
earity, dependency, and subtyping each require delicate handling
when performing type checking or type inference; their combination
increases this challenge substantially, as the features can interact in
non-trivial ways.

In this paper, we study the type-checking problem for DFuzz. We
show how we can reduce type checking for (a simple extension of)
DFuzz to constraint solving over a first-order theory of naturals and
real numbers which, although undecidable, can often be handled in
practice by standard numeric solvers.

Categories and Subject Descriptors F.3.3 [Studies of Program
Constructs]: Type structure

Keywords type checking, type inference, linear types, subtyping,
sensitivity analysis

1. Introduction
Linear indexed type systems have been used to ensure safety proper-
ties of programs with respect to different kinds of resources; exam-
ples include usage analysis [24, 25], implicit complexity [4, 5, 14],
sensitivity analysis [10, 23], automatic timing analysis [12, 13],
and more. Linear indexed types use a type-level index language to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CONF ’yy, Month d–d, 20yy, City, ST, Country.
Copyright c© 20yy ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

describe resources and linear types to reason about the program’s
resource usage in a compositional way.

A limitation of current analysis techniques for such systems is
that resource usage is inferred independently of the control flow of
a program—e.g. the typing rule for branching usually approximates
resources by taking the maximal usage of one of the branches,
and recursion imposes even greater restrictions. To improve this
scenario, some authors have proposed extending such systems with
dependent types, using type indices to capture both resource usage
and the size information of a program’s input. This significantly
enriches the resulting analysis by allowing resource usage to depend
on runtime information. Linear dependent type systems have been
used in several domains, including implicit complexity [4, 16] and
sensitivity analysis [10].

Of course, there is a price to be paid for the increase in expres-
siveness: type checking and type inference become inevitably more
complex. In linear indexed type systems, these tasks are often done
in two stages: a standard Hindley-Milner-like pass, followed by
a constraint-solving procedure. In some cases, the generated con-
straints can be solved automatically by using custom algorithms [17]
or off-the-shelf SMT solvers [7, 13]. However, the constraints are
specific to the index language, and richer index languages often lead
to more complex constraints.

Type-checking DFuzz
In this paper we will focus on the type-checking problem for a par-
ticular programming language with linear dependent types, DFuzz.
Reed and Pierce [23] recently proposed the Fuzz programming lan-
guage, where linear indexed types are used to reason about sensitiv-
ity of programs in the context of differential privacy; the sensitivity
of a function measures the distance between outputs on nearby
inputs. In this setting, type checking and inference correspond to
sensitivity analysis.

Fuzz uses real numbers as indices for the linear types. Then
addition and multiplication of the indices will produce an upper
bound on the sensitivity of the program. This approach gives a
simple but effective sensitivity static analysis. Indeed, as shown
by D’Antoni et al. [7], type-checking for Fuzz programs can be
performed efficiently by using an SMT solver to discharge the
numeric proof obligations arising from the type system. Moreover,
the same approach works for type inference, which infers the
minimal sensitivity of a function.

While Fuzz works well on a variety of simple programs, it has
a fundamental limitation: sensitivity information cannot depend
on runtime information, such as the size of a data structure. To
get around this problem, Gaboardi et al. [10] introduced DFuzz,
an extension of Fuzz with a limited form of dependent types.

The index language in DFuzz combines information about the
size of data structures with information about the sensitivity of
functions. Technically, this is achieved by considering an index
language with index variables ranging over integers (to refer to
runtime sizes) and reals (to refer to runtime sensitivities). This
richer index language, combined with dependent pattern-matching
and subtyping, achieves increased expressiveness in the analysis,
providing sensitivity bounds beyond Fuzz’s capabilities.

However, adding variables to the index language has a significant
impact on the difficulty of type checking. Concretely, since the index
language also supports addition and multiplication, index terms are
now polynomials over the index variables. Instead of constraints
between real constants like in Fuzz, type checking constraints in
DFuzz may involve general polynomials.

A natural first approach is to try to extend the algorithm proposed
by D’Antoni et al. [7] to work with the new index language by
simply generating additional constraints when dealing with the new
language constructs. This would be similar in spirit to the work of
Dal Lago et al. [6] for type inference for d`PCF, a linear dependent
type system for complexity analysis. A crucial difference between
that setting and DFuzz is that the index language of d`PCF can
be extended by arbitrary (computable) functions. This makes the
approach to type inference for d`PCF proposed by Dal Lago and
Petit the most natural, since such functions can be used as direct
solutions to some of the introduced constraints.

However, such an approach does not work as well for DFuzz,
which opts for a much smaller index language. While it may be
possible to extend DFuzz’s index language with general functions,
we opt to keep the index language simple. Instead, since the type
system of DFuzz also supports subtyping, we consider a different ap-
proach inspired by techniques from the literature on subtyping [21]
and on constraint based type-inference approaches [15, 19, 22].

The main idea is to type-check a program by inferring some set
of sensitivities for it, and then testing whether the resulting type is
a subtype of the desired type. To obtain completeness (relative to
checking the subtype), one must ensure that the inferred sensitivities
are the “best” possible for that term. Unfortunately, the DFuzz index
language is not rich enough for expressing such sensitivities. For
instance, some cases require taking the maximum of two sensitivity
expressions, something that cannot be done in the language of
polynomials. We solve this problem by extending the index language
with three syntactic constructs, resulting in a new type system that
we name EDFuzz. This new system has meta-theoretic properties
that are similar to those of DFuzz, but also simplifies the search
for minimal sensitivities. Using these new constructs, we design a
sensitivity-inference algorithm for EDFuzz which we show sound
and complete, modulo constraint resolution.

We now face the problem of solving the constraints generated
by our algorithm. First, we show how to compile the constraints
generated by the algorithmic systems to constraints in the first-order
theory over mixed integers and reals. This way, we can still use
a numeric solver without resorting to custom symbolic resolution.
Unfortunately, the presence of universal quantification over natural
numbers in the constraints leads to undecidability of constraint
solving; we show that DFuzz type-checking is undecidable, by
reduction from Hilbert’s tenth problem, a standard undecidable
problem.

While this result shows that we can’t have a terminating type-
checker that is both sound and complete, not everything is lost.
We first show that by approximating the constraints, we obtain a
sound and computable method to type-check EDFuzz programs. We
show that this procedure can successfully type-check a fragment of
EDFuzz which we call UDFuzz; almost all of the examples proposed
by Gaboardi et al. [10] belong to this class. Of course, UDFuzz is a

strict subset of EDFuzz, and it is not hard to come up with well-typed
programs in EDFuzz that are invalid under UDFuzz.

Finally, we present a constraint simplification procedure that
can significantly reduce the complexity of our translated constraints
(measured by the number of alternating quantifiers), even when
checking full EDFuzz.

Contributions
We briefly overview the DFuzz programming language in Section 2,
to move to an informal exposition of the main challenges involved
in Section 3. Then, we present the main contributions of the paper:

• EDFuzz: an extension of DFuzz with a more expressive sensi-
tivity language that allows to type programs with more precise
types (Section 4);

• a sound and complete algorithm that reduces type checking and
inference in EDFuzz to constraint solving over the first-order
theory of N and R (Section 5 and Section 6);

• a proof of undecidability of type checking in DFuzz (and
EDFuzz) (Section 7);

• a sound translation from the previous type-checking constraints
to the first-order theory of the real numbers, a decidable theory
(Section 8.1); and

• a simplification procedure to make the constraints more amenable
to automatic solving (Section 8.2).

2. The DFuzz System
DFuzz [10] is a type system for verifying differential privacy. While
the precise application of DFuzz is somewhat beyond the scope of
this paper, at a high level, DFuzz is a system for checking function
sensitivity. Given a notion of distance between values, a function f
is said to be k-sensitive for some number k if dist(f(x), f(y)) ≤
k · dist(x, y). Sensitivities are expressed by the index language in
a linear indexed type system; let us begin by presenting DFuzz in
some detail before discussing the type-checking challenges.

2.1 Syntax and Types
DFuzz is an extension of PCF with indexed linear types. Indices
consist of numeric constants; index-level variables, which range
over sizes (natural numbers) or sensitivities (positive reals extended
with∞, denoted S); and addition and multiplication of indices. The
full syntax for DFuzz, including the types, terms, and the index
language, is shown in Figure 1. We take a brief tour through the
term language.

• Abstraction and application for index variables are captured by
the Λi : κ.e and e[R] terms, with κ representing the kind for i.
We refer to variables of natural number kind as size variables,
while variables of real number kind are sensitivity variables.

• Singleton types N[S] and R[R] are used to related type-level
sizes and sensitivities with term-level sizes and sensitivities.

• Dependent pattern matching over N[S] types is captured by the
case construction.

• Linear types indexed by R are written !Rσ (τ .
• Variable environments Γ carry an additional annotation for

assignments x :[R] σ, representing the current sensitivity R
for the variable x.

• Index variable environments φ specify the kinding of index
variables.

• Constraint environments Φ store assumptions introduced under
dependent pattern matching. Often, we will think of a constraint
environment as the conjunction of its constraints.

κ ::= r | n (kinds)
S ::= R≥0 ∪ {∞} (extended positive reals)
S ::= i | 0 | S + 1 (sizes)
R ::= S | i | S | R+R | R ·R (sensitivities)
σ, τ ::= R | R[R] | N[S] | !Rσ (τ (types)

| ∀i : κ. σ | σ ⊗ τ | σ N τ
e ::= x | N | s e | R≥0 | fix (x : σ).e (expressions)

| λx :[R] σ.e | e1 e2
| Λi : κ. e | e[R]
| 〈e1, e2〉 | πi e
| (e1, e2) | let (x, y) = e in e′

| case eof 0⇒ e0 | n[i] + 1⇒ es
Γ,∆ ::= ∅ | Γ, x :[R] σ (environments)
φ, ψ ::= ∅ | φ, i : κ (sens. environments)
Φ,Ψ ::= > | Φ, S = 0 | Φ, S = i+ 1 (constraints)

Figure 1. DFuzz Types and Expressions

2.2 Environment Operations
As is the case for many linear type systems, DFuzz defines opera-
tions on variable environments. Precisely, two environments Γ,∆
can be combined with addition, and a single environment Γ can mul-
tiplied by a sensitivity (a sort of environment scaling). Throughout,
we will write dom(Γ) for Γ’s domain.

We define environment multiplication R · Γ as the operation
taking every element xi :[ri] σi of Γ to xi :[R·ri] σi. Environment
addition is defined iff all the common assignments of Γ, ∆ map
to the same type, that is to say, forall xi in dom(Γ) ∩ dom(∆),
(xi :[Ri] σi) ∈ Γ ⇐⇒ (xi :[Si] σi) ∈ ∆. In such case:

Γ + ∆ = {xi :[Ri+Si] σ | xi ∈ dom(Γ) ∩ dom(∆)}
∪ {xj :[Rj] σj | xj ∈ dom(Γ)− dom(∆)}
∪ {xk :[Rk] σk | xk ∈ dom(∆)− dom(Γ)}

2.3 Subtyping
DFuzz has a notion of subtyping, which intuitively corresponds to a
standard property of function sensitivity: a k-sensitive function
is also k′-sensitive for all k′ ≥ k. Furthermore, subtyping in
DFuzz is the mechanism that allows types to use information from
the constraint environment; in this use, subtyping allows a form
of type coercion. We consider here a slightly simpler definition
of subtyping than the one used in Gaboardi et al. [10]. In the
environments we requires subtyping to preserve the internal type.
This slight modification will allow us to simplify some rules of the
type-checking algorithm.

The semantics of the subtying relation is defined by interpreting
sensitivity expressions as functions that produce sensitivity values.
Formally, let R be a sensitivity expression, well-typed under envi-
ronment φ, and ρ a suitable variable valuation (i.e., a function that
maps each variable x : κ in φ to an element of JκK, with JnK = N
and JrK = S). We then define JRKρ as follows:

J0Kρ := 0
JS + 1Kρ := JSKρ + 1

JiKρ := ρ(i) i a variable
JrKρ := r r a constant

JR1 +R2Kρ := JR1Kρ + JR2Kρ
JR1 ·R2Kρ := JR1Kρ · JR2Kρ

Then, the standard ordering ≥ on S (i.e., the positive real
numbers with a maximal element∞) induces an ordering on index
terms, which we can then extend to a subtype relation v on types
and environments; the rules can be found in Figure 2. Note that

φ; Φ |= σ v σ v-Refl

φ; Φ |= σ′ v σ φ; Φ |= τ v τ ′

φ; Φ |= σ N τ v σ′ N τ ′
(v . N)

φ; Φ |= σ v σ′ φ; Φ |= τ v τ ′

φ; Φ |= σ ⊗ τ v σ′ ⊗ τ ′
(v .⊗)

|= ∀φ. (Φ⇒ R ≤ R′)
φ; Φ |= σ′ v σ φ; Φ |= τ v τ ′

φ; Φ |= !Rσ (τ v !R′σ
′ (τ ′

(v .()

φ, i : κ; Φ |= σ v τ i fresh in φ
φ; Φ |= ∀i : κ. σ v ∀i : κ. τ

(v .∀)

∀(x :[Ri] σi, x :[R′i] σi) ∈ (Γ,∆)

dom(∆) ⊆ dom(Γ) |= ∀φ. (Φ⇒ Ri ≥ R′i)
φ; Φ |= Γ v ∆

v-Env

Figure 2. DFuzz Subtyping Relation

checking happens under the current constraint environment Φ, so
subtyping may use information recovered from a dependent match.

The leaves of the subtype derivation are either equalities that
are consequences of the constraint environment Φ, or assertions
φ |= (Φ⇒ R1 ≥ R2). These are defined logically as

∀ρ.(dom(ρ) = φ ∧ ρ(Φ))⇒ JR1Kρ ≥ JR2Kρ,

where the quantification is over all well-kinded substitutions ρ for
variables specified by φ satisfying the constraints Φ.

2.4 Typing
Typing judgments for DFuzz are of the form

φ; Φ | Γ ` e : σ

meaning that term e has type σ under environments φ and Γ and
constraints Φ; full rules are shown in Figure 3.

We highlight here just the most complex rule, the dependent
pattern matching rule (N E), which allows each branch to be typed
under different assumptions on the type N[S] of the scrutinee (e).
The left branch e0 is typed under the assumption S = 0, while the
right branch es is typed under the assumption S = i+ 1 for some i.
Indeed, this rule is useful for capturing programs whose sensitivity
depends on the number of iterations or number of input elements;
combined with the fix rule (Fix), these features enable programs
that iterate depending on a runtime parameter while still reasoning
about the number of iterations. Readers interested in more details
can consult Gaboardi et al. [10]; we follow their presentation closely
except for a few points, which we detail in the Appendix.

2.5 Examples
We close the overview of DFuzz with some examples. The first ex-
ample is multiplication. Usually, multiplication cannot be assigned
a type as is not sensitive for any k. However, thanks to dependent
types we can introduce a multiplication primitive with type:

× : ∀R1 : r.∀R2 : r.!R1R[R1] (!R2R[R2] (R[R1 ·R2]

A function that adds ε noise to the output has type:

add_noise : ∀ε : r.!εR (#R
where #R is the type of probability distributions over R.

φ; Φ | ∆ ` e : σ φ; Φ |= Γ v ∆

φ; Φ | Γ ` e : σ
(v .L)

φ; Φ | Γ ` e : σ φ; Φ |= σ v τ
φ; Φ | Γ ` e : τ

(v .R)

r ∈ R
φ; Φ | Γ ` r : R

(ConstR)
n = JSK

φ; Φ | Γ ` n : N[S]
(ConstN)

φ; Φ | Γ, x :[1] σ ` x : σ
(Var)

φ; Φ | Γ, x :[∞] σ ` e : σ

φ; Φ | ∞ · Γ ` fix (x : σ).e : σ
(Fix)

φ; Φ | Γ, x :[R] σ ` e : τ

φ; Φ | Γ ` λx :[R] σ.e : !Rσ (τ
((I)

φ; Φ | Γ ` e1 : !Rσ (τ φ; Φ | ∆ ` e2 : σ

φ; Φ | Γ +R ·∆ ` e1 e2 : τ
((E)

φ, i : κ; Φ | Γ ` e : σ i fresh in Φ,Γ

φ; Φ | Γ ` Λi : κ. e : ∀i : κ. σ
(∀I)

φ; Φ | Γ ` e : ∀i : κ. σ φ |= S : κ

φ; Φ | Γ ` e[S] : σ[S/i]
(∀E)

φ; Φ | Γ1 ` e1 : σ φ; Φ | Γ2 ` e2 : τ

φ; Φ | Γ1 + Γ2 ` (e1, e2) : σ ⊗ τ (⊗I)
φ; Φ | ∆ ` e : σ ⊗ τ φ; Φ | Γ, x :[R] σ, y :[R] τ ` e′ : µ

φ; Φ | Γ +R ·∆ ` let (x, y) = e in e′ : µ
(⊗E)

φ; Φ | Γ ` e1 : σ φ; Φ | Γ ` e2 : τ

φ; Φ | Γ ` 〈e1, e2〉 : σ N τ
(N I)

φ; Φ | Γ ` e : σ1 N σ2

φ; Φ | Γ ` πi e : σi
(N E)

φ; Φ | Γ ` e : N[S]

φ; Φ | Γ ` s e : N[S + 1]
(S I)

φ; Φ | ∆ ` e : N[S] φ; Φ, S = 0 | Γ ` e0 : σ
φ, i : n; Φ, S = i+ 1 | Γ, n :[R] N[i] ` es : σ i fresh in φ

φ; Φ | Γ +R ·∆ ` case e returnσ of 0⇒ e0 | n[i] + 1⇒ es : σ
(N E)

Figure 3. DFuzz Typing Rules

Functions sensitive on number of iterations or size of the input
are similarly typed. A function that adds noise i times to an input is:

iNoise : ∀i : n,∀ε : r.!∞N[i] (!∞R[ε] (!i·εR (R

3. The Challenge of Type-checking Linear
Dependent Types

Type-checking a language with linear indexed types presents several
challenges, which are only compounded when dependent types and
subtyping are added to the mix. In this section, we take a closer look
at these challenges.

3.1 To Split, or not to Split?
The first problem we face is due to linearity. Given a term and
an environment, we need a way to “split” the environment into
appropriate sub-environment that can be used in the recursive calls
to type check subterms.

Automatically inferring the right environments in our setting is
difficult, due to the index language for DFuzz. Indeed, index terms
are polynomials over index variables, which may range over the
reals or the naturals. For instance, we may know that a particular
variable x has sensitivity i2 · j2 + 3 in our environment. However,
it is not clear how to split such sensitivity information between two
environments that share the variable x. In fact, as we will show
below, in general it is not always possible to find a split. One might
hope to simplify the type-checking task by requiring the programmer
to provide a few type annotations, like in non-linear type systems.
Unfortunately, this approach is impractical for the splitting problem
because naively, the annotations must describe the split for every
variable binding in the context!

To better understand this obstacle, let us consider two general
approaches to type-checking linear type systems, which we call the
top-down and bottom-up strategies.

The Downfall of Top-Down
For the type-checking problem, suppose we are given the environ-
ment Γ, a term e, and a purported type σ. The goal is to decide if
Γ ` e : σ is derivable. The top-down strategy takes a context and a
term, and attempts to partition the context and recursively type the
subterms of e.

The main difficulty of this approach centers around splitting the
environment, a problem that is most clear in the application rule.
Here is a simplified version:

Γ ` f : !Rσ (τ ∆ ` e : σ

Γ +R ·∆ ` f e : τ

So given a type-checking problem Σ ` f e : σ′ our first difficulty is
to pickR, Γ, and ∆ such that Σ = Γ +R ·∆. We could try to guess
R, but unfortunately it may depend on the choice of Γ. Since our
index language contains the real numbers, the number of possible
splittings isn’t even finite.

A natural idea is to delay the choice of this split. For instance, we
may create a placeholder variable R and placeholder environments
Γ′, ∆′, asserting Σ = Γ′ +R ·∆′ and recursively type-checking f
and e. After reaching the leaves of the derivation, we would have a
set of constraints whose satisfiability would imply that the program
type-checks.

Unfortunately, the constraints seem difficult to solve due to the
syntactical nature of our indices. In other words, the “placeholder
variables” are really meta-variables that range over index terms,
which could potentially depend on bound index variables. In order
to prove soundness of such a system with respect to the formal
typing system, the solver must return success only if there is a
solution where all the meta-variables can be instantiated to an index
term—a syntactic object. This is at odds with the way most solvers
work—semantically—finding arbitrary solutions over their domain.

It is not clear how to solve these existential constraints automatically
for the specific index language of DFuzz.

The Rise of Bottom-Up?
A different approach is a bottom-up strategy: suppose we are again
given an environment Γ, a term e, and a type σ, and we want to
check if Γ ` e : σ is derivable. The main idea is to avoid splitting
environments by calculating the minimal sensitivities needed for
typing each subexpression. For each typing rule, these minimal sen-
sitivities can be combined to find the resulting minimal sensitivities
for e. Once this is done, we just need to check whether these optimal
sensitivities are compatible with Γ and σ via subtyping.

Let’s consider how this works in more detail by analyzing a
few important cases. At the base case, we type-check variables in a
minimal context (that is, empty but for the variable) an assigning it
the minimal sensitivity required:

x :[1] σ ` x : σ

Recall that we have weakening on the left so can add non-occurring
variables to the context later.

Now, the key benefit of the bottom-up approach becomes evident
in the application rule: we can completely avoid the splitting
problem. When faced with a type-checking instance Σ ` f e : σ,
we recursively find optimal Γ, R, and ∆ for checking f and e; then,
checking that Σ v Γ +R ·∆ suffices.

Unfortunately, things don’t look so easy in the additive rules.
Let’s examine the introduction rule for N:

Γ ` e1 : σ1 Γ ` e2 : σ2

Γ ` 〈e1, e2〉 : σ1 N σ2

This rule forces both environments to have the same sensitivities,
but the bottom-up idea may infer different environments for each
expression:

Γ1 ` e1 : σ1 Γ2 ` e2 : σ2

Σ? ` 〈e1, e2〉 : σ1 N σ2

Now we need to guess a best environment Σ?, but the DFuzz
sensitivity language is too weak to express this value. For instance,
if we consider sensitivity expressions r2 and r depending on
a sensitivity variable r, we can show that there is no minimal
polynomial upper bound for them under the point-wise order on
polynomials1.

To maintain the minimality invariant, we can extend the sensitiv-
ity language with a new syntactic construct max(R1, R2) for type-
inference purposes only, which should denote the maximum of two
sensitivity values. We could then safely set Σ? := max(Γ1,Γ2),
where the expression combines sensitivities for the bindings on both
environments as expected.

However, there is a problem with this approach: the resulting
algorithm is not sound with respect to the original type system,
because it allows more terms to be typed even when sensitivities in
the final type do not mention the new construct! To see this, assume
that our algorithm produces a derivation Γ′ ` e : σ′ using extended
sensitivities. Now, soundness amounts to showing that for all Γ, σ
mentioning only standard sensitivities such that Γ v Γ′ and σ′ v σ,
there exists a typing derivation Γ ` e : σ that uses only the original
sensitivity language. Let’s try to sketch how this proof would work
by restricting our attention to a particular instance of the application
rule:

φ; ∅ | ∅ ` f : !Rf σ (τ φ; ∅ | x :[R̂x] µ ` e : σ

φ; ∅ | x :[Rf ·R̂x] µ ` f e : τ

1 Indeed, it can be seen that DFuzz does not possess minimal types. Refer to
the Appendix for a more detailed proof.

where R̂x is an extended sensitivity expression. By induction, we
know that for all standard sensitivity expressions Rx such that
Rx ≥ R̂x, we can obtain a standard derivation x :[Rx] µ ` e : σ.
We also have standard Rxf such that Rxf ≥ Rf · R̂x. Thus, all we
need to do is to calculate from Rf , Rxf standard sensitivities R′f ,
R′x to be able to apply both induction hypotheses. The following
result shows that this is not always possible.

Lemma 1. Given standard sensitivities expressions Rxf , Rf and
an extended sensitivity expression R̂x such that Rxf ≥ Rf · R̂x, it
is not the case that one can always find standard R′f , R′x such that
Rxf ≥ R′f ·R′x ∧R′f ≥ Rf ∧R′x ≥ R̂x.

Proof. Take Rxf = r2 + 1, Rf = r and R̂x = max(2, r). As we
can see, we have r2 + 1 ≥ r ·max(2, r), with a strict equality
iff r = 1. Suppose there exist standard sensitivity expressions
R′f , R

′
x such that they satisfy the statement. Because R′f ≥ r

and R′x ≥ max(2, r), we know by asymptotic analysis that the
degree of R′f and R′x must be at least 1. Furthermore, because
r2 + 1 ≥ R′f · R′x, their degree must be exactly 1, with leading
coefficient equal to 1. Write R′f = r + a and R′x = r + b, where
a, b are positive constants. The lower bound on R′x implies b ≥ 2.
For r = 1, we haveR′f ·R′x ≥ 3a+ 3 ≥ 3. However, the lower and
upper bounds forR′f ·R′x coincide at that point, forcingR′f ·R′x = 2;
contradiction. Thus, no such R′f , R

′
x can exist.

It is not hard to adapt the above into a counterexample for the
soundness of the algorithm with respect to the original system.
However, we can recover soundness by extending the sensitivity
language for the basic typing rules as well.

3.2 Avoiding the Avoidance Problem
After the addition of least upper bounds for sensitivities, the bottom-
up approach is in a good working state for the basic system. However,
other constructs in the language introduce further challenges. In
particular, let’s examine a simple version of the abstraction rule for
sensitivity variables:

φ, i : κ | Γ ` e : σ i fresh in Γ

φ | Γ ` Λi : κ. e : ∀i : κ. σ

When this rule is interpreted in a top-down approach, usually no
problem arises; we would just introduce the new sensitivity variable
and proceed with type checking.

However, when the typechecking direction is reversed, we hit a
version of the avoidance problem [8, 11, 18]. The avoidance problem
usually appears in slightly different scenarios related to existential
types, and could be informally stated as finding a best type free of a
particular variable. In our case, we must find the “best” Γ free of i.
It may not be obvious how i could have been propagated to Γ, but
indeed, a function f in e could have a type like as !iσ (τ , and
applying f will introduce i into the environment in the bottom-up
approach.

Fortunately, in our setting, we can easily solve the avoidance
problem by further extending the sensitivity language. The “best”
way of freeing a sensitivity expression R of a variable i is to take
the supremum of R over all possible values of i, which we denote
by sup(i, R)2. Then, the minimal environment is sup(i,Γ), where
the supremum is extended to each binding in the environment.

2 Contrary to max(−,−), it would have been possible to define this
construct as a function over sensitivity expressions, without the need to
extend their syntax. This would still be true even after introducing index-level
case sensitivity expression for analyzing dependent pattern matching. As the
translation is somewhat intricate and leads to more complex constraints, we
chose to add it directly to the syntax of sensitivity expressions.

3.3 Undependable Dependencies
The last case to consider in our informal overview is case, also
referred as dependent pattern matching.

The dependent pattern matching can be considered as a special
case of the two previous difficulties. Like the least upper bound,
we must compute a least upper bound of the resources used in
two branches. However, now the information coming from the
successor branch may also contain sensitivities depending on the
newly introduced refinement variable, which cannot occur in the
upper bound; similar to the avoidance problem we just discussed.
On top of that, information coming from both sides is conditional
on the particular refinements induced by the match, so any new
sensitivity information that we propagate cannot really depend on
the refinements.

We now face a choice: we can introduce refinement types over
sensitivity and size variables of the form {σ | P (~i)}, which would
allow us to express the sensitivty inference for case in term of
the least upper bound and supremum operations. However, we take
a simpler path and add a conditional operator on natural number
expressions S, case(S,R0, i, Rs), interpreted as R0 if S is 0 or
Rs[i 7→ S − 1] if S ≥ 1.

In the next sections we proceed to formally introduce the ex-
tended sensitivities and its semantics; we discuss the type-checking
algorithm, which depends on solving inequality constraints over the
extended sensitivities; and we study several approaches and discuss
their decidability.

4. Extended DFuzz: EDFuzz
We define a conservative extension to DFuzz’s type system, EDFuzz,
which is basically DFuzz with an extended sensitivity language for
the indices. We summarize the new sensitivity terms:

• max(R1, R2) is the pointwise least upper bound of sensitivity
terms R1, R2.

• sup(i, R) is the pointwise least upper bound of R over all i.
• case(S,R0, i, Rs) is the conditional function on the size ex-

pression S that is valued R0 when S = 0, and Rs[i 7→ S − 1]
when S is a strictly positive integer.

We write R̂ for the extended sensitivity language, built from the
standard sensitivity terms and operations and the new extended
terms. The semantics of extended terms are defined as follows.

Definition 2 (Extended sensitivity semantics). For every well-
kinded valuation φ |= ρ for φ |= R we have:

Jsup(i : κ, R̂)Kρ := sup
r∈κ
{JR̂Kρ∪[i=r]}

Jmax(R̂1, R̂2)Kρ := max(JR̂1Kρ, JR̂2Kρ)

Jcase(S, R̂0, i, R̂s)Kρ :=

{
JR̂0Kρ if JSKρ = 0

JR̂sKρ∪[i=n−1] if JSKρ = n ≥ 1.

JR̂1 + R̂2Kρ := JR̂1Kρ + JR̂2Kρ
JR̂1 · R̂2Kρ := JR̂1Kρ · JR̂2Kρ.

We define analogous operations on contexts in the obvious
way. For instance, if x :R1 σ ∈ Γ1 and x :R2 σ ∈ Γ2, then
x :max(R1,R2) σ ∈ max(Γ1,Γ2). Context operations that take
two contexts Γ1,Γ2 are only defined if the contexts have the same
skeleton, i.e., Γ•1 = Γ•2.

It is not hard to show that any derivation valid in DFuzz remains
valid in EDFuzz. Furthermore, DFuzz’s metatheory only relies on
sensitivity terms having an interpretation as total function from free
variables to a real number, rather than on any specific property about

the interpretation itself. The extended interpretation is total, and
hence the metatheory of DFuzz extends to EDFuzz.

5. Type Checking and Inference
We present a sound and complete type checking and inference
algorithm for EDFuzz. The algorithm assumes the existence of
an oracle for deciding the subtyping relation, so in that sense our
algorithm is relatively complete. We defer discussion about solving
subtyping constraints to the next section.

We remind the reader that our definitions of type-checking and
inference assume that a regular typing derivation—that is to say,
erasing all linear types and dependent terms—for an expression is
already known. This can be computed, for example, by a Hindley-
Milner-style pass. Here and below, we focus on handling the
sensitivities. For a type σ, we write σ for the type where all linear
types are mapped to regular function types and all the dependently
typed types are mapped to their non-dependent version. This erasure
operation is extended to environments in the natural way: Given
an environment Γ, we define its skeleton as Γ, containing a list of
type bindings (x : σ), but without the external sensitivities (i.e., the
annotation on the colon).

Definition 3 (Type Checking). Given a context Γ, a term e, a type
σ, and a HM derivation Γ `H e : σ, then the type-checking problem
for EDFuzz is to determine whether a derivation ∅; ∅; Γ ` e : σ
exists.

In our context, type inference means inferring the sensitivity
annotations in both a context and a type.

Definition 4 (Type Inference). Given a context skeleton Γ, a term
e, a regular type σ, and a HM derivation Γ `H e : σ, the type-
inference problem is to compute a context Γ and a type τ such that
a derivation ∅; ∅; Γ ` e : τ exists and Γ = Γ and τ = σ.

5.1 The Algorithm
We can fulfill both goals using an algorithm that takes as inputs
a term e, an environment free of sensitivity annotations Γ• and a
refinement constraint Φ. The algorithm will output an annotated
environment ∆ and a type σ. We write a call to the type inference
algorithm as:

φ; Φ; Γ•; e =⇒ ∆;σ.

Figure 4 presents the full algorithm in a judgmental style. The
algorithm is based on a syntax-directed version of DFuzz that enjoys
several nice properties; full technical details can be found in the
Appendix. Here, we just sketch how the transformation works in the
proofs of soundness and completeness.

Theorem 5 (Algorithmic Soundness). Suppose φ; Φ; Γ•; e =⇒
Γ;σ. Then, there is a derivation of φ; Φ; Γ ` e : σ.

Proof. We define two intermediate systems: The first one internaliz-
ing certain properties of weakening and a second, syntax-directed.
The algorithm is a direct transcription of the syntax-directed system
and soundness can be proved by induction on the number of steps.
We prove soundness of the syntax-directed system by induction on
the syntax-directed derivation.

Theorem 6 (Algorithmic Completeness). Suppose φ; Φ; Γ ` e : σ
is derivable. Then φ; Φ; Γ•; e =⇒ Γ′;σ′ and φ; Φ |= Γ v
Γ′ ∧ σ′ v σ.

Proof. We show that a “best” syntax-directed derivation can be
build from any standard derivation by induction on the original
derivation plus monotonicity and commutativity properties of the
subtype relation. Completeness for the algorithm follows.

φ; Φ; Γ•; r =⇒ Ectx(Γ•);R
(Const)

n = JSK
φ; Φ; Γ•;n =⇒ Ectx(Γ•);N[S]

(ConstN)

φ; Φ; Γ•, x : σ;x =⇒ Ectx(Γ•), x :[1] σ;σ
(Var)

φ; Φ; Γ•, x : σ; e =⇒ Γ, x :[R′] σ; τ
φ; Φ |= R ≥ R′2↑

φ; Φ; Γ•;λ(x :[R] σ). e =⇒ Γ; !Rσ (τ
((I)

φ; Φ; Γ•; e1 =⇒ Γ; !Rσ (τ
φ; Φ; ∆•; e2 =⇒ ∆;σ′

φ; Φ |= σ′ v σ
φ; Φ; Γ•; e1 e2 =⇒ Γ +R ·∆; τ

((E)

φ; Φ; Γ•, x : σ; e =⇒ Γ, x :[R] σ;σ′

φ; Φ |= σ′ v σ
φ; Φ; Γ•; fixx : σ. e : σ =⇒∞ · Γ;σ

(Fix)

φ, i : κ; Φ; Γ•; e =⇒ Γ;σ

φ; Φ; Γ•; Λi : κ. e =⇒ sup(i,Γ); ∀i : κ. σ
(∀I)

φ; Φ; Γ•; e =⇒ Γ;∀i : κ. σ φ |= S : κ

φ; Φ; Γ•; e[S] =⇒ Γ;σ[S/i]
(∀E)

φ; Φ; Γ•; e1 =⇒ Γ1;σ1

φ; Φ; Γ•; e2 =⇒ Γ2;σ2

φ; Φ; Γ•; 〈e1, e2〉 =⇒ Γ1 + Γ2;σ1 ⊗ σ2
(⊗I)

φ; Φ; Γ•; e =⇒ ∆;σ ⊗ τ
φ; Φ; Γ•, x : σ, y : τ ; e′ =⇒ Γ, x :[R1] σ, y :[R2] τ ;µ

φ; Φ; Γ•; let(x, y) = e in e′ =⇒ Γ + max(R12↑, R22↑) ·∆;µ
(⊗E)

φ; Φ; Γ•; e1 =⇒ Γ1;σ1

φ; Φ; Γ•; e2 =⇒ Γ2;σ2

φ; Φ; Γ•; 〈e1, e2〉 =⇒max(Γ1,Γ2);σ1 N σ2
(N I)

φ; Φ; Γ•; e =⇒ Γ;σ1 N σ2

φ; Φ; Γ•;πie =⇒ Γ;σi
(N E)

φ; Φ; Γ•; e =⇒ Γ;N[S]

φ; Φ; Γ•; s e =⇒ Γ;N[S + 1]
(S I)

φ; Φ; Γ•; e =⇒ ∆;N[S] φ; Φ, S = 0; Γ•; e0 =⇒ Γ0;σ0

φ, i : n; Φ, S = i+ 1; Γ•, x : N[i]; es =⇒ Γs, x :[R′] N[i];σs
φ; Φ, S = 0 |= σ0 v σ φ, i : n; Φ, S = i+ 1 |= σs v σ

φ; Φ; Γ•; case e returnσ of 0 7→ e0 | x[i] + 1 7→ es
=⇒ case(S,Γ0, i,Γs) + case(S, 0, i, R′2↑) ·∆;σ

(N E)

Figure 4. Algorithmic Rules for EDFuzz

5.2 Removing Sensitivity Annotations
We briefly discuss the role annotations play in our algorithm. DFuzz
programs have three different annotations: the type of the argument
for lambda terms (including the sensitivity), the return type for case,
and the type for fixpoints.

The sensitivity annotations ensure that inferred types are free of
terms with extended sensitivities. This is useful for some optimiza-
tions on subtype checking (introduced later in the paper). However,
the general encoding of subtyping checks works with full extended
types, thus the sensitivity annotations can be safely omitted and the
system will infer types containing extended sensitivities.

Due to technical difficulties in inferring the minimal sensitivity
in the presence of higher-order functions, the argument type in
functions (σ in λ(x : σ)) must be annotated, and we require the
type of fixpoints to be annotated.

6. Constraint Solving over Mixed Reals/Naturals
The type-checking algorithm introduced in the previous section pro-
duces inequality constraints over the extended sensitivity language.
While these extended sensitivity terms may appear complicated, we
can translate them into formulas in the first-order theory of S and N
in a sound and complete way.

While we will show in the next section that the kind of first-order
formulas we generate here are in general undecidable, they can still
be handled by numeric solvers providing mixed real/natural theories.
Moreover, in Section 8.1 we will present a sound (although not
complete) computable procedure to check the constraints.

Quantification over S should be interpreted as quantification
over R∞ with a non-negativity constraint; all the quantifiers in our
target first-order theory will range over either R∞ or N. (In the next
section, we will show that quantifying over just R and N is enough.)

The idea behind our translation is simple: we use a first-order
formula to uniquely specify each extended sensitivity term. In other
words, we define a predicate T (R) for each extended sensitivity
term R, such that JT (R)(r)Kρ holds exactly when r is equal to the
interpretation of R under the valuation ρ. For instance, consider the
translation for R1 +R2:

T (R1+R2)(r) := ∃r1 r2 : S, T (R1)(r1)∧T (R2)(r2)∧r = r1+r2.

For ρ a valuation forR1, R2, we have r1 = JR1Kρ and r2 = JR2Kρ.
Then the only r that satisfies this predicate is

r = r1 + r2 = JR1Kρ + JR2Kρ = JR1 +R2Kρ,

as desired.
For a more involved example, consider the translation of

max(R1, R2):

T (max(R1, R2))(r)

:= ∃r1 r2 : S, T (R1)(r1) ∧ T (R2)(r2)∧
(r1 ≥ r2 ∧ r = r1 ∨ r2 ≥ r1 ∧ r = r2).

Again, for any valuation ρ of R1, R2, we have r1 = JR1Kρ and
r2 = JR2Kρ. The final conjunction states that r must be the larger
of r1 and r2, which is precisely the semantics we have given
Jmax(R1, R2)Kρ. The full translation is in Figure 5.

We formalize our intuitive explanation of the translation with the
following lemma.

κ := N | S
T (i)(r) := i = r

T (R1 +R2)(r) := ∃r1 r2 : S, T (R1)(r1) ∧ T (R2)(r2) ∧ r = r1 + r2

T (R1 ·R2)(r) := ∃r1 r2 : S, T (R1)(r1) ∧ T (R2)(r2) ∧ r = r1 · r2
T (max(R1, R2))(r) := ∃r1 r2 : S, T (R1)(r1) ∧ T (R2)(r2) ∧ (r1 ≥ r2 ∧ r = r1 ∨ r2 ≥ r1 ∧ r = r2)

T (case(S,R0, i, Rs))(r) := ∃rs : N, T (S)(rs) ∧ (rs = 0 ∧ T (R0)(r) ∨ ∃i : N, rs = i+ 1 ∧ T (Rs)(r))

T (sup(i : κ,R))(r) := bound(i : κ,R, r) ∧ ∀r′,bound(i : κ,R, r′)⇒ r′ ≥ r
bound(i : κ,R, r) := ∀i : κ, ∃r′ : S, T (R)(r′) ∧ r′ ≤ r

Figure 5. Constraint Translation

Lemma 7. For every sensitivity expression R and r ∈ S, and for
every valuation ρ whose domain contains the free variables of R,
JT (R)(r)Kρ ⇐⇒ r = JRKρ

Proof. By induction onR. We have already considered theR1 +R2

and max(R1, R2) cases above.

Using the translation of terms, we can translate sensitivity con-
straints generated by our typing algorithm. We map each constraint
of the form

|= ∀φ,Φ⇒ R1 ≥ R2

for R1 a standard sensitivity term to

∀φ,Φ⇒ ∃r : S, T (R2)(r) ∧R1 ≥ r
Note that since R1 is a standard sensitivity term, the resulting
formula is a first-order formula in the theory of S and N. Thanks
to Lemma 7, both formulas are semantically equivalent.

7. Undecidability of Type-checking over Mixed
Reals/Naturals

As we have seen in the previous section, constraints over our
extended sensitivity language can be translated to simple first-order
formulas. Taken by itself, this is not entirely satisfactory, as the first-
order theory of N is already undecidable. A nice illustration of this
is Hilbert’s tenth problem, which asks if a polynomial equation of
the form P (~x) = 0 over several variables has any solutions over the
natural numbers. After several years of investigation, this property,
easily definable in first-order arithmetic, was finally shown to be
undecidable.

In this section, we will show that this problem is present in
DFuzz: type-checking is undecidable. We begin with an auxiliary
lemma.

Lemma 8. Given polynomials P , Q over n variables with coeffi-
cients in N, checking ∀~i ∈ Nn, P (~i) ≥ Q(~i) is undecidable.

Proof. We will use a solution to our problem to solve Hilbert’s tenth
problem. Suppose we are given a polynomial P with integer coef-
ficients, and we want to decide whether ∃~i ∈ Nn, P (~i) = 0. This
is equivalent to deciding ¬∀~i ∈ Nn, P (~i)2 ≥ 1. Write P (~i)2 =

P+(~i)− P−(~i), where P+ and P− have only positive coefficients.
Then our condition is equivalent to ¬∀~i ∈ Nn, P+(~i) ≥ P−(~i)+1.
Thus, we can solve Hilbert’s tenth problem by using P+ and P−+1
as inputs to our problem, which shows that it is undecidable.

This class of constraints is important for DFuzz, as they can arise
when checking the subtype relation.

Corollary 9. The subtype relation of DFuzz is undecidable.

Proof. Suppose we are given P and Q as previously. Consider the
types σ = ∀~i, !0Nn[~i] (!Q(~i)R (R and τ = ∀~i, !0Nn[~i] (
!P (~i)R (R. Then σ v τ is equivalent to the previous problem,
hence undecidable.

Corollary 10. DFuzz type checking is undecidable.

Proof. Using recursion and dependent pattern matching, it is possi-
ble to write a function that multiplies a real number by a polynomial
Q(~v) with variables ranging over N. Its minimal type will clearly
be σ. Therefore, type-checking it against τ is equivalent to deciding
σ v τ , which is undecidable by Lemma 8.

8. Approaches to Constraint Solving
Given that type-checking DFuzz (and hence also EDFuzz) is un-
decidable, is there anything more we can do besides feeding the
constraints to a solver and hoping for the best? In this section, we
discuss two possible directions to tackle these constraints. For both
of these approaches, we require that all annotations in the term
are standard sensitivities, rather than extended. Then, we have the
following lemma. (We defer the proof to the Appendix.)

Lemma 11 (Standard Annotations). Assume annotations in a term
e range over standard sensitivities and φ; Φ; Γ•; e =⇒ Γ;σ. Then:

• σ has no extended sensitivities; and
• all constraints required for the algorithm are of the form |=
∀φ. (Φ⇒ R ≥ R′) where R is a standard sensitivity term.

8.1 Modifying the subtype relation
As seen in the previous section, the EDFuzz subtyping relation
is undecidable. Here, we explore a modified version of EDFuzz—
which we call UDFuzz—that enjoys decidable typechecking. The
modification is simple to describe: UDFuzz has all the same typing
rules as EDFuzz, except we strongly restrict the subtyping relation
to force all generated constraints to be decidable, and all annotations
must be standard sensitivity terms. By restricting the subtype relation
of EDFuzz, UDFuzz typeable programs are a strict subset of EDFuzz.
This subtype restriction will rule out many programs that are
typeable under EDFuzz, but is expressive enough to cover a range of
examples (including most of the examples presented in the original
work on DFuzz [10]).

Recall that the constraints handled by our algorithmic system
have the form

|= ∀φ. Φ⇒ R ≥ R′,
where R,R′ are possibly extended sensitivity terms, and φ consists
of both natural and real index variables. As we are requiring all
annotations in UDFuzz standard sensitivities, then by Lemma 11, R
will be a standard sensitivity term in UDFuzz; we use this invariant

to show the subtype relation of UDFuzz is a subrelation of the
subtype relation of EDFuzz.

Furthermore, we note that the first order theory over S is decid-
able: we can try all settings variables to∞ and check the resulting
constraints (with all the remaining quantifiers ranging over R). The
resulting formula is in the first order theory over R, and is decidable
(as shown by Tarski). Hence, a natural idea is to replace quantifica-
tion over the naturals with quantification over S; let us first make
this idea precise.

We define the semantics for sensitivity terms, where natural-
kinded free variables may now be mapped to values in S. We call
this extension the uniform interpretation of size and sensitivity terms,
and denote it by J·KU . A well-formed uniform valuation φ |=U ρ
maps dom(φ) to S; note that “size variables” may be interpreted as
real numbers, not just natural numbers.

First, the uniform interpretation of standard size and sensitivity
terms is completely identical to the standard interpretation. The ex-
tended sensitivities have slightly different interpretations: sup(i, R)
now takes a max over all real numbers, and case(S,R0, i, Rs) must
now be defined when the interpretation of S is not an integer.

Jsup(i : κ, R̂)KUρ := sup
r∈S
{JR̂KUρ∪[i=r]}

Jmax(R̂1, R̂2)KUρ := max(JR̂1KUρ , JR̂2KUρ)

Jcase(S, R̂0, i, R̂s)KUρ :=

JR̂1KUρ if JSKUρ = 0
0 if JSKUρ ∈ (0, 1)

JR̂2KUρ∪[i=r−1] if JSKUρ = r ≥ 1.

JR̂1 + R̂2KUρ := JR̂1Kρ + JR̂2KUρ
JR̂1 · R̂2KUρ := JR̂1KUρ · JR̂2KUρ

JRKUρ := JRKUρ otherwise.

We first show that this uniform semantics is an extension of the
standard semantics.

Lemma 12. Suppose R is a standard sensitivity term, typed under
context φ. Then, for any standard valuation φ |= ρ, we have

JRKUρ = JRKρ.

Proof. Immediate from the definition of the interpretation.

Now, we can define the uniform interpretation of constraints. A
constraint

|=U ∀φ.Φ⇒ R ≥ R′

is true exactly when for all real-valued valuations φ |=U ρ satisfying
Φ, we have JRKUρ ≥ JR′KUρ .

We are now ready to prove that the uniform interpretation of
constraints is sound with respect to the original interpretation.

Theorem 13. Suppose R,R′ are well-typed in context φ. Suppose
that

|=U ∀φ.Φ⇒ R ≥ R′,
for R a standard sensitivity term. Then,

|=U ∀φ.Φ⇒ R ≥ R′.

Proof. It suffices to show that for any standard valuation φ |= ρ, we
have JR′KUρ ≥ JR′Kρ. (We defer the proof of this claim to the long
version.) Assuming this, the theorem assumption shows that for all
standard valuation φ |= ρ, we have

JRKUρ ≥ JR′KUρ ≥ JR′Kρ.

But R is a standard sensitivity, so JRKUρ = JRKρ by Lemma 12, and
we are done.

Hence, the subtype relation of UDFuzz is a subrelation of the
subtype relation in EDFuzz. By reasoning analgous to Lemma 7,
we can show that relaxing the first order translation of constraints
captures this uniform interpretation. More formally:

Lemma 14. For every sensitivity term R, let TU (R) be a unary
predicate defined exactly as in Figure 5, but replacing quantification
over N with quantificiation over S and with the modified case
translation:

TU (case(S,R0, i, Rs))(r) :=
∃rs : N, T (S)(rs) ∧ (rs = 0 ∧ T (R0)(r))

∨ (0 < rs < 1 ∧ r = 0)
∨ (∃i : N, rs = i+ 1 ∧ T (Rs)(r))

Then, r ∈ S, and for every uniform valuation ρ whose domain
contains the free variables of R, JTU (R)(r)KUρ ⇐⇒ r = JRKUρ .

By this lemma, we can give a sound, complete and decidable
type-checking algorithm for UDFuzz.

Theorem 15. Suppose we use our algorithmic system, with the
constraints

|=U ∀φ.Φ⇒ R1 ≥ R2

handled by translation to the first order formula

∀φ,Φ⇒ ∃r : S, TU (R2)(r) ∧R1 ≥ r,
where all quantifiers are over S. Since the theory of S is decidable,
this gives an effective type-checking procedure for UDFuzz.

Proof. Note that R1 is a standard sensitivity term, so the translated
formula is indeed a first order formula over the theory of S. By
Lemma 14, the translated formula is logically equivalent to

JΦKUρ ⇒ JR1KUρ ≥ JR2KUρ

for all uniform valuations φ |=U ρ, which in turn implies φ; Φ |=
R1 ≥ R2 by Theorem 13. This shows that the algorithmic system
is sound and complete with respect to UDFuzz.

Remark 16. UDFuzz is a strict subset of EDFuzz; informally, it
contains EDFuzz programs with typing derivations that do not use
facts true over N but not over R. One key way that subtyping is
used in EDFuzz is for equational manipulations of the indices; for
instance, subtyping may be needed to change the index expression
3(i+ 1) to 3i+ 3. This reasoning is available in UDFuzz as well;
indeed, most of the example programs in DFuzz are typeable under
UDFuzz as well. (The only exception is k-medians, which extends
the index language with a division function that we do not handle.)

However, there are many programs that lie in EDFuzz but not
in UDFuzz—constraints as simple as ∀i. i2 ≥ i are true when
quantifing over the naturals but not when quantifying over the reals.
Valid EDFuzz programs that use these facts in their typing derivation
will not lie in UDFuzz.

8.2 Constraint Simplification
Rather than restricting the subtype relation, we can also try to gen-
erate simpler constraints when type-checking EDFuzz. While the
translation of extended constraints to first order real theory is con-
ceptually simple, the translation generates complex constraints; in
particular, they may have many alternating quantifiers. In this sec-
tion, present a rewriting procedure for reducing extended sensitivity
terms, leading to simpler constraints. We continue to require that all
source annotations must be standard sensitivity terms.

To begin, we generalize our three extended constructs with a
new constrained least upper bound (club) operation, with form
club{(φ1; Φ1;R1), . . . , (φn; Φn;Rn)}. Here, φ is a size and sen-
sitivity variable context, Φ is a constraint context, and R is a sensi-
tivity term, extended or standard. The judgment for a well-formed

club is

φ |= club{(φ1; Φ1;R1), . . . , (φn; Φn;Rn)},
where each Rj has kind r under φ, φj ; Φj , and φ, {φj}j have dis-
joint domain. Intuitively, club is a maximum over a set of sensi-
tivities, restricting to sensitivities where the associated constraint
is satisfied. Sensitivities where the constraints are not satisfied are
ignored. Formally, let φ contain the free variables of club, and
let φ |= ρ be any standard valuation. We can give the following
interpretation of club:

Lclub{(φ1; Φ1;R1), . . . , (φn; Φn;Rn)}Mρ :=

max
j∈[n]

max{JRjKρ∪ρj | φj |= ρj and ρ, ρj |= Φj}.

We define the maximum over an empty set to be 0.
Now, we can encode the extended sensitivity terms using only

club, through the following translation function:

C(max(R̂1, R̂2)) := club{(∅; ∅;C(R̂1)), (∅; ∅;C(R̂2))}
C(sup(i, R̂)) := club{(i; ∅;C(R̂))}

C(case(S, i, R̂0, R̂s)) := club{(∅;S = 0;C(R̂0)),

(i;S = i+ 1;C(R̂s))}
C(R̂1 + R̂2) := C(R̂1) + C(R̂2)

C(R̂1 · R̂2) := C(R̂1) · C(R̂2)

C(R) := R otherwise.

While we may now have nested club, we extend the interpretation in
the natural way. We can show that the translation faithfully preserves
the semantics of the extended terms, with the following lemma.

Lemma 17. Suppose φ |= R and φ |= ρ is a standard valuation.
Then, LC(R)Mρ = JRKρ.

Proof. By induction on R.

Now, we can simplify the compiled constraints. First, we can
push all standard sensitivity terms to the leaves of the expression.
More formally, we have the following lemma.

Lemma 18. Suppose φ |= R · club{(φi; Φi;Ci)}i + R′, where
R,R′ are standard sensitivity terms, and Ci is an arbitrary sensi-
tivity term possibly involving club. Then, for any standard closing
valuation φ |= ρ,

LR·club{(φi; Φi;Ci)}i+R
′Mρ = Lclub{(φi; Φi;R · Ci +R′)}iMρ.

Proof. By the definition of the interpretations, and the mathematical
fact

a ·max
i
{bi}+ c = max

i
{a · bi + c},

for a, b, c ≥ 0.

Thus, without loss of generality we may reduce the compiled
sensitivity constraint to an expression of the form Q, with grammar

Q ::= ∅ | Q1+Q2 | Q1·Q2 | club{(φi; Φi;Qi)} | club{(φi; Φi;Ri)},
where Ri are standard sensitivity terms. We will use the metavari-
able V to denote an arbitrary (possibly empty) collection of triples
(φi; Φi;Ri)i, and the metavariable W to denote an arbitrary (pos-
sibly empty) collection of triples (φi; Φi;Qi)i. Throughout, we
will implicitly work up to permutation of the arguments to club:
for instance, club{(X), (Y)} will be considered the same as
club{(Y), (X)}. We will also work up to commutativity of ad-
dition and multiplication: Q1 +Q2 will be considered the same as
Q2+Q1, and likewise with multiplication. We present the constraint
simplification rules as a rewrite relation 7→. As typical, we will write

7→∗ for the reflexive, transitive closure of 7→. The full rules are in
Figure 6.

We can prove correctness of our constraint simplification with
the following lemma.

Lemma 19. Suppose Q 7→ Q′, and suppose φ |= Q and φ |= Q′.
Then, for any standard valuation φ |= ρ, we have LQMρ = LQ′Mρ.

Proof. By induction on the derivation of Q 7→ Q′. The cases Plus,
Mult and Red are immediate by induction. The other cases all follow
by the semantics of club; details are in the Appendix.

The simplification relation terminates in the following particular
simple form.

Lemma 20. Let Q be a sensitivity term involving club. Along any
reduction path, Q reduces in finitely many steps to a term of the
form

club{V } = club{(φ1; Φ1;R1), . . . , (φn; Φn;Rn)}.

Proof. First, note that any reduction of Q must terminate in finitely
many steps: by induction on the derivation of the reduction, it’s clear
that each reduction removes one club subterm, and no reductions
introduce club subterms. So, suppose that Q is a term with no
possible reductions.

By induction on the structure of Q, we claim that Q is of the
desired form. Say if Q = Q1 + Q2, if either Q1, Q2 can reduce,
then Plus applies. If not, then by induction, CPlus applies. The same
reasoning follows for Q = Q1 ·Q2: either Mult applies, or CMult
does. Finally, if Q is a single club term, if Red and Flat both don’t
apply, then Q is of the desired form.

Finally, checking a constraint ∀φ.Φ ⇒ R ≥ club{V } is
simple.

Lemma 21. Let R be a standard sensitivity term, and let V be

V = (φ1; Φ1;R1), . . . , (φn; Φn;Rn)

where each Rj is a standard sensitivity term without club. Then,
|= ∀φ.Φ⇒ R ≥ club{V } is logically equivalent to

∀j∈[n]φ, φj . Φ⇒
∧
k∈[n]

(Φk ⇒ R ≥ Rk) .

Proof. Immediate by the semantics of club{V }.

Putting together all the pieces, for a constraint

|= ∀φ.Φ⇒ R ≥ R′,
with R standard, we can transform C(R′) to a term of the form Q
by pushing all standard sensitivity terms to the leaves. Then, we
normalizeQ 7→∗ club{V } by Lemma 20 arbitrarily. By Lemma 19,
the interpretation of Q and club{V } are the same, so we can
reduce the constraint |= ∀φ. φ ⇒ R ≥ club{V } to a first order
formula over mixed naturals and S, with no alternating quantifiers,
by Lemma 21.

9. Related work
There is a vast literature on type checking for various combinations
of indexed types, linear types, dependent types and subtyping.
A distinctive feature of our approach is that our index language
represents natural and real number expressions. As we have shown
in the previous sections, this makes type checking non-trivial.

The work most closely related to ours is Dal Lago et al. [6], who
studied the type inference problem for d`PCF, a relatively-complete
type system for complexity analysis introduced in Dal Lago and
Gaboardi [4]. d`PCF uses ideas similar to DFuzz but brings the idea

club{(φ; Φ; club{(φi; Φi;Ri)}i), V } 7→ club{(φ ∪ φi; Φ ∧ Φi;Ri), V } i
Flat

club{(φi; Φi;Ri)}i + club{(φ′j ; Φ′j ;R
′
j)}j 7→ club{(φi ∪ φ′j ; Φi ∧ Φ′j ;Ri +R′j)}ij

CPlus

club{(φi; Φi;Ri)}i · club{(φ′j ; Φ′j ;R
′
j)}j 7→ club{(φi ∪ φ′j ; Φi ∧ Φ′j ;Ri ·R′j)}ij

CMult

Q1 7→ Q′1

Q1 +Q2 7→ Q′1 +Q′2
Plus

Q1 7→ Q′1

Q1 ·Q2 7→ Q′1 ·Q2

Mult
Q 7→ Q′

club{(φ; Φ;Q),W} 7→ club{(φ; Φ;Q′),W}
Red

Figure 6. club Reduction

of linear dependent types to the limit. Indeed, d`PCF index language
contains function symbols that are given meaning by an equational
program. The equational program then plays the role of an oracle
for the type system—d`PCF is in fact a family of type systems
parametrized over the equational program. The main contribution
of Dal Lago et al. [6] is an algorithm that, given a PCF program,
generates a type and the set of constraints that must be satisfied in
order to assign the return type to the input term.

In our terminology, their work is similar to the top-down ap-
proach we detailed in Section 3. As we discussed there, the compli-
cation of this approach is that it requires solving constraints over
expressions—with possible function symbols—of the index-level
language. As shown by Dal Lago and Petit, a clear advantage of
the d`PCF formulation is that instead of introducing an existential
variable over expressions, one can introduce a new function symbol
that will then be given meaning by the equational program gener-
ated by the constraints—i.e., the constraints give a description of
the semantics of the program, which can be turned in an equational
program, that in turn gives meaning to the function symbols of the
index language appearing in the type. Clearly, this approach cannot
be reduced to numeric resolution and need instead a combination of
numeric and symbolic solving technology. The authors show that
these constraints can be anyway handled by using the WHY3 frame-
work. Some constraints are discharged automatically by some of
the solvers available in WHY3 while others requires an interactive
resolution using Coq.

As explained in Section 3, the situation with DFuzz is different.
Indeed, DFuzz can be seen as a simplified version of d`PCF—
simplifying in particular the typing for the fixpoint and without
variable bindings in !-types—extended however to deal with indices
representing real numbers and using quantifications over index
variables. A key distinction of DFuzz is that the set of constructors
for the language of sensitivity is fixed—one cannot add arbitrary
functions. Moreover, the extension to real numbers gives a different
behavior from how natural numbers are used in d`PCF—e.g., our
example for the lack of minimal type would make no sense in
d`PCF. These distinctions make the type checking problem very
different.

For another approach that is closely related to our work, recall
that DFuzz is an extension of Fuzz. The sensitivity inference
and sensitivity checking problems for Fuzz have been studied
in D’Antoni et al. [7]. These problems are simpler than the one
studied here since in Fuzz there is no dependency, no quantification
and no subtyping. Indeed, the constraints generated are much
simpler and can be solved quickly by an SMT solver.

Similarly, Eigner and Maffei [9] have studied an extension of
Fuzz for modeling protocols. In their work they also give an algo-
rithmic version of their type system. Their type system presents
challenges similar to Fuzz, which they handle with algebraic manip-
ulations. More precisely, their algorithmic version uses a technique

similar to the one developed in Cervesato et al. [2] for the splitting
of resources: when a rule with multiple premises is encountered the
algorithmic system, first allocate all the resources to the first branch
and then allocate the remaining resources to the second branch. Un-
fortunately, this approach cannot be easily applied to DFuzz due to
the presence of index variables and dependent pattern matching.

From a different direction, recent works [1, 13] have shown how
linear indexed type systems can be made more abstract and useful
to analyze abstract resources. In particular, this kind of analyses
is connected to comonadic notions of computations [20]. The type
inference algorithm described in Ghica and Smith [13] is parametric
on an abstract notion of resource. This resource can be instantiated
on a language for sensitivities similar to the one in Fuzz. So, this
abstract type inference procedure could be also used for sensitivity
analysis.

DFuzz is one of several languages combining linear and depen-
dent types. For example, ATS [3] is designed around a dependent
type system enriched with a notion of resources that is a type-level
representation of memory locations; these resources are managed
using a linear discipline. ATS uses these features to verify the cor-
rectness of memory and pointer management.

Even if the use of linear types in ATS is very different from
the one presented here, our type checking algorithm shares some
similarities with ATS’s one. The main difference is that ATS uses
interactive theorem proving to discharge proof obligations while,
thanks to the restricted scope of our analysis, our constraints can be
handled by numeric solvers. In contrast, DML [26]—a predecessor
of ATS which did not use linear types—uses an approach similar
to ours by solving proof obligations using automatic numeric
resolution. This required limitations on the operations available
in the index language, similar to DFuzz.

Another work considering lightweight dependent types is the one
by Zhu and Jagannathan [27]. In particular they propose a technique
based on dependent types to reduce the verification of higher order
programs to the verification of a first order language. While the goal
of their work is similar in spirit to ours, their technique has only
superficial similarities with the one presented here.

Finally, our work has been informed by the wide literature on
type-checking, far too large to summarize here. For instance, the
problem of dealing with subtyping rules by using syntax-directed
systems has been studied by Pierce and Steffen [21], and others.

10. Conclusions and Future Work
We have presented a type-checking and inference algorithm for
EDFuzz—a simple extension of DFuzz—featuring a linear indexed
dependent type system. While we have shown that DFuzz type-
checking is undecidable in the general case, our approach generates
constraints over the first order theory over the reals and naturals, for
which there are standard (though necessarily incomplete) solvers.

We are currently experimenting with a prototype implementation;3

more investigation is needed in order to assess the difficulty of these
constraints on real examples.

Overall, our design was guided by two principles: to stay as
close to DFuzz as possible, and to provide a practical type checking
procedure. While we do require extensions to DFuzz, there is a clear
motivation for the introduction of each new construct. The idea
of making a limited enrichment of the index language in order to
simplify type-checking may be applicable to other linear indexed
type systems. Furthermore, designers of such systems would do well
to keep implementability in mind: seemingly unimportant decisions
that simplify the metatheory may have a serious impact on type-
checking.

References
[1] A. Brunel, M. Gaboardi, D. Mazza, and S. Zdancewic. A core quan-

titative coeffect calculus. In European Symposium on Programming
(ESOP), Grenoble, France. Springer, 2014.

[2] I. Cervesato, J. S. Hodas, and F. Pfenning. Efficient resource manage-
ment for linear logic proof search. Theoretical Computer Science, 232
(1—2):133–163, 2000.

[3] C. Chen and H. Xi. Combining programming with theorem proving. In
ACM SIGPLAN International Conference on Functional Programming
(ICFP), Tallinn, Estonia, pages 66–77, 2005. ISBN 1-59593-064-7.

[4] U. Dal Lago and M. Gaboardi. Linear dependent types and relative
completeness. In IEEE Symposium on Logic in Computer Science
(LICS), Toronto, Ontario, pages 133–142. IEEE, 2011.

[5] U. Dal Lago and U. Schöpp. Functional programming in sublinear
space. In ACM Transactions on Programming Languages and Systems,
pages 205–225. Springer, 2010.

[6] U. Dal Lago, B. Petit, et al. The geometry of types. In ACM SIGPLAN–
SIGACT Symposium on Principles of Programming Languages (POPL),
Rome, Italy, pages 167–178, 2013.

[7] L. D’Antoni, M. Gaboardi, E. J. Gallego Arias, A. Haeberlen, and B. C.
Pierce. Sensitivity analysis using type-based constraints. In Workshop
on Functional Programming Concepts in Domain-specific Languages
(FPCDSL), FPCDSL ’13, pages 43–50, New York, NY, USA, 2013.
ACM. ISBN 978-1-4503-2380-2.

[8] D. Dreyer, K. Crary, and R. Harper. A type system for higher-order
modules. In ACM SIGPLAN–SIGACT Symposium on Principles of
Programming Languages (POPL), New Orleans, Louisiana, POPL ’03,
pages 236–249, New York, NY, USA, 2003. ACM. ISBN 1-58113-628-
5.

[9] F. Eigner and M. Maffei. Differential privacy by typing in security
protocols. In IEEE Computer Security Foundations Symposium, New
Orleans, Louisiana, pages 272–286, 2013.

[10] M. Gaboardi, A. Haeberlen, J. Hsu, A. Narayan, and B. C. Pierce.
Linear dependent types for differential privacy. In ACM SIGPLAN–
SIGACT Symposium on Principles of Programming Languages (POPL),
Rome, Italy, POPL ’13, pages 357–370, New York, NY, USA, 2013.
ACM. ISBN 978-1-4503-1832-7.

[11] G. Ghelli and B. Pierce. Bounded existentials and minimal typing.
Theoretical Computer Science, 193(1–2):75 – 96, 1998.

[12] D. R. Ghica and A. Smith. Geometry of synthesis III: Resource
management through type inference. In ACM SIGPLAN–SIGACT
Symposium on Principles of Programming Languages (POPL), Austin,
Texas, volume 46, pages 345–356. ACM, 2011.

[13] D. R. Ghica and A. Smith. Bounded linear types in a resource semiring.
In European Symposium on Programming (ESOP), Grenoble, France.
Springer, 2014.

[14] J.-Y. Girard, A. Scedrov, and P. J. Scott. Bounded linear logic: a
modular approach to polynomial-time computability. Theoretical
Computer Science, 97(1):1–66, 1992.

3 http://cis.upenn.edu/~emilioga/dFuzz.tar.gz

[15] B. Heeren, B. Heeren, J. Hage, J. Hage, D. Swierstra, and D. Swierstra.
Generalizing hindley-milner type inference algorithms. Technical
report, 2002.

[16] U. D. Lago and B. Petit. Linear dependent types in a call-by-value
scenario. In D. D. Schreye, G. Janssens, and A. King, editors, ACM
SIGPLAN International Conference on Principles and Practice of
Declarative Programming (PPDP), Leuven, Belgium, pages 115–126.
ACM, 2012. ISBN 978-1-4503-1522-7.

[17] U. D. Lago and U. Schöpp. Type inference for sublinear space
functional programming. In K. Ueda, editor, Asian Symposium on
Programming Languages and Systems (APLAS), Shanghai, China,
volume 6461 of Lecture Notes in Computer Science, pages 376–391.
Springer, 2010. ISBN 978-3-642-17163-5.

[18] M. Lillibridge. Translucent Sums: A Foundation for Higher-Order
Module Systems. PhD thesis. PhD thesis, Carnegie Mellon University,
Pittsburgh, PA, December 1996.

[19] M. Odersky, M. Sulzmann, and M. Wehr. Type inference with
constrained types. TAPOS, 5(1):35–55, 1999.

[20] T. Petricek, D. Orchard, and A. Mycroft. Coeffects: Unified static
analysis of context-dependence. In International Colloquium on
Automata, Languages and Programming (ICALP), Riga, Latvia, pages
385–397. Springer, 2013.

[21] B. C. Pierce and M. Steffen. Higher-order subtyping. In IFIP
Working Conference on Programming Concepts, Methods and Calculi
(PROCOMET), pages 511–530, 1994. Full version in Theoretical
Computer Science, vol. 176, no. 1–2, pp. 235–282, 1997 (corrigendum
in TCS vol. 184 (1997), p. 247).

[22] F. Pottier and D. Rémy. The essence of ML type inference. In B. C.
Pierce, editor, Advanced Topics in Types and Programming Languages,
chapter 10, pages 389–489. MIT Press, 2005.

[23] J. Reed and B. C. Pierce. Distance makes the types grow stronger:
A calculus for differential privacy. In ACM SIGPLAN International
Conference on Functional Programming (ICFP), Baltimore, Maryland,
ICFP ’10, pages 157–168, New York, NY, USA, 2010. ISBN 978-1-
60558-794-3.

[24] P. Wadler. Is there a use for linear logic? In Symposium on Partial
Evaluation and Semantics-Based Program Manipulation (PEPM), New
Haven, Connecticut, volume 26, pages 255–273. ACM, 1991.

[25] D. A. Wright and C. A. Baker-Finch. Usage analysis with natural
reduction types. In P. Cousot, M. Falaschi, G. Filé, and A. Rauzy,
editors, Workshop on Static Analysis (WSA) , Padova, Italy, volume
724 of Lecture Notes in Computer Science, pages 254–266. Springer,
1993. ISBN 3-540-57264-3.

[26] H. Xi and F. Pfenning. Dependent types in practical programming. In
ACM SIGPLAN–SIGACT Symposium on Principles of Programming
Languages (POPL), San Antonio, Texas, pages 214–227. ACM, 1999.

[27] H. Zhu and S. Jagannathan. Compositional and lightweight dependent
type inference for ml. In International Conference on Verification,
Model Checking, and Abstract Interpretation (VMCAI), Rome, Italy,
pages 295–314. Springer, 2013.

http://lipn.univ-paris13.fr/~mazza/papers/CoreQuantCoeff.pdf
http://lipn.univ-paris13.fr/~mazza/papers/CoreQuantCoeff.pdf
http://www.sciencedirect.com/science/article/pii/S0304397599001735
http://www.sciencedirect.com/science/article/pii/S0304397599001735
http://doi.acm.org/10.1145/1086365.1086375
http://arxiv.org/pdf/1104.0193v5
http://arxiv.org/pdf/1104.0193v5
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.156.8531&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.156.8531&rep=rep1&type=pdf
http://arxiv.org/pdf/1210.6857v1
http://doi.acm.org/10.1145/2505351.2505353
http://doi.acm.org/10.1145/604131.604151
http://doi.acm.org/10.1145/604131.604151
http://dl.acm.org/citation.cfm?id=2510170.2510427
http://dl.acm.org/citation.cfm?id=2510170.2510427
http://doi.acm.org/10.1145/2429069.2429113
http://www.sciencedirect.com/science/article/pii/S0304397596003003
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.188.7116&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.188.7116&rep=rep1&type=pdf
http://arxiv.org/pdf/1307.2473v1.pdf
http://dx.doi.org/10.1016/0304-3975(92)90386-T
http://dx.doi.org/10.1016/0304-3975(92)90386-T
http://cis.upenn.edu/~emilioga/dFuzz.tar.gz
http://dl.acm.org/citation.cfm?id=2370776
http://dl.acm.org/citation.cfm?id=2370776
http://dx.doi.org/10.1007/978-3-642-17164-2
http://dx.doi.org/10.1007/978-3-642-17164-2
http://www.cl.cam.ac.uk/~dao29/publ/coeffects-icalp13.pdf
http://www.cl.cam.ac.uk/~dao29/publ/coeffects-icalp13.pdf
http://www.cis.upenn.edu/~bcpierce/papers/fomega.ps
http://cristal.inria.fr/attapl/
http://doi.acm.org/10.1145/1863543.1863568
http://doi.acm.org/10.1145/1863543.1863568
http://dl.acm.org/citation.cfm?id=115894
http://dx.doi.org/10.1007/3-540-57264-3_46
http://dx.doi.org/10.1007/3-540-57264-3_46
http://dl.acm.org/citation.cfm?id=292560
https://www.cs.purdue.edu/homes/zhu103/pubs/vmcai13.pdf
https://www.cs.purdue.edu/homes/zhu103/pubs/vmcai13.pdf

φ; Φ | ∆ ` e : σ φ; Φ |= Γ v ∆

φ; Φ | Γ ` e : σ
(v .L)

φ; Φ | Γ ` e : σ φ; Φ |= σ v τ
φ; Φ | Γ ` e : τ

(v .R)
φ; Φ | Γ ` r : R

(ConstR)

n = JSK
φ; Φ | Γ ` n : N[S]

(ConstN)
φ; Φ | Γ, x :[1] σ ` x : σ

(Var)
φ; Φ | Γ1 ` e1 : σ φ; Φ | Γ2 ` e2 : τ

φ; Φ | Γ1 + Γ2 ` (e1, e2) : σ ⊗ τ (⊗I)

φ; Φ | ∆ ` e : σ ⊗ τ φ; Φ | Γ, x :[R] σ, y :[R] τ ` e′ : µ R 6= 2

φ; Φ | Γ +R ·∆ ` let(x, y) = e in e′ : µ
(⊗E)

φ; Φ | Γ ` e1 : σ φ; Φ | Γ ` e2 : τ

φ; Φ | Γ ` 〈e1, e2〉 : σ N τ
(N I)

φ; Φ | Γ ` e : σ1 N σ2

φ; Φ | Γ ` πi e : σi
(N E)

φ; Φ | Γ, x :[R] σ ` e : τ R 6= 2
φ; Φ | Γ ` λ(x :[R] σ).e : !Rσ (τ

((I)

φ; Φ | Γ ` e1 : !Rσ (τ φ; Φ | ∆ ` e2 : σ

φ; Φ | Γ +R ·∆ ` e1 e2 : τ
((E)

φ, i : κ; Φ | Γ ` e : σ i fresh in Φ,Γ

φ; Φ | Γ ` Λi : κ. e : ∀i : κ. σ
(∀I)

φ; Φ | Γ ` e : ∀i : κ. σ φ |= S : κ

φ; Φ | Γ ` e[S] : σ[S/i]
(∀E)

φ; Φ | Γ, x :[∞] σ ` e : σ

φ; Φ | ∞ · Γ ` fixx : σ. e : σ
(Fix)

φ; Φ | Γ ` e : N[S]

φ; Φ | Γ ` e+ 1 : N[S + 1]
(S I)

φ; Φ | ∆ ` e : N[S] φ; Φ, S = 0 | Γ ` e0 : σ
φ, i : n; Φ, S = i+ 1 | Γ, n :[R] N[i] ` es : σ i#R R 6= 2
φ; Φ | Γ +R ·∆ ` case e returnσ of 0⇒ e0 | n[i] + 1⇒ es : σ

(N E)

Figure 7. DFuzz 2 Type Judgment

A. Differences Compared to Gaboardi et al. [10]
While we hew closely to the presentation of DFuzz in Gaboardi et al. [10], we make a few technical changes.

• The context weakening operation Γ v Γ′ in DFuzz allows the types to change. That is, a binding x :[R] σ ∈ Γ can be weakened to
x :[R′] σ

′ for σ v σ′ two syntactically different types. We take a more restricted weakening rule, where the types must be syntactically the
same; we are unaware of any programs that need the more general rule.

• We take the interpretation of∞ · 0 to be∞, rather than 0.
• We assume some additional type annotations in the source language, as discussed in Section 5

B. The DFuzz 2 system
The first system has the goal to enjoy “context” uniformity, in the sense that sensitivity information in the contexts may be missing. We denote
such an assignment x :2 σ. This is a subtle technical point for crucial to enable syntax-directed typability.

We modify subtyping for environments such that Γ v ∆ requires Γ, ∆ to have the same domain. The new rule is:

∀(xi :[Ri] σi, xi :[R′i] σi) ∈ (Γ,∆)

dom(∆) = dom(Γ) |= ∀φ. (Φ⇒ Ri ≥ R′i) ∨R′i = 2
φ; Φ |= Γ v ∆

v-Env

This subsumes regular variable weakening. Context operations must be aware of 2, with 2 + i = i, i · 2 = 2 for the annotations.

Definition 22 (Box erasure). For any context Γ, we define the 2-erasure operation |Γ| = {x :[R] σ | x :[R] σ ∈ Γ ∧R 6= 2}.
We introduce the 2 system in Figure 7.
We prove that derivations in a system with 2 are in direct correspondence with derivation in a system without it.

Lemma 23. Assume φ; Φ | Γ ` e : σ in the 2 system, then φ; Φ | |Γ| ` e : σ in the system without it.

Proof. By induction on the typing derivation. The base cases and cases where the context is not modified are immediate. Subtyping on the left
is proven by weakening.

The rest of cases are split in two:

• All cases featuring variables in the top rule, also have the condition R 6= 2, this is enough.
• For the cases involving context operations, the proofs is completed by following properties:

|R · Γ| = R · |Γ| |Γ + ∆| = |Γ|+ |∆|

Lemma 24. Assume φ; Φ | Γ ` e : σ in the system without 2, then φ; Φ | Γ ` e : σ in the system with it.

Proof. The proof is mostly routine by induction on the derivation, but relies in the following fact of the 2 system: φ; Φ | Γ ` e : σ implies
φ; Φ | Γ, x :2 τ ` e : σ. Then, using this lemma we can adjust the contexts so that subtyping goes through in the system with 2.

A 2-elimination operation R2↑, which sends context annotations to sensitivities will prove useful in the the syntax directed system. It is
defined as 22↑ = 0, R2↑ = R otherwise. Remember that 2 doesn’t belong to the sensitivity language, so any annotation that is used in places
where a sensitivity is expected must be wrapped with −2↑.

Definition 25 (Extension to environments operations). Operations on extended sensitivites that were extended to environments in a pointwise
fashion, now must take into account the presence of 2.

• max(R1, R2) operates now as max(2,2) = 2, max(2, R) = R, max(R,2) = R, the original term otherwise.
• sup(i, R) is extended in the natural way sup(i,2) = 2, the original term otherwise.
• case(S, i, R0, Rs) operates now case(S, i,2,2) = 2, case(S, i, R0, Rs) = case(S, i, R02↑, Rs2↑) otherwise.

C. Subtyping Proofs
From now on we can consider only contexts of similar length. We prove a few necessary facts about subtyping.

Lemma 26 (Context manipulation). Context subtyping is preserved by addition and scalar multiplication. More formally:

• If φ; Φ |= Γ v Γ′ ∧∆ v ∆′, then φ; Φ |= Γ + ∆ v Γ′ + ∆′; and
• if φ; Φ |= Γ v Γ′ ∧R ≥ R′, then φ; Φ |= R · Γ v R′ · Γ′.

Proof. These follow from the interpretation of subtyping assertions. Note that the subtyping relation preserves the skeleton of the environments,
thus making sure that the operations are always defined.

Lemma 27 (Properties of extended sensitivities). Extended sensitivities satisfy the following properties:

• φ; Φ |= R ≥max(R1, R2) if and only if φ; Φ |= R ≥ R1 ∧R ≥ R2;
• φ; Φ |= R ≥ sup(i, R′) with i#φ if and only if φ, i; Φ |= R ≥ R′; and
• φ; Φ |= R ≥ case(S, i, R0, Rs) with i#φ if and only if

φ; Φ, S = 0 |= R ≥ R0 and φ, i; Φ, S = i+ 1 |= R ≥ Rs.
As an immediate corollary, setting R to be max(R1, R2), sup(i, R′), case(S, i, R0, Rs) yields

• φ; Φ |= max(R1, R2) ≥ R1 ∧R ≥ R2;
• φ, i; Φ |= sup(i, R′) ≥ R′; and
• φ; Φ, S = 0 |= case(S, i, R0, Rs) ≥ R0 and φ, i; Φ, S = i+ 1 |= case(S, i, R0, Rs) ≥ Rs.

Proof. These follow from the interpretation of extended sensitivities.

Lemma 28. Suppose φ, i : κ; Φ |= σ v τ and i#Φ. Then for any φ |= S : κ, we have

φ; Φ |= σ[S/i] v τ [S/i].

Proof. By induction on the subtype derivation. For the base cases, we know

∀φ, i : κ. (Φ⇒ R ≥ R′),
and we need to prove

∀φ. (Φ⇒ R[S/i] ≥ R′[S/i]),
but this is clear from the interpretation of R,R′.

D. The Syntax-Directed system
The syntax-directed system is presented in Figure 8. It works over a uniform context, using 2 annotations to “mark”, variables not occurring in
the original DFuzz derivation.

We first prove the system sound with respect the non syntax-directed one.

Lemma 29 (Syntax-directed soundness). If φ; Φ | Γ `S e : σ has a derivation, then φ; Φ | Γ ` e : σ.

Proof. By induction on the derivation proving φ; Φ | Γ `S e : σ.

Case: (Var)

φ; Φ | Ectx(Γ•), x :[1] σ `S x : σ
(Var)

Immediate, the same rule applies.
Case: (⊗I)

φ; Φ | Γ1 `S e1 : σ φ; Φ | Γ2 `S e2 : τ

φ; Φ | Γ1 + Γ2 `S (e1, e2) : σ ⊗ τ (⊗I)

Immediate by induction; the same rule applies.

φ; Φ | Ectx(Γ•) `S r : R
(ConstR)

φ; Φ | Ectx(Γ•), x :[1] σ `S x : σ
(Var)

φ; Φ | Γ1 `S e1 : σ φ; Φ | Γ2 `S e2 : τ

φ; Φ | Γ1 + Γ2 `S (e1, e2) : σ ⊗ τ (⊗I)
φ; Φ | ∆ `S e : σ ⊗ τ φ; Φ | Γ, x :[R1] σ, y :[R2] τ `S e

′ : µ

φ; Φ | Γ + max(R12↑, R22↑) ·∆ `S let(x, y) = e in e′ : µ
(⊗E)

φ; Φ | Γ1 `S e1 : σ φ; Φ | Γ2 `S e2 : τ

φ; Φ |max(Γ1,Γ2) `S 〈e1, e2〉 : σ N τ
(N I)

φ; Φ | Γ `S e : σ1 N σ2

φ; Φ | Γ `S πie : σi
(N E)

φ; Φ | Γ, x :[R•] σ `S e : τ |= ∀φ. (Φ⇒ R ≥ R•2↑)

φ; Φ | Γ `S λ(x :[R] σ). e : !Rσ (τ
((I)

φ; Φ | Γ `S e1 : !Rσ (τ
φ; Φ | ∆ `S e2 : σ′ φ; Φ |= σ′ v σ

φ; Φ | Γ +R ·∆ `S e1 e2 : τ
((E)

φ, i : κ; Φ | Γ `S e : σ i fresh in Φ

φ; Φ | sup(i,Γ) `S Λi : κ. e : ∀i : κ. σ
(∀I)

φ; Φ | Γ `S e : ∀i : κ. σ φ |= S : κ

φ; Φ | Γ `S e[S] : σ[S/i]
(∀E)

φ; Φ | Γ, x :[R] σ `S e : σ′ φ; Φ |= σ′ v σ
φ; Φ | ∞ · Γ `S fixx : σ. e : σ

(Fix)

φ; Φ | ∆ `S e : N[S] φ; Φ, S = 0 | Γ0 `S e0 : σ0

φ, i : n; Φ, S = i+ 1 | Γs, n :[R] N[i] `S es : σs
φ; Φ, S = 0 |= σ0 v σ φ, i : n; Φ, S = i+ 1 |= σs v σ

φ; Φ | case(S, i,Γ0,Γs) + case(S, i, 0, R2↑) ·∆ `S case e returnσ of 0⇒ e0 | n[i] + 1⇒ es : σ
(N E)

Ectx(Γ•) := ∆ with
{

dom(Γ•) = dom(∆)
∆(b) ≡ _ :2 _ for all b ∈ dom(Γ•)

Figure 8. DFuzz Type Judgment, Syntax-directed Version

Case: (⊗E)

φ; Φ | ∆ `S e : σ ⊗ τ φ; Φ | Γ, x :[R1] σ, y :[R2] τ `S e
′ : µ

φ; Φ | Γ + max(R12↑, R22↑) ·∆ `S let(x, y) = e in e′ : µ
(⊗E)

By induction, we have
φ; Φ | ∆ ` e : σ ⊗ τ and φ; Φ | Γ, x :[R1] σ, y :[R2] σ ` e

′ : µ

By Lemma 27, φ; Φ |= max(R12↑, R22↑) ≥ Ri2↑ for i = 1, 2. Abbreviating R• := max(R12↑, R22↑) and applying weakening we
have:

φ; Φ | Γ, x :[R•] σ, y :[R•] τ ` e′ : µ

with R• 6= 2 so we have exactly what we need to apply (⊗E).
Case: (N I)

φ; Φ | Γ1 `S e1 : σ φ; Φ | Γ2 `S e2 : τ

φ; Φ |max(Γ1,Γ2) `S 〈e1, e2〉 : σ N τ
(N I)

By induction, we have
φ; Φ | Γ1 ` e1 : σ and φ; Φ | Γ2 ` e2 : τ.

By Lemma 27, we have
φ; Φ |= max(Γ1,Γ2) v Γ1 and φ; Φ |= max(Γ1,Γ2) v Γ2.

By weakening, we can derive

φ; Φ |max(Γ1,Γ2) ` e1 : σ and φ; Φ |max(Γ1,Γ2) ` e2 : τ,

when we can conclude by (N I).
Case: (N E)

φ; Φ | Γ `S e : σ1 N σ2

φ; Φ | Γ `S πie : σi
(N E)

Immediate; the same rule applies.
Case: ((I)

φ; Φ | Γ, x :[R•] σ `S e : τ |= ∀φ. (Φ⇒ R ≥ R•2↑)

φ; Φ | Γ `S λ(x :[R] σ). e : !Rσ (τ
((I)

By induction, we have
φ; Φ | Γ, x :[R•] σ ` e : τ

and we know R 6= 2 and:
φ; Φ |= R ≥ R•.

By weakening, we have
φ; Φ | Γ, x : !Rσ ` e : τ,

and we can conclude by ((I).
Case: ((E)

φ; Φ | Γ `S e1 : !Rσ (τ
φ; Φ | ∆ `S e2 : σ′ φ; Φ |= σ′ v σ

φ; Φ | Γ +R ·∆ `S e1 e2 : τ
((E)

By induction, we have
φ; Φ | Γ ` e1 : !Rσ (τ and φ; Φ | ∆ ` e2 : σ′

and we also know
φ; Φ |= σ′ v σ.

By subtyping on the right, we can derive
φ; Φ | ∆ ` e2 : σ,

and we can conclude with ((E).
Case: (∀I)

φ, i : κ; Φ | Γ `S e : σ i fresh in Φ

φ; Φ | sup(i,Γ) `S Λi : κ. e : ∀i : κ. σ
(∀I)

By induction, we have
φ; i : κ; Φ | Γ ` e : σ

and i fresh in Φ. By Lemma 27, we have
φ; Φ |= sup(i,Γ) v Γ,

and so by weakening, we have
φ, i : κ; Φ | sup(i,Γ) ` e : σ.

Now, we can conclude with (∀I).
Case: (∀E)

φ; Φ | Γ `S e : ∀i : κ. σ φ |= S : κ

φ; Φ | Γ `S e[S] : σ[S/i]
(∀E)

Immediate; the same rule applies.
Case: (Fix)

φ; Φ | Γ, x :[R] σ `S e : σ′ φ; Φ |= σ′ v σ
φ; Φ | ∞ · Γ `S fixx : σ. e : σ

(Fix)

By induction; we have
φ; Φ | Γ, x : !Rσ ` e : σ′.

But we also have φ; Φ |= σ′ v σ. By subtyping, we get

φ; Φ | Γ, x : !Rσ ` e : σ

and we can conclude with (Fix).
Case: (N E)

φ; Φ | ∆ `S e : N[S] φ; Φ, S = 0 | Γ0 `S e0 : σ0

φ, i : n; Φ, S = i+ 1 | Γs, n :[R] N[i] `S es : σs
φ; Φ, S = 0 |= σ0 v σ φ, i : n; Φ, S = i+ 1 |= σs v σ

φ; Φ | case(S, i,Γ0,Γs) + case(S, i, 0, R2↑) ·∆ `S case e returnσ of 0⇒ e0 | n[i] + 1⇒ es : σ
(N E)

By induction, we have

φ; Φ | ∆ ` e : N[S]

φ; Φ, S = 0 | Γ0 ` e0 : σ0

φ, i : n; Φ, S = i+ 1 | Γs, n : !RN[i] ` es : σs.

By Lemma 27, we have

φ; Φ, S = 0 |= case(S, i,Γ0,Γs) v Γ0

φ, i : n; Φ, S = i+ 1 |= case(S, i,Γ0,Γs) v Γs

φ, i : n; Φ, S = i+ 1 |= case(S, i, 0, R2↑) ≥ R2↑

with R2↑ 6= 2, and we also know

φ; Φ, S = 0 |= σ0 v σ
φ, i : n; Φ, S = i+ 1 |= σs v σ.

By subtyping on the left and right, we have

φ; Φ | ∆ ` e : N[S]

φ; Φ, S = 0 | case(S, i,Γ0,Γs) ` e0 : σ

φ, i : n; Φ, S = i+ 1 | case(S, i,Γ0,Γs), n : !R•N[i] ` es : σ,

where R• = case(S, i, 0, R2↑). We can then conclude by (N E).

φ; Φ | ∆ ` e : N[S] φ; Φ, S = 0 | Γ ` e0 : σ
φ, i : n; Φ, S = i+ 1 | Γ, n :[R] N[i] ` es : σ i#R R 6= 2
φ; Φ | Γ +R ·∆ ` case e returnσ of 0⇒ e0 | n[i] + 1⇒ es : σ

(N E)

We now prove completeness, that is to say, for every derivation in the original system, the syntax-directed one will have a derivation,
possibly even a better from a subtype point of view.

We first need a few auxiliary lemmas:

Lemma 30. Suppose that φ; Φ | Γ `S e : σ is derivable. Then, for any logically equivalent Ψ such that φ |= Φ⇔ Ψ, there is a derivation of
φ; Ψ | Γ `S e : σ with the same height.

Proof. By induction on the derivation. The only place the constraint context is used is when checking constraints of the form

φ; Φ |= R ≥ R′.
But since Ψ and Φ are logically equivalent, we evidently have

φ; Ψ |= R ≥ R′

as well.

Lemma 31 (Inner Weakening for the Syntax-directed system). Assume a derivation Γ, x :[R] σ `S e : τ , a type σ′ such that σ′ v σ. Then,
there exists a type τ ′ and a derivation Γ, x :[R] σ

′ `S e : τ ′ such that τ ′ v τ .

Proof. By induction over the typing derivation. The base cases are immediate. In the induction hypothesis we get to pick the appropriate type
and we get a better type in all the cases.

Lemma 32 (Syntax-directed completeness). If φ; Φ | Γ ` e : σ has a derivation, then there exists Γ′, σ′ such that φ; Φ | Γ′ `S e : σ′ has a
derivation, φ; Φ |= Γ v Γ′, φ; Φ |= σ′ v σ.

Proof. By induction on the derivation proving φ; Φ | Γ ` e : σ.

Case: (v .L)

φ; Φ | ∆ ` e : σ φ; Φ |= Γ v ∆

φ; Φ | Γ ` e : σ
(v .L)

Immediate, by induction; the desired context is ∆.
Case: (v .R)

φ; Φ | Γ ` e : σ φ; Φ |= σ v τ
φ; Φ | Γ ` e : τ

(v .R)

Immediate, by induction; the desired subtype is σ.
Case: (Var)

φ; Φ | Γ, x :[1] σ ` x : σ
(Var)

Immediate; the same rule applies.
Case: (⊗I)

φ; Φ | Γ1 ` e1 : σ φ; Φ | Γ2 ` e2 : τ

φ; Φ | Γ1 + Γ2 ` (e1, e2) : σ ⊗ τ (⊗I)

By induction, we have Γ′1,Γ
′
2, σ
′, τ ′ such that

φ; Φ |= Γ1 v Γ′1 ∧ Γ2 v Γ′2 and φ; Φ |= σ′ v σ ∧ τ ′ v τ
and derivations

φ; Φ | Γ′1 `S e1 : σ′ and φ; Φ | Γ′2 `S e2 : τ ′.

Then we can conclude by (⊗I), since Lemma 26 shows

φ; Φ |= Γ1 + Γ2 v Γ′1 + Γ′2 and φ; Φ |= σ′ ⊗ τ ′ v σ ⊗ τ.

Case: (⊗E)

φ; Φ | ∆ ` e : σ ⊗ τ φ; Φ | Γ, x :[R] σ, y :[R] τ ` e′ : µ R 6= 2

φ; Φ | Γ +R ·∆ ` let(x, y) = e in e′ : µ
(⊗E)

By induction and inversion on the subtype relation, we have ∆′,Γ′, σ′, σ′′, τ ′, τ ′′, µ′, R1, R2 such that

φ; Φ |= ∆ v ∆′

φ; Φ |= Γ, x :[R] σ, y :[R] τ v Γ′, x :[R1] σ
′′, y :[R2] τ

′′

φ; Φ |= σ′ v σ ∧ τ ′ v τ

this implies σ′ v σ′′, τ ′ v τ ′′, R ≥ R12↑, and R ≥ R22↑. We have derivations:

φ; Φ | ∆′ `S e : σ′ ⊗ τ ′ and φ; Φ | Γ′, x :[R1] σ
′′, y :[R2] τ

′′ `S e′ : µ′

By Lemma 31, we have a derivation:
φ; Φ | Γ′, x :[R1] σ

′, y :[R2] τ
′ `S e′ : µ′′

with µ′′ v µ′. Hence, we can produce a syntax-directed derivation now:

φ; Φ | Γ′ + max(R′12↑, R
′
22↑) ·∆

′ `S let(x, y) = e in e′ : µ′′.

By Lemma 27, we have that φ; Φ |= R ≥max(R′12↑, R22↑) and by Lemma 26,

φ; Φ |= Γ +R ·∆ v Γ′ + max(R′12↑, R22↑) ·∆′,

so we are done: the context Γ′ + max(R′12↑, R
′
22↑) ·∆′ and subtype τ ′′ suffice.

Case: (N I)

φ; Φ | Γ ` e1 : σ φ; Φ | Γ ` e2 : τ

φ; Φ | Γ ` 〈e1, e2〉 : σ N τ
(N I)

By induction, there exists

φ; Φ |= Γ v Γ′1 and φ; Φ |= Γ v Γ′2

φ; Φ |= σ′ v σ and φ; Φ |= τ ′ v τ

such that
φ; Φ | Γ′1 `S e1 : σ′ and φ; Φ | Γ′2 `S e2 : τ ′.

By (N I), we have

φ; Φ |max(Γ′1,Γ
′
2) `S 〈e1, e2〉 : σ′ N τ ′.

We are done, since by Lemmas 26 and 27,

φ; Φ |= σ′ N τ ′ v σ N τ and φ; Φ |= Γ vmax(Γ′1,Γ
′
2) v Γ′i.

So, the desired context is max(Γ′1,Γ
′
2), and the desired subtype is σ′ N τ ′.

Case: (N E)

φ; Φ | Γ ` e : σ1 N σ2

φ; Φ | Γ ` πi e : σi
(N E)

Immediate, by induction.
Case: ((I)

φ; Φ | Γ, x :[R] σ ` e : τ R 6= 2
φ; Φ | Γ ` λ(x :[R] σ).e : !Rσ (τ

((I)

By induction, there exists
φ; Φ |= Γ, x :[R] σ v Γ′, x : !R′σ and φ; Φ |= τ ′ v τ

such that
φ; Φ | Γ′, x :[R′] σ `S e : τ ′.

By inversion on the subtype relation, we have
φ; Φ |= R ≥ R′2↑ ∧ τ ′ v τ.

and we are done, since
φ; Φ |= !R′2↑σ (τ ′ v !Rσ (τ and φ; Φ |= Γ v Γ′.

φ; Φ | Γ, x :[R•] σ `S e : τ |= ∀φ. (Φ⇒ R ≥ R•2↑)

φ; Φ | Γ `S λ(x :[R] σ). e : !Rσ (τ
((I)

Case: ((E)

φ; Φ | Γ ` e1 : !Rσ (τ φ; Φ | ∆ ` e2 : σ

φ; Φ | Γ +R ·∆ ` e1 e2 : τ
((E)

By induction, there exists Γ′,∆′, R′, σ′, τ ′, σ′′ such that

φ; Φ |= Γ v Γ′

φ; Φ |= ∆ v ∆′

φ; Φ |= !R′σ
′ (τ ′ v !Rσ (τ

φ; Φ |= σ′′ v σ,
and derivations

φ; Φ | Γ′ `S e1 : !R′σ
′ (τ ′ and φ; Φ | ∆′ `S e2 : σ′′.

By inversion on the subtype relation, we have

φ; Φ |= R ≥ R′ and φ; Φ |= σ′′ v σ v σ′ and φ; Φ |= τ ′ v τ.
By Lemma 27, the context Γ′ +R′ ·∆′ and subtype τ ′ suffice.

Case: (∀I)

φ, i : κ; Φ | Γ ` e : σ i fresh in Φ,Γ

φ; Φ | Γ ` Λi : κ. e : ∀i : κ. σ
(∀I)

By induction, there exist
φ, i : κ; Φ |= σ′ v σ and φ, i : κ; Φ |= Γ v Γ′

such that
φ, i : κ; Φ | Γ′ `S e : σ′.

Thus, we have the derivation
φ; Φ | sup(i,Γ′) `S Λi : κ. e : ∀i : κ. σ′

and
φ; Φ |= ∀i : κ. σ′ v ∀i : κ. σ.

By Lemma 27, we actually have
φ; Φ |= Γ v sup(i,Γ′) v Γ′,

so the context sup(i,Γ′) and subtype ∀i : κ. σ′ suffices.
Case: (∀E)

φ; Φ | Γ ` e : ∀i : κ. σ φ |= S : κ

φ; Φ | Γ ` e[S] : σ[S/i]
(∀E)

By induction, there exists
φ; Φ |= Γ v Γ′ and φ; Φ |= ∀i : κ. σ′ v ∀i : κ. σ

such that
φ; Φ | Γ′ `S e : ∀i : κ. σ′.

So, we have a derivation
φ; Φ | Γ′′ `S e[S/i] : σ′[S/i].

By Lemma 28,
φ; Φ |= σ′[S/i] v σ[S/i],

so the context Γ′ and subtype σ′[S/i] suffice.
Case: (Fix)

φ; Φ | Γ, x :[∞] σ ` e : σ

φ; Φ | ∞ · Γ ` fixx : σ. e : σ
(Fix)

By induction, we have
φ; Φ |= Γ, x : !∞σ v Γ′, x : !Rσ and φ; Φ |= σ′ v σ

such that
φ; Φ | Γ′, x : !Rσ `S e : σ′.

We can then conclude by (Fix): the desired context is∞ · Γ′ and the desired type is σ.
Case: (N E)

φ; Φ | ∆ ` e : N[S] φ; Φ, S = 0 | Γ ` e0 : σ
φ, i : n; Φ, S = i+ 1 | Γ, n :[R] N[i] ` es : σ i#R R 6= 2
φ; Φ | Γ +R ·∆ ` case e returnσ of 0⇒ e0 | n[i] + 1⇒ es : σ

(N E)

By induction, there exists

φ; Φ |= ∆ v ∆′ and φ; Φ | ∆′ `S e : N[S′] and φ; Φ |= N[S′] v N[S].

By inversion, φ; Φ |= S = S′. Also by induction,

φ; Φ, S = 0 |= Γ v Γ′0

φ, i : n; Φ, S = i+ 1 |= Γ, n : !RN[i] v Γ′s, n : !R′N[i]

φ; Φ, S = 0 |= σ′0 v σ
φ, i : n; Φ, S = i+ 1 |= σ′s v σ

such that

φ; Φ, S = 0 | Γ′0 `S e0 : σ′0

φ, i : n; Φ, S = i+ 1 | Γ′s, n : !R′N[i] `S es : σ′s.

By Lemma 30, we also have derivations

φ; Φ, S′ = 0 | Γ′0 `S e0 : σ′0

φ, i : n; Φ, S′ = i+ 1 | Γ′s, n : !R′N[i] `S es : σ′s

since φ; Φ |= S = S′.
Hence, we have a derivation

φ; Φ | case(S′, i,Γ′0,Γ
′
s) +R• ·∆′

`S case e returnσ of 0⇒ e0 | n[i] + 1⇒ es : σ,

where R• is case(S′, i, 0, R′2↑). We have

φ; Φ, S′ = 0 |= case(S′, i,Γ′0,Γ
′
s) v Γ′0

φ, i : n; Φ, S′ = i+ 1 |= case(S′, i,Γ′0,Γ
′
s) v Γ′s

so by Lemma 27
φ; Φ |= Γ v case(S′, i,Γ′0,Γ

′
s),

and
φ, i : n; Φ, S′ = i+ 1 |= R ≥ R• ≥ R′2↑ and φ,Φ |= R ≥ R•

thanks to R 6= 2.
By weakening, we have

φ; Φ | ∆′ `S e : N[S′]

φ; Φ, S = 0 | case(S′, i,Γ′0,Γ
′
s) `S e0 : σ

φ, i : n; Φ, S′ = i+ 1 | case(S′, i,Γ′0,Γ
′
s), n : !R•N[i] `S es : σ,

so we can conlude with (N E). The context case(S′, i,Γ′0,Γ
′
s) + R• · ∆′ and type σ suffice (recall that φ; Φ |= R ≥ R•, and

φ; Φ |= R ·∆ v R• ·∆′ by Lemma 26).

D.1 Algorithm Proofs
Theorem 33 (Algorithmic Soundness). Suppose φ; Φ; Γ•; e =⇒ Γ;σ. Then, there is a derivation of φ; Φ; Γ `S e : σ.

Proof. By induction on the algorithmic derivations we see that every algorithmic step has an exact correspondence with a syntax-directed
derivation. We do a few representative cases:

Case (Var)

φ; Φ; Γ•, x : σ;x =⇒ Ectx(Γ•), x :[1] σ;σ
(Var)

φ; Φ | Ectx(Γ•), x :[1] σ `S x : σ
(Var)

Case ((E)

φ; Φ; Γ•; e1 =⇒ Γ; !Rσ (τ
φ; Φ; ∆•; e2 =⇒ ∆;σ′

φ; Φ |= σ′ v σ
φ; Φ; Γ•; e1 e2 =⇒ Γ +R ·∆; τ

((E)

φ; Φ | Γ `S e1 : !Rσ (τ
φ; Φ | ∆ `S e2 : σ′ φ; Φ |= σ′ v σ

φ; Φ | Γ +R ·∆ `S e1 e2 : τ
((E)

Case (⊗E)

φ; Φ; Γ•; e =⇒ ∆;σ ⊗ τ
φ; Φ; Γ•, x : σ, y : τ ; e′ =⇒ Γ, x :[R1] σ, y :[R2] τ ;µ

φ; Φ; Γ•; let(x, y) = e in e′ =⇒ Γ + max(R12↑, R22↑) ·∆;µ
(⊗E)

φ; Φ | ∆ `S e : σ ⊗ τ φ; Φ | Γ, x :[R1] σ, y :[R2] τ `S e
′ : µ

φ; Φ | Γ + max(R12↑, R22↑) ·∆ `S let(x, y) = e in e′ : µ
(⊗E)

Theorem 34 (Algorithmic Completeness). Suppose φ; Φ; Γ `S e : σ is derivable. Then φ; Φ; Γ•; e =⇒ Γ;σ.

Proof. By induction on the syntax-directed derivation. The proof is mostly direct, we show a few representative cases.

Case ((E)

φ; Φ | Γ `S e1 : !Rσ (τ
φ; Φ | ∆ `S e2 : σ′ φ; Φ |= σ′ v σ

φ; Φ | Γ +R ·∆ `S e1 e2 : τ
((E)

By induction, we have derivations

φ; Φ; Γ•; e1 =⇒ Γ; !Rσ (τ and φ; Φ; ∆•; e2 =⇒ ∆;σ′.

Note that Γ• = ∆• for the syntax-directed derivation to be defined, so we can apply the algorithmic rule ((E):

φ; Φ; Γ•; e1 =⇒ Γ; !Rσ (τ
φ; Φ; ∆•; e2 =⇒ ∆;σ′

φ; Φ |= σ′ v σ
φ; Φ; Γ•; e1 e2 =⇒ Γ +R ·∆; τ

((E)

Case (Fix)

φ; Φ | Γ, x :[R] σ `S e : σ′ φ; Φ |= σ′ v σ
φ; Φ | ∞ · Γ `S fixx : σ. e : σ

(Fix)

By induction, we have
φ; Φ; Γ•, x : σ; e =⇒ Γ, x :[R] σ;σ′

and we can apply the algorithm rule (Fix):

φ; Φ; Γ•, x : σ; e =⇒ Γ, x :[R] σ;σ′

φ; Φ |= σ′ v σ
φ; Φ; Γ•; fixx : σ. e : σ =⇒∞ · Γ;σ

(Fix)

Case (⊗E)

φ; Φ | ∆ `S e : σ ⊗ τ φ; Φ | Γ, x :[R1] σ, y :[R2] τ `S e
′ : µ

φ; Φ | Γ + max(R12↑, R22↑) ·∆ `S let(x, y) = e in e′ : µ
(⊗E)

We know that Γ• = ∆•. By induction, we know that:

φ; Φ; Γ•; e =⇒ ∆;σ′1 ⊗ σ′2
φ; Φ; Γ•, x1 : σ1, x2 : σ2; e′ =⇒ Γ, x :[R1] σ1, y :[R2] σ2; τ

and we know φ; Φ |= σ′1 v σ1 ∧ σ′2 v σ2, so we apply the algorithmic case (⊗E):

φ; Φ; Γ•; e =⇒ ∆;σ ⊗ τ
φ; Φ; Γ•, x : σ, y : τ ; e′ =⇒ Γ, x :[R1] σ, y :[R2] τ ;µ

φ; Φ; Γ•; let(x, y) = e in e′ =⇒ Γ + max(R12↑, R22↑) ·∆;µ
(⊗E)

Case (N E)

φ; Φ | ∆ `S e : N[S] φ; Φ, S = 0 | Γ0 `S e0 : σ0

φ, i : n; Φ, S = i+ 1 | Γs, n :[R] N[i] `S es : σs
φ; Φ, S = 0 |= σ0 v σ φ, i : n; Φ, S = i+ 1 |= σs v σ

φ; Φ | case(S, i,Γ0,Γs) + case(S, i, 0, R2↑) ·∆ `S case e returnσ of 0⇒ e0 | n[i] + 1⇒ es : σ
(N E)

We know that Γ• = ∆•. By induction, we know that:

φ; Φ; Γ•; e =⇒ ∆;N[S]

φ; Φ, S = 0; Γ•; e0 =⇒ Γ0;σ0

φ, i : n; Φ, S = i+ 1; Γ•, x : N[i]; es =⇒ Γs, x :[R′] N[i];σs

and we know
φ; Φ, S = 0 |= σ0 v σ and φ, i : n; Φ, S = i+ 1 |= σs v σ.

We can conclude with the algorithmic rule (N E):

φ; Φ; Γ•; e =⇒ ∆;N[S] φ; Φ, S = 0; Γ•; e0 =⇒ Γ0;σ0

φ, i : n; Φ, S = i+ 1; Γ•, x : N[i]; es =⇒ Γs, x :[R′] N[i];σs
φ; Φ, S = 0 |= σ0 v σ φ, i : n; Φ, S = i+ 1 |= σs v σ
φ; Φ; Γ•; case e returnσ of 0 7→ e0 | x[i] + 1 7→ es
=⇒ case(S,Γ0, i,Γs) + case(S, 0, i, R′2↑) ·∆;σ

(N E)

E. Auxiliary Lemmas
Lemma 35 (Standard Annotations). Assume annotations in a term e range over regular sensitivities and φ; Φ | Γ `S e : σ. Then:

• σ has no extended sensitivities; and
• all the constraints are of the form |= ∀φ. (Φ⇒ R ≥ R′) where R is a standard sensitivity term.

This directly implies Lemma 11.

Proof. The first point is clear by inspecting the rules in Figure 8: by induction, the type of any expression has only regular sensitivities. The
second point is also clear: in all subtype checks in Figure 8, both types have no extended sensitivities by the first point. The only place where
we check against an extended sensitivity is in rule ((I), with constraint

|= ∀φ. (Φ⇒ R ≥ R′).
Here, the R is a standard sensitivity term since it is an annotation, but the R′ may be an extended sensitivity.

Editlets: type based client side editors for iTasks

László Domoszlai
Radboud University Nijmegen, Netherlands, ICIS,

MBSD
dlacko@gmail.com

Bas Lijnse Rinus Plasmeijer
Radboud University Nijmegen, Netherlands, ICIS,

MBSD
b.lijnse@cs.ru.nl,rinus@cs.ru.nl

Abstract
The iTask framework is for the construction of distributed systems
where users work together on the internet. It offers a domain spe-
cific language for defining applications, embedded into the lazy
functional language Clean. From the mere declarative specification
a complete multi-user web application is generated. Although the
generated nature of the user interface entails a number of benefits
for the programmer, it suffers from the lack of possibility to cre-
ate custom UI building blocks. In a precursory work we proposed
tasklets for the development of custom, interactive web compo-
nents. However, as tasklets are implemented as a computational el-
ement, a task, they lack some fundamental properties limiting their
usability; these are compositionality and the capability of two-way
communication between the clients and the server. In this paper,
we introduce editlets to overcome these limitations. In addition,
editlets also provide a general way to communicate in edits instead
of exchanging the whole data; it does not just help with reducing
the communication cost, but also enables multiple clients to work
on the same shared data with minimizing the risk of conflicting up-
dates.

1. Introduction
Task Oriented Programming [5, 7] (TOP) is a paradigm that is
designed to construct multi-user, distributed, web-applications. The
iTask system [6] (iTasks) is a TOP framework that offers a domain
specific language embedded in the pure, lazy functional language
Clean.

According to the TOP paradigm, the unit of application logic is
a task. Tasks are abstract descriptions of interactive persistent units
of work that have a typed value. When a task is executed, it has
an opaque persistent value, which can be observed by other tasks
in a controlled way. In iTasks, complex multi-user interactions can
be programmed in a declarative style just by defining the tasks that
have to be accomplished. The specification of the tasks is given by
a domain specific language (DSL). Furthermore, the specification
is given on a very high level of abstraction and does not require
the programmer to provide any user interface definition. Merely by
defining the workflow of user interaction, a complete multi-user
web application is generated, all the details e.g. the generation of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IFL ’14, October 1–3, 2014, Boston, Massachusetts, US.
Copyright c© 2014 ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

web user interface, client-server communication, state management
etc. are automatically taken care of by the framework itself.

The iTask system uses generic programming [1, 4] and a hybrid
static-dynamic type system [8, 9] to generate the user interface.
From the programmers perspective, it is achieved in two levels. In
the most basic level, the iTasks engine can be asked to generate user
interface for any conceivable first order model type. iTasks uses a
predefined set of primitive user interface elements to generate the
GUI, a client side editor, for the given type, then dynamically cre-
ates an associated primitive task. On the higher level, additional
user interface elements are generated as tasks are combined to-
gether. These elements reflect the actual combinators in use and
express the ”flow” of the application.

Developing web applications such a way is straightforward in
the sense that the programmers are liberated from these cumber-
some and error-prone jobs, such that they can concentrate on the
essence of the application. The iTask system makes it very easy to
develop interactive multi-user applications. The down side is that
one has only limited control over the customization of the gener-
ated user interface. In real world applications, it is often necessary
to develop custom user interface elements to achieve special func-
tionality.

To overcome this limitation, in a previous work we introduced
tasklets [2], a special primitive task type, for the development
of custom, interactive web components. Tasklets are written in
Clean and executed in a web browser using a Clean to JavaScript
compilation technique [3]. In the browser, they have unlimited
access to browser resources through some library functions while
on the server they behave like ordinary iTasks tasks.

Using tasklets, we have successfully developed many interac-
tive components for a wide range of applications, but we also expe-
rienced certain limitations of the technology. These are the follow-
ing:

1. Tasklets cannot work with shared data. As an example, it is not
possible to create an interactive map, and enable multiple users
to make concurrent modifications to that (e.g. add marks). This
limitation goes against the main principle of iTasks.

2. There is no way for two-way communication between the client
and the server part. Tasklets implement task interface which
enables the inspection of task values, the behavior of a task
cannot be influenced after its evaluation is started.

3. There is only limited compositionality at task level. Generated
editors cannot contain custom elements as they are primitive
tasks which cannot contain other tasks.

In this paper we rethought how to create interactive compo-
nents. We found that attaching the presentation logic to a type has
many advantages over our previous approach. The new type of in-
teractive elements are called editlets as they work on the lower ed-
itor level instead of task level as tasklets do. Editlets solve all the

aforementioned limitations while preserving compatibility: in the
most basic use cases they give back the functionality of tasklets.

Editlets also have the property that the client-server communi-
cation is done in edits, which means that the value of the editlet
is communicated through changes instead of exchanging the whole
value at every update. In certain cases it does not just reduces dras-
tically the communication cost (just think of a source code edi-
tor component), but also allows us to avoid update conflicts when
working on shared data.

In this paper we show how editlets can be defined, how they
work and interact with the other part of the iTask system. This is
done in a number of steps:

1. We extend iTask with editlets. An editlet consists of the type of
the value it holds, a type of the edits in use, a description of the
behavior of the component on the client side, and the logic of
creating and applying edits from and to its current value.

2. We develop a simple, but still realistic example of a drawing ap-
plications, where multiple people can work on the same image
on the same shared image to give a taste of editlets.

3. We explain the technical background of editles along with ad-
ditional remarks how they fit the iTasks architecture.

References
[1] A. Alimarine. Generic functional programming: conceptual design, im-

plementation and applications. PhD thesis, Institute for Computing and
Information Sciences, Radboud University Nijmegen, The Netherlands,
2005.

[2] L. Domoszlai and R. Plasmeijer. Tasklets: Client-side evaluation for
iTask3. In Domain specific languages, summer school, DSL’13, 2014.
Accepted for publication.

[3] L. Domoszlai, E. Bruël, and J. Jansen. Implement-
ing a non-strict purely functional language in JavaScript.
Acta Universitatis Sapientiae, 3:76–98, 2011. URL
http://www.acta.sapientia.ro/acta-info/C3-1/info31-4.pdf.

[4] R. Hinze. A new approach to generic functional programming. In
T. Reps, editor, Proceedings of the 27th International Symposium on
Principles of Programming Languages, POPL ’00, Boston, MA, USA,
pages 119–132. ACM Press, 2000.

[5] B. Lijnse. TOP to the Rescue – Task-Oriented Programming for Inci-
dent Response Applications. PhD thesis, Institute for Computing and
Information Sciences, Radboud University Nijmegen, The Netherlands
, 2013. ISBN 978-90-820259-0-3.

[6] R. Plasmeijer, P. Achten, P. Koopman, B. Lijnse, T. Van Noort, and
J. Van Groningen. iTasks for a change: Type-safe run-time change in
dynamically evolving workflows. In PEPM ’11 : Proceedings Work-
shop on Partial Evaluation and Program Manipulation, PEPM ’11,
Austin, TX, USA, pages 151–160, New York, 2011. ACM.

[7] R. Plasmeijer, B. Lijnse, S. Michels, P. Achten, and P. Koopman. Task-
Oriented Programming in a Pure Functional Language. In Proceedings
of the 2012 ACM SIGPLAN International Conference on Principles
and Practice of Declarative Programming, PPDP ’12, pages 195–206,
Leuven, Belgium, Sept. 2012. ACM. ISBN 978-1-4503-1522-7.

[8] T. van Noort. Dynamic Typing in Type-Driven Programming. PhD
thesis, Institute for Computing and Information Sciences, Radboud
University Nijmegen, The Netherlands , May 2012. ISBN 978-94-
6108-279-4.

[9] A. v. Weelden. Putting types to good use. PhD thesis, Institute for
Computing and Information Sciences, Radboud University Nijmegen,
The Netherlands, Oct. 17, 2007.

abstract

Task Oriented Programming with
Purely Compositional Interactive Vector Graphics

Peter Achten
Radboud University Nijmegen, Netherlands, ICIS,

MBSD
P.Achten@cs.ru.nl

Jurriën Stutterheim László Domoszlai
Rinus Plasmeijer

Radboud University Nijmegen, Netherlands, ICIS,
MBSD

j.stutterheim@cs.ru.nl,dlacko@gmail.com,rinus@cs.ru.nl

1. Abstract
Task Oriented Programming [24, 29] (TOP) is a paradigm that is
designed to construct multi-user, distributed, web-applications. The
iTask system [28] (iTasks) is a TOP framework that offers three core
concepts for software developers.

• Tasks which are abstractions of the work that needs to be per-
formed by (teams of) human(s) and software components. A
task is a value of parameterized type (Task a). The type pa-
rameter a models the task value the task is currently process-
ing. This value can be inspected by other tasks.

• Shared data sources (SDS) which are abstractions of informa-
tion that is shared between tasks. A SDS is a value of param-
eterized type (ReadWriteShared r w). The type parameters r

and w model the read and write values.
• Combinator functions that compose tasks and SDSs into more

complex tasks and SDSs and combinations of them.

The iTask system is a domain specific language (DSL) that is shal-
lowly embedded in the strongly typed, lazy, purely functional pro-
gramming language Clean [27, 30]. When developing an iTask
application, the task developer can concentrate on identifying the
tasks, the shared data sources, and their interrelation. The iTask sys-
tem uses generic programming [5, 21] and a hybrid static-dynamic
type system [31, 32] to generate all required machinery to create an
executable. Among the plethora of concerns, the iTask system au-
tomatically generates a graphical user interface (GUI) for any con-
ceivable first order model type. For this purpose the iTask system
offers a comprehensive set of data types that model common user
interface elements. In this way the task developer needs no work-
ing knowledge of JavaScript, HTML 5.0, handling (de)serialization
and events. However, this knowledge is required whenever the com-
prehensive set of model types does not cover a particular interface
element. This is unfortunate because it breaks the level of abstrac-
tion that is offered by the iTask system.

[Copyright notice will appear here once ’preprint’ option is removed.]

In this paper we show how the level of abstraction of iTask
can remain intact when task developers define new user interface
elements. This is done in a number of steps:

• We extend iTask with Images which are vector graphics based
renderings. An image of type (Image m) is a rendering of a
model value of type m . Images have a span to specify their
dimensionality and local coordinate-system (traditional running
from left-to-right and top-to-bottom), but there is no global
coordinate system in which they are positioned or global canvas
on which they are painted.

• We add combinator functions to compose images into more
complex images. The absence of a global coordinate system or
global canvas allows us to provide only three layout primitives:
the overlay (placing images on top of each other), grid (two-
dimensional structured layout), and collage (two-dimensional
arbitrary layout). Each layout primitive has an optional host
image that determines a reference span that is used for layout.

• We obtain interactivity by integrating images in iTask. Any
(composite) image of type (Image m) can react to user events
and define its behaviour via a pure function of type (m -> m)

that alters the image’s model value. This is in accordance to the
philosophy of tasks: behaviour only needs to be defined in terms
of how tasks depend on the model value of tasks and images.

The implementation of images and its combinator functions in
iTask is based on the Scalable Vector Graphics (SVG) standard
[10]. The low-level integration of these images in iTask is struc-
tured by means of editlets, and the high-level integration is done
via the iTask step task combinator function.

Compositional Images
The full paper contains a detailed explanation and motivation for
the compositional image library. Figure 1 displays the key elements
of the API. For this abstract, we state the key properties of the API.

• Think of a basic image as an overhead-projector slide that is
infinitely large. This slide can be rotated, scaled, and skewed. A
finite portion of the basic image has visual content, the extent of
which is defined by its span. The x-span always extends from
left to right, and the y-span always extends from top to bottom.

• Think of a composite image as a stack of overhead-project
slides. This stack can be rotated, scaled, and skewed. When
composing images, their span is used to control their rela-
tive location. There are three core image combinator functions:
overlay to stack images, grid to stack images row-by-row or
column-by-column, and collage to stack images and arrange

draft paper for pre-proceedings IFL 2014 1 2014/9/7

them to your liking. The commonly occurring layouts beside
and above are direct specializations of grid.

• The layout combinators have an optional host image parameter.
Think of the host image as the background image relative to
which the other images are to be arranged in terms of alignment.

• Images can have tags. This is needed when expressing spans in
terms of the span(s) of other parts of the image.

• A (composite) image of type (Image m) can be made interac-
tive by attributing it with a pure function of type (m -> m),
thus resulting in a change of image model value. This function
is evaluated whenever the user clicks in the image (regardless
of the location and transformation of the image).

:: Image m / / Opaque type
:: Span / / Opaque type
:: Host m :== Maybe (Image m)
:: ImageTag :== String
:: FontDef :== String
:: ImageOffset :== (Span, Span)

:: XAlign = AtLeft | AtMiddleX | AtRight
:: YAlign = AtTop | AtMiddleY | AtBottom
:: ImageAlign :== (XAlign, YAlign)

:: GridDimension = Rows Int | Columns Int
:: GridLayout :== (GridXLayout, GridYLayout)
:: GridXLayout = LeftToRight | RightToLeft
:: GridYLayout = TopToBottom | BottomToTop

:: ImageLayout m :== [ImageOffset] [Image m] (Host m) -> Image m
overlay :: [ImageAlign] -> ImageLayout m
beside :: [YAlign] -> ImageLayout m
above :: [XAlign] -> ImageLayout m
grid :: GridDimension GridLayout [ImageAlign] -> ImageLayout m
collage :: ImageLayout m

empty :: Span Span -> Image m
text :: FontDef String -> Image m
circle :: Span -> Image m
ellipse :: Span Span -> Image m
rect :: Span Span -> Image m

:: Slash = Slash | Backslash

xline :: Span -> Image m
yline :: Span -> Image m
line :: Slash Span Span -> Image m
polygon :: [ImageOffset] -> Image m
polyline :: [ImageOffset] -> Image m

rotate :: Real (Image m) -> Image m
fit :: Span Span (Image m) -> Image m
fitx :: Span (Image m) -> Image m
fity :: Span (Image m) -> Image m
skewx :: Real (Image m) -> Image m
skewy :: Real (Image m) -> Image m

px :: Real -> Span
ex :: FontDef -> Span
descent :: FontDef -> Span
textxspan :: FontDef String -> Span
imagexspan :: [ImageTag] -> Span
imageyspan :: [ImageTag] -> Span
columnspan :: [ImageTag] Int -> Span
rowspan :: [ImageTag] Int -> Span

Figure 1. The key elements of the Image API.

Integration in iTask
The integration of interactive, compositional images in iTask con-
cerns the following components:

• The images are mapped to SVG. We face two major hurdles: (i)
SVG adopts an imperative-style rendering model, so we must
take care to unravel the declarative image specifications and
paint them in the right order in SVG; (ii) text dimensions can
only be computed at the client-side of the application, so the
layout of images can not be performed entirely on the server-
side of iTask.

• To establish the server-client side communication, we use iTask
editlets.

These will be described in detail in the full paper.

Case studies
We demonstrate the new iTask approach by means of the following
case studies:

• a 1-person pocket calculator,
• a 2-person, distributed, tic-tac-toe game,
• a 2-person, distributed, trax game [1],
• a N -person, distributed, ligretto card game.

Related work
Functional programming and GUIs share a long research history
[2–4, 6–9, 11–19, 22, 23, 25, 26]. The full paper compares and
discusses these approaches in more detail. For this abstract we
restrict ourselves to the following observations:

• Regarding compositional images, the work by Henderson [19,
20] has been influential to many compositional approaches, as
well as ours. Similar to Henderson’s approach, we abstract from
absolute location, but we do not from size. In the context of
scalable vector graphics, the latter is not an issue because at
any time images can be resized to any demanded size.

• Regarding compositional GUIs, Haggis [15] is similar in their
approach to layout and transform GUIs. A difference is that
Haggis has a monadic flavour: the GUI elements that are to
be combined need to be declared before their handles can be
used to arrange them inside layouts. In our approach, the iTask
system ‘collects’ the offered images in the task specifications.

• Regarding ‘completeness’, we have not yet made use of all
graphics elements that are offered by SVG. Concepts that are
currently missing but are intended to be included in the iTask
system are Bézier curves, multi-line text blocks, gradients, gen-
eralized clipping, and filtering. The layout combinators that we
propose were inspired by the Racket image API [14]. The three
core layout primitives overlay, grid, and collage of our ap-
proach can model them. The current proposal’s event model is
certainly incomplete as it covers only user-mouse clicks. We
expect that extending the model to deal with the usual set of
mouse and keyboard events follows the same approach.

Conclusions
In the TOP iTask framework multi-user, distributed, web-applica-
tions can be developed on a high level of abstraction because the
task developer can concentrate on identifying and specifying the
required tasks, information, and how they relate, knowing that the
iTask framework can generate a suitable web application. The pa-
per shows how this property can also be satisfied when develop-
ing applications that require custom built user interface(element)s.
Because images are compositional, the task developer can concen-
trate on identifying and specifying the required graphical elements,

draft paper for pre-proceedings IFL 2014 2 2014/9/7

knowing that the image library generates a suitable SVG rendering.
Via editlets graphically customized tasks are integrated seamlessly
in the TOP paradigm.

References
[1] P. Achten. Why functional programming matters to me. In P. Achten

and P. Koopman, editors, The Beauty of Functional Code - Essays
Dedicated to Rinus Plasmeijer on the Occasion of His 61st Birthday,
Festschrift, number 8106 in LNAI, pages 79–96. Springer, August
2013. ISBN ISBN 978-3-642-40354-5.

[2] P. Achten and S. Peyton Jones. Porting the Clean Object I/O library to
Haskell. In M. Mohnen and P. Koopman, editors, Selected Papers of
the 12th International Workshop on the Implementation of Functional
Languages, IFL ’00, volume 2011 of LNCS, pages 194–213. Springer-
Verlag, Sept. 2001.

[3] P. Achten and R. Plasmeijer. The ins and outs of Concurrent Clean
I/O. Journal of Functional Programming, 5(1):81–110, 1995.

[4] P. Achten and R. Plasmeijer. Interactive functional objects in Clean.
In C. Clack, K. Hammond, and T. Davie, editors, Selected Papers of
the 9th International Workshop on the Implementation of Functional
Languages, IFL ’97, volume 1467 of LNCS, pages 304–321. Springer-
Verlag, Sept. 1998.

[5] A. Alimarine. Generic functional programming: conceptual design,
implementation and applications. PhD thesis, Institute for Computing
and Information Sciences, Radboud University Nijmegen, The Nether-
lands, 2005.

[6] M. Carlsson and T. Hallgren. Fudgets - a graphical user interface in
a lazy functional language. In Proceedings of the 6th International
Conference on Functional Programming Languages and Computer
Architecture, FPCA ’93, Kopenhagen, Denmark, 1993.

[7] K. Claessen, T. Vullinghs, and E. Meijer. Structuring graphical
paradigms in TkGofer. In Proceedings of the 2nd International Con-
ference on Functional Programming, ICFP ’97, volume 32(8), pages
251–262, Amsterdam, The Netherlands, 9-11, June 1997. ACM Press.

[8] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: web program-
ming without tiers. In Proceedings of the 5th International Symposium
on Formal Methods for Components and Objects, FMCO ’06, volume
4709, CWI, Amsterdam, The Netherlands, 7-10, Nov. 2006. Springer-
Verlag.

[9] A. Courtney and C. Elliott. Genuinely functional user interfaces. In
Proceedings of the 5th Haskell Workshop, Haskell ’01, Sept. 2001.

[10] E. Dahlström, P. Dengler, A. Grasso, C. Lilley, C. McCormack,
D. Schepers, and J. Watt. Scalable vector graphics (svg) 1.1 (second
edition). Technical Report REC-SVG11-20110816, W3C Recommen-
dation 16 August 2011, 2011.

[11] A. Dwelly. Functions and dynamic user interfaces. In Proceedings
of the 4th International Conference on Functional Programming Lan-
guages and Computer Architecture, FPCA ’89, pages 371–381, Sept.
1989.

[12] C. Elliot. Tangible functional programming. In Proceedings of the
12th International Conference on Functional Programming, ICFP
’07, pages 59–70, Freiburg, Germany, 1-3, Oct. 2007. ACM Press.
ISBN 978-1-59593-815-2.

[13] M. Elsman and N. Hallenberg. Web programming with SMLserver.
In Proceedings of the 5th International Symposium on the Practical
Aspects of Declarative Programming, PADL ’03. New Orleans, LA,
USA, Springer-Verlag, Jan. 2003.

[14] M. Felleisen, R. Findler, M. Flatt, and S. Krishnamurthi. A Functional
I/O System * or, Fun for Freshman Kids. In Proceedings Interna-
tional Conference on Functional Programming, ICFP ’09, Edinburgh,
Scotland, UK, 2009. ACM Press.

[15] S. Finne and S. Peyton Jones. Composing Haggis. In Eurographics
Workshop on Programming Paradigms in Graphics, pages 85–101,
Maastricht, the Netherlands, 1995. Springer.

[16] P. Graunke, R. Findler, S. Krishnamurthi, and M. Felleisen. Model-
ing web interactions. In P. Degano, editor, Proceedings of the 12th

European Symposium on Programming, ESOP ’03, volume 2618 of
Lecture Notes in Computer Science , pages 238–252, 7-11, Apr. 2003.

[17] M. Hanus. High-level server side web scripting in Curry. In Proceed-
ings of the 3rd International Symposium on the Practical Aspects of
Declarative Programming, PADL ’01, pages 76–92. Springer-Verlag,
2001.

[18] M. Hanus. Type-oriented construction of web user interfaces. In
Proceedings of the 8th International Conference on Principles and
Practice of Declarative Programming, PPDP ’06, pages 27–38. ACM
Press, 2006.

[19] P. Henderson. Functional geometry. In D. Friedman and D. Wise,
editors, Conference Record of the 1982 ACM Symposium on Lisp and
Functional Programming, pages 179–187, Pittsburgh, Pennsylvania,
1982. ACM Press. URL http://www.ecs.soton.ac.uk/~ph/
funcgeo.pdf.

[20] P. Henderson. Functional geometry. Higher-Order and Symbolic
Computation, 15:349–365, 2002.

[21] R. Hinze. A new approach to generic functional programming. In
T. Reps, editor, Proceedings of the 27th International Symposium on
Principles of Programming Languages, POPL ’00, Boston, MA, USA,
pages 119–132. ACM Press, 2000.

[22] P. Hudak, A. Courtney, H. Nilsson, and J. Peterson. Arrows, robots,
and functional reactive programming. In J. Jeuring and S. Peyton
Jones, editors, Proceedings of the 4th International Summer School
on Advanced Functional Programming, AFP ’03, volume 2638 of
Lecture Notes in Computer Science , pages 159–187. Oxford, UK,
Springer-Verlag, 2003.

[23] D. Leijen. wxHaskell: a portable and concise GUI library for Haskell.
In Proceedings of the 2004 ACM SIGPLAN workshop on Haskell,
pages 57–68, Snowbird, Utah, USA, 2004. ACM. . URL http:
//doi.acm.org/10.1145/1017472.1017483.

[24] B. Lijnse. TOP to the Rescue – Task-Oriented Programming for In-
cident Response Applications. PhD thesis, Institute for Computing
and Information Sciences, Radboud University Nijmegen, The Nether-
lands , 2013. ISBN 978-90-820259-0-3.

[25] F. Loitsch and M. Serrano. Hop client-side compilation. In Proceed-
ings of the 7th Symposium on Trends in Functional Programming, TFP
’07, pages 141–158, New York, NY, USA, 2-4, Apr. 2007. Interact.

[26] M. Morazán. Functional Video Games in the CS1 Classroom. In
R. Page, Z. Horváth, and V. Zsók, editors, Proceedings of the 11th
Symposium on Trends in Functional Programming, TFP ’10, volume
6546 of LNCS, pages 166–183, 2010.

[27] R. Plasmeijer and M. van Eekelen. Clean language report (version
2.1). http://clean.cs.ru.nl, 2002.

[28] R. Plasmeijer, P. Achten, P. Koopman, B. Lijnse, T. Van Noort, and
J. Van Groningen. iTasks for a change: Type-safe run-time change
in dynamically evolving workflows. In PEPM ’11 : Proceedings
Workshop on Partial Evaluation and Program Manipulation, PEPM
’11, Austin, TX, USA, pages 151–160, New York, 2011. ACM.

[29] R. Plasmeijer, B. Lijnse, S. Michels, P. Achten, and P. Koopman. Task-
Oriented Programming in a Pure Functional Language. In Proceedings
of the 2012 ACM SIGPLAN International Conference on Principles
and Practice of Declarative Programming, PPDP ’12, pages 195–206,
Leuven, Belgium, Sept. 2012. ACM. ISBN 978-1-4503-1522-7.

[30] J. van Groningen, T. van Noort, P. Achten, P. Koopman, and R. Plas-
meijer. Exchanging sources between Clean and Haskell: a double-
edged front end for the Clean compiler. In J. Gibbons, editor,
Haskell’10 : proceedings of the third ACM Haskell symposium on
Haskell, pages 49–60. ACM, 2010.

[31] T. van Noort. Dynamic Typing in Type-Driven Programming. PhD
thesis, Institute for Computing and Information Sciences, Radboud
University Nijmegen, The Netherlands , May 2012. ISBN 978-94-
6108-279-4.

[32] A. v. Weelden. Putting types to good use. PhD thesis, Institute for
Computing and Information Sciences, Radboud University Nijmegen,
The Netherlands, Oct. 17, 2007.

draft paper for pre-proceedings IFL 2014 3 2014/9/7

http://www.ecs.soton.ac.uk/~ph/funcgeo.pdf
http://www.ecs.soton.ac.uk/~ph/funcgeo.pdf
http://doi.acm.org/10.1145/1017472.1017483
http://doi.acm.org/10.1145/1017472.1017483
http://clean.cs.ru.nl

An Iterative Compiler for Implicit Parallelism
Extended Abstract

José Manuel Calderón Trilla Colin Runciman
University of York, York UK
{jmct|colin}@cs.york.ac.uk

Abstract
Advocates of lazy functional programming languages often cite easy
parallelism as a major benefit of abandoning mutable state [1]. This
idea drove research into the theory and implementation of compilers
that take advantage of implicit parallelism in a functional program.
Using static analysis techniques compilers can attempt to identify
where a program can benefit from parallelism and ensure that those
expressions are executed concurrently with the main thread of
execution [2, 3]. These techniques can produce improvements in
the runtime performance of a program, but are limited by the static
analyses’ poor prediction of runtime performance. Our work is
on the development of a system that uses feedback from runtime
profiling in addition to well-studied static analysis techniques in
order to achieve higher performance gains than through static
analysis alone.

Keywords Implicit Parallelism, Lazy Functional Languages, Auto-
matic parallelism, Strictness Analysis, Projections, Iterative Compi-
lation, Feedback Directed Compilation

1. Introduction
The amenability of functional languages to parallelism has long
been advertised [4, 5] but the ultimate goal of writing a program
in a functional style and having the compiler find the implicit
parallelism still requires work. Static analysis, when used alone,
has underperformed in this endeavor [2, 3, 6, 7]. Our thought is that
the compiler should incorporate runtime profile data into decisions
about parallelism the same way a programmer would manually tune
a parallel program.

By using runtime feedback we can have the compiler be generous
when introducing parallelism into the program. The profiling data
will then point to the par annotations that under-perform and the
compiler will disable the parallelism they introduce.

1.1 Contributions
The main focus of our work has been the design and implementation
of an experimental compiler that allows for implicit parallelism.
The source language of the compiler is an enriched lambda calculus

[Copyright notice will appear here once ’preprint’ option is removed.]

which is suitable for use as a functional core language in a larger
compiler. The contributions of our work are as follows:

• The use of switchable par annotations1

• An implementation of Hinze’s projection based strictness analy-
sis [8]

• Utilising the correspondence between projections and strategies
to introduce parallelism into a program

• Using search strategies to improve upon the initial par place-
ment

This paper presents an overview of the design of our compiler
and some of the design decisions that were made. As we are now
beginning to run experiments, this paper also serves as a documented
hypothesis for our results.

1.2 Compiler Pipeline
The compiler is composed of 5 main phases, illustrated in Figure 1

1. Parsing

2. Defunctionalisation

3. Projection based Strictness Analysis

4. Generation of strategies

5. Placement of par annotations

6. G-Code Generation

7. Execution

8. Feedback and iteration

The parsing and G-Code generation are done in the standard
way and will not be discussed further. The rest of the paper is
organised by following the compiler pipeline as shown in figure 1.
In §2 we explain the advantages of performing defunctionalisation.
We motivate our use of a projection based strictness analysis [9] in
§3. §4 is a description of the correspondence between projections
and strategies [10] which allows us to generate parallel strategies
based on the projections provided by the strictness analysis. The
technique used for utilising the runtime profiling to switch off some
of the introduced parallelism is described in§5 along with possible
additional search techniques. Lastly, §6 contains our conclusions
and thoughts on possible future work.

2. Defunctionalisaton
As mentioned above, the design of the compiler utilises a defunction-
alising transformation on the input programs. Defunctionalisation

1 Our par annotations take the familiar form of par a b = b, where the
first argument is ‘sparked off’ in parallel and the function returns its second
argument.

1 2014/9/25

Defunctionalisation
Projection based

Strictness Analysis
Generate
Strategies

Par-
placement

G-Code
Generation

Program
Runtime

Par-
Switching

Figure 1. Compiler Pipeline After Parsing

specialises higher-order functions to the instances of their func-
tion arguments. Here we give our motivation for introducing this
transformation.

Central to our design is the concept of par placement within
a program. Each par is identified by its position in the AST. Due
to the higher-order nature of our language, basing our parallelism
on the location of a par can lead to undesirable circumstances. For
example, a common pattern in parallel programs is to introduce a
parallel version of the map function

parMap :: (a -> b) -> [a] -> [b]
parMap f [] = []
parMap f (x:xs) = let y = f x

in y ‘par‘ y : parMap f xs

This function allows us to use a common technique (mapping)
with the possibility of performance gains through parallelism. How-
ever, when the computation f x is inexpensive, the parallelism may
not provide any benefit or could even be detrimental. As parMap
may be used throughout a program it is possible that there are
both useful and detrimental instances of the function. For instance,
parMap f may provide useful parallelism while parMap g may
cost more in overhead than we gain from any parallelism. Unfor-
tunately when this occurs we are unable switch off the par for
parMap g without losing the useful parallelism of parMap f. This
is because the par annotation is within the body of parMap. By spe-
cialising these functions we create two separate parMap functions:
parMapf and parMapg. This now provides us with par annotations
in each of the instances of parMap.

parMapf [] = []
parMapf (x:xs) = let y = f x

in y ‘par‘ y : parMapf xs

parMapg [] = []
parMapg (x:xs) = let y = g x

in y ‘par‘ y : parMapg xs

Because of defunctionalisation we are able to deactivate the
par for the inexpensive computation, g x, without affecting the
parallelism of the worthwhile computation, f x.

3. Strictness Analysis
The view of lazy languages (evaluation should only occur when
necessary) can be at odds with the goals of performance through
parallelism (do as much work as possible for faster execution time)
[6]. Call-by-need semantics forces the compiler to take care in
deciding which sub-expressions can safely be executed in parallel.

Having a simple parallelisation heuristic such as ‘compute all
arguments to functions in parallel’ can alter the semantics of a non-
strict language, introducing non-termination or runtime errors that
would not have occurred during a sequential execution. For example,
in a strict language, the function below would not terminate due
to having to evaluate ⊥ before entering the function, while lazy

languages can compute the correct result since they only evaluate
expressions when they are needed:

squareFirst :: Int -> Int -> Int
squareFirst x ⊥ = x * x

The problem of knowing which arguments are required for a
function is known as strictness analysis [11] and forms the core of
the static analysis phase of the compiler. In this section we provide
a brief overview of the two predominant techniques for strictness
analysis, ideal2 analysis and projection based analysis. We then
motivate our decision to use a projection based analysis.

3.1 Ideal Analysis
The main idea behind abstract interpretation is that you can throw
away information about your program that is not necessary for the
property you are analysing. When dealing with the Integer type,
it may not be necessary to know the actual value of an integer, but
instead only some of the information about that integer. Mycroft’s
“The Theory and Practice of Transforming Call-by-need into Call-
by-value” [11] introduced the use of abstract interpretation for
performing strictness analysis on call-by-need programs.

In the case of strictness analysis, we only require information
about how defined a value is, and do not need to know about its
concrete value.

In short, when performing ideal analysis we only concern our-
selves with the definedness of values when analysing the strictness
properties of programs.

With the strictness information in hand we can annotate our
program to execute strict arguments in parallel with the function.
In short, the strictness analysis informs the initial placement of
par annotations in a program. Basing the initial placement on
strictness information is important because we aim for our compiler
to maintain the semantics of the initial sequential program.

When using a safe analysis we may not be able to determine
all of the needed arguments for a given function. However, we can
be certain that any argument the analysis determines is needed is
definitely needed. This safety is crucial in avoiding the introduc-
tion of ⊥ where it would not have occurred in a sequential lazy
implementation [12].

The strictness properties of a function can be defined more
formally as follows: A function of the form

f n1 n2 . . . nn = e

is said to be strict in argument nm iff

f . . . ⊥m · · · = ⊥

3.2 Projections
Strictness analysis as originally described by Mycroft is only capable
of dealing with a two-point domain (values that are definitely needed,

2 This terminology is used by Hinze in [8] to differentiate between the two
methods.

2 2014/9/25

ID: accepts all lists

T (tail strict): accepts all finite lists

H (head strict): accepts lists where the head of the list is defined
(recursively)

HT (H and T strict): accepts finite lists where every member is
defined

Figure 2. Four contexts on lists as described in [9].

and values that may or may not be needed). This works well for types
that can be represented by a flat domain (Integer, Char, Bool, etc.)3

but falls short on more complex data structures. For example, if a list
argument is needed for a function to terminate, we can only evaluate
up to the first cons safely. However, there are many functions on
lists where evaluating the entire list (or even just the spine) can be
safe. The canonical examples are length and sum. When evaluating
the length of the list it would be safe to have evaluated the spine (and
only the spine) of the list beforehand. This makes intuitive sense, if
the evaluation of the spine is non-terminating, then the evaluation
of length would be non-terminating as well. The function sum
extends the same premise to the spine and the elements of a list.

In order to accommodate this type of reasoning, Wadler devel-
oped the well known four-point domain for lists [12]. While this
work allowed for analysis to be performed on functions accepting
lists, it was not easily extended to functions on other data structures.

Another approach involved projections from domain theory.
Projection based analysis provides two benefits over ideal based
analysis: The ability to analyse functions over arbitrary structures,
and a correspondence with parallel strategies [10, 13]. This allows
use to use the projections provided by our analysis to produce an
appropriate function to compute the strict arguments in parallel.

Ideally we could generate and utilise strategies on any arbitrary
type. This would allow to compiler to annotate the needed expression
with the maximal safe amount of reduction. This requires us to use
a more sophisticated form of strictness analysis: projections [9].

Projections asks a slightly different question than the ideal
analysis described above. If the above asks “When passing this
argument as ⊥ is the result of the function call ⊥?” then projections
ask “If there is a certain degree of demand for the result of this
function, what degree of demand is there on its arguments?”.

First let us explain what is meant by ‘demand’. The function
length requires that the input list be finite, but no more. We can
therefore say that length demands the spine of the argument list.
The function append is a more interesting example

append :: [a] -> [a] -> [a]
append [] ys = ys
append (x:xs) ys = x : append xs ys

By studying the function we can tell that the first argument must
be defined to the first cons, but we cannot know whether the second
argument is ever needed. However, what if the result of append
needs to be a finite list? In other words the function calling append
requires that its input list be finite.

A simple example of this is the following program

lengthOfBoth :: [a] -> [a] -> Int
lengthOfBoth xs ys = length (append xs ys)

In this case both arguments to append must be finite. Projections
allow us to make this distinction with the use of contexts [8, 9].

For lists we have the following contexts:
We can now say more about the strictness properties of append:

3 Any type that can be represented as an enumerated type.

ID (append xs ys) = ID!(xs); ID(ys)
T (append xs ys) = T!(xs); T!(ys)
H (append xs ys) = H!(xs); H(ys)
HT (append xs ys) = HT!(xs); HT!(ys)

Here we use the convention from [8] of using ! to denote the
strictness of a context. ID! requires the list be defined to the first
cons, whereas an expression in an ID context may not be needed.

Hinze’s Work on Projections
Much of the work on strictness analysis as a means to achieve
implicit parallelism focused on the ideal analysis approach. This
was mostly an accident of timing, the work on projections had not
been fully developed when implicit parallelism was a more active
research area. In particular, the wonderful work on the “Automatic
Parallelization of Lazy Functional Programs” [3] only used two and
four-point domains (as described in [12]) in their strictness analysis.
This limits the ability of the compiler to determine the neededness
of more complex structures.

While projections were known as a possible technique for
strictness analysis, the theory was much more complex and many
of the details regarding the generality of the approach were not
yet worked out. The work of Hinze [8] shows how projections can
be used to determine the strictness information on complex data-
types and sets the technique on a solid theoretical foundation that
ensures its generality (in particular when working with polymorphic
functions).

Using results from domain theory we are able to construct pro-
jections for every user-defined type, and furthermore each projection
represents a specific strategy for evaluating the structure [8]. This
provides us with the ability to generate appropriate parallel strategies
for arbitrary types.

4. Projections and Strategies
As mentioned in the previous section, one of the reasons that
projections were chosen for our strictness analysis is their corre-
spondence to parallel strategies. The main idea behind strategies
is that it is possible to write functions whose sole purpose is to
force the evaluation of specific parts of a structure [10, 13]. An
important point is that all strategies return (), having the type
type Strategy a = a -> (), which tells us that strategies are
not used for their computed result but for the evaluation they force
along the way.

The simplest strategy, named r0 in [13], which performs no re-
ductions is defined as r0 x = (). The strategy for weak head nor-
mal form is only slightly more involved: rwhnf x = x ‘seq‘ ()

Neither of these strategies are of much interest. The real power
comes when strategies are used on nested data-structures. Take lists
for example, evaluating a list sequentially or in parallel provides us
with the following two strategies

seqList :: Strategy a -> Strategy [a]
seqList s [] = ()
seqList s (x:xs) = s x ‘seq‘ (seqList s xs)

parList :: Strategy a -> Strategy [a]
parList s [] = ()
parList s (x:xs) = s x ‘par‘ (parList s xs)

First notice that each strategy takes another strategy as an
argument. The provided strategy is what determines how much of
each element to evaluate. If the provided strategy is r0 the end result
would be that only the spine of the list is evaluated. On the other end
of the spectrum, providing a strategy that evaluates a value of type
a fully would result in list’s spine and elements being evaluated.
Already we can see a correspondence between these strategies and

3 2014/9/25

the contexts shown in figure 2. The T context (tail strict) corresponds
to the strategy that only evaluates the spine of the list, while the HT
context corresponds to the strategy that evaluates the spine and all
the elements of a list.

This correspondence allows us to generate strategies based
on the results of our strictness analysis. Because the projection
based approach gives us the ability to describe different levels of
demand on arbitrary data-types, we then get all of the corresponding
strategies to evaluate up to that demand, but no more.

One aspect of strategies that does not directly correspond a
context is choice between seq and par. Every context can be fully
described by both sequential and parallel strategies. One goal of
our work is to determine when it is appropriate to use parallelism
in a strategy. Every field of a constructor has the potential to be
evaluated in parallel. When a constructor has one field, it is not
usually beneficial to do so, but when the constructor has two or
more fields, it can be beneficial to evaluate some of the fields in
parallel. It is not clear, generally, which fields should be parallelised
and which should be evaluated in sequence. We currently rely on
heuristics but we believe that performing a path analysis would aid
in this task [14].

5. Iterative Compilation
We now have all of the building blocks for what we see as our
contribution. We believe there are several reasons why previous
work into implicit parallelism has not achieved the results that
researchers have hoped for. Chief amongst those reasons is that the
static placement of parallel annotations is not sufficient for creating
well-performing parallel programs.

Imagine that you were writing a parallel program. When writing
the source code you may study the structure and then decide where to
place par annotations. When the program is compiled and executed
you find that the performance was not satisfactory. Normally, one
would return to the source for the program and adjust the placement
of parallel annotations. This is the approach advocated by [15] and
[16]. However, many of the previous attempts at implicit parallelism
only analyse the program statically and do not adjust any parallel
annotations after runtime data is gathered. This would be equivalent
to a programmer never adjusting annotations after profiling the
program.

There is one significant exception to this. In 2007 Harris and
Singh published their results on a feedback directed implicit paral-
lelism compiler [7]. The results were mostly positive (in that most
benchmarks saw an improvement in performance) but were not
to the degree desired. Since this research was published we have
seen no other attempt in this line of research within the functional
programming community.

The work in [7] attempted to use runtime profile data to introduce
parallel annotations into the program based on heap allocations. In
short, when viewing the parallel execution of a program as a tree,
their method seeks to expand the tree based on previous executions
of the program. Our goal is to develop a system that begins with a
program that perhaps has too much parallelism and uses runtime data
to prune the execution tree. We have implemented a few mechanisms
to make this possible.

5.0.1 Logging:
The runtime system maintains records of the following global
statistics:

• Number of reduction cycles
• Number of sparks
• Number of blocked threads
• Number of active threads

These statistics are useful when measuring the overall perfor-
mance of a parallel program, but tells us very little about the useful-
ness of the threads themselves.

In order to ensure that the iterative feedback system is able to
determine the overall ‘health’ of a thread, it is important that we
collect some statistics pertaining to each individual thread. For this
reason we have used a similar system as that outlined in [16]. With
the following metrics being recorded for each thread:

• Number of reduction cycles
• Number of sparks
• Number of blocked threads
• Which threads have blocked the current thread

This allows us to reason about the productivity of the threads
themselves. An ideal thread will perform many reductions, block
very few other threads, and be blocked rarely. A ‘bad’ thread will
perform few reductions and be blocked for long periods of time.

5.0.2 Transformation:
In order for the iterative feedback to be able to change the paralleliza-
tion of a program, it must be able to determine which expressions
can be transformed. The method we have devised is based on the
idea that a specific par in the source program can be deactivated
and therefore no longer create parallel tasks, while maintaining the
semantics of the program. The method has two basic steps:

• par’s are identified via the G-Code instruction PushGlobal "par"
and each par is given a unique identifier.

• When a thread creates the heap object representing the call to
par the runtime system looks up the status of the par using its
unique identifier. If the par is ‘on’ execution follows as normal.
If the par is off the thread will ignore the G-Code instruction
Par.

5.0.3 Iteration:
Using the runtime profile data we can experiment with different
search methods. We can represent a program’s par switches as a bit
string with each par’s current setting stored in a bit.

One technique would be to ignore the runtime data altogether!
There are lots of algorithms used for searching for optimal configu-
rations of bit strings. In our case the fitness-function would simply
be the overall running time of the program when run with a specific
par setting.

However, while we feel that blind search techniques are worth
exploring, guided search is more likely to produce results quickly.
The first search heuristic could be very simple: After every execution,
turn off the par site whose threads have the lowest average reduction
count. Repeat this process until switching a par off increases the
overall runtime of the program.

Another possibility is to determine an overhead penalty for
sparking parallel threads. If the average reduction count for all
the threads from a par site is less than the overhead penalty, the par
is switched off. Other forms of penalties could also be introduced.
Blocking other threads, being blocked for extended periods of time,
creating too many parallel threads (or not enough) could all be
measures that incur a penalty.

6. Conclusions
We hope we have motivated the key design choices and ideas behind
our compiler: Utilising defunctionalisation in §2, and the use of
projections over other strictness analysis methods §3. And that
we have shown that there is a natural correspondence between
projections and strategies §4 that allows us to generate parallel
strategies from the results of our strictness analysis.

4 2014/9/25

6.1 Future Work
One area that we expect to explore is the use of other forms of spe-
cialisation. Defunctionalisation specialises higher-order functions
to first-order ones. Other possibilities include specialising polymor-
phic functions into their monomorphic versions and specialising
functions based on their call-depth.

The first of these allows for the possibility that a polymorphic
function that introduces parallelism may only provide a benefit when
applied to arguments of a certain type. The depth-specialisation
confronts the common granularity problem when writing recursive
algorithms that introduce parallelism. The top-level call of the
function may see huge benefits from its parallelism, but the lower
level calls may not be as worthwhile (the nfib function is a good
example of this, parallelising the recursive calls of nfib 25 may be
worthwhile, but not for nfib 2).

References
[1] P. Hudak, J. Hughes, S. Peyton Jones, and P. Wadler, “A History

of Haskell: Being Lazy with Class,” in Proceedings of the third
ACM SIGPLAN conference on History of programming languages,
ser. HOPL III. New York, NY, USA: ACM, 2007, pp. 12–1–12–55.
[Online]. Available: http://doi.acm.org/10.1145/1238844.1238856

[2] K. Hammond and G. Michelson, Research Directions in Parallel
Functional Programming. Springer-Verlag, 2000.

[3] G. Hogen, A. Kindler, and R. Loogen, “Automatic Parallelization of
Lazy Functional Programs,” in ESOP’92. Springer, 1992, pp. 254–
268.

[4] R. J. M. Hughes, “The Design and Implementation of Programming
Languages,” Ph.D. dissertation, Programming Research Group, Oxford
University, July 1983.

[5] S. L. Peyon Jones, “Parallel implementations of functional program-
ming languages,” Comput. J., vol. 32, no. 2, pp. 175–186, Apr. 1989.

[6] G. Tremblay and G. R. Gao, “The Impact of Laziness on Parallelism and
the Limits of Strictness Analysis,” in Proceedings High Performance
Functional Computing. Citeseer, 1995, pp. 119–k133.

[7] T. Harris and S. Singh, “Feedback Directed Implicit Parallelism,”
SIGPLAN Not., vol. 42, no. 9, pp. 251–264, Oct. 2007. [Online].
Available: http://doi.acm.org/10.1145/1291220.1291192

[8] R. Hinze, “Projection-based Strictness Analysis: Theoretical and Prac-
tical Aspects,” 1995, Inaugural Dissertation, University of Bonn.

[9] P. Wadler and R. J. M. Hughes, “Projections for Strictness Analysis,”
in Functional Programming Languages and Computer Architecture.
Springer, 1987, pp. 385–407.

[10] P. W. Trinder, K. Hammond, H.-W. Loidl, and S. L. Peyton Jones,
“Algorithm + Strategy = Parallelism,” J. Funct. Program.,
vol. 8, no. 1, pp. 23–60, Jan. 1998. [Online]. Available:
http://dx.doi.org/10.1017/S0956796897002967

[11] A. Mycroft, “The Theory and Practice of Transforming Call-by-Need
Into Call-by-Value,” in International symposium on programming.
Springer, 1980, pp. 269–281.

[12] P. Wadler, “Strictness Analysis on Non-Flat Domains,” in Abstract
interpretation of declarative languages. Ellis Horwood, 1987, pp.
266–275.

[13] S. Marlow, P. Maier, H. Loidl, M. Aswad, and P. Trinder, “Seq No
More: Better Strategies for Parallel Haskell,” in Proceedings of the
third ACM Haskell symposium on Haskell. ACM, 2010, pp. 91–102.

[14] A. Bloss, “Path Analysis and the Optimization of Nonstrict Functional
Languages,” ACM Transactions on Programming Languages and
Systems (TOPLAS), vol. 16, no. 3, pp. 328–369, 1994.

[15] D. Jones, Jr., S. Marlow, and S. Singh, “Parallel Performance Tuning
for Haskell,” in Proceedings of the 2Nd ACM SIGPLAN Symposium on
Haskell, ser. Haskell ’09. New York, NY, USA: ACM, 2009, pp. 81–92.
[Online]. Available: http://doi.acm.org/10.1145/1596638.1596649

[16] N. Charles and C. Runciman, “An Interactive Approach to Profiling
Parallel Functional Programs,” in Implementation of Functional Lan-
guages. Springer, 1999, pp. 20–37.

5 2014/9/25

Branch and Bound in a Data Parallel Setting
Extended Abstract

Sven-Bodo Scholz
Heriot-Watt University
S.Scholz@hw.ac.uk

Abstract
This paper investigates how branch and bound algorithms
can be implemented in a functional, data parallel setting. We
identify a general programming pattern for such algorithms
and we discuss compilation and runtime aspects when it
comes to mapping the programming pattern into parallel
code. We use the maximum clique problem in undirected
graphs as a running example and we present first experiences
in the context of SaC.

1. Introduction
Branch and bound algorithms (which, in the sequel, we will
refer to as BBAs) play an important role for many combi-
natorial search and optimisation problems. Typically these
problems are NP-complete and require, at least in principle,
the inspection of a search tree of exponential size. The key
idea of branch and bound algorithms is the identification of
certain bounds that allow pruning the search tree. That way,
the overall runtime in many real-world applications can be
brought down to a level where useful results are feasible de-
spite the NP-complete nature of the underlying problem.

Application areas for these algorithms are vast including
many areas that gain importance in the context of big data
such as bio-informatics, computational chemistry, or social
network analytics. The wide range of applications combined
with the desire to deal with ever increasing amounts of data
creates a demand for attempts to scale these applications to
many-core systems. However, the challenges of successfully
parallelising BBAs are many-fold. While a first cut seems
rather obvious, i.e., spawning several threads that investigate
separate branches of the search tree, achieving a parallel per-
formance that scales well is far from trivial: The search tree

[Copyright notice will appear here once ’preprint’ option is removed.]

typically is not well balanced, it may not even be statically
known. The effectiveness of the bounding process often de-
pends on knowledge gained by previous search space explo-
ration and it may differ depending on where in the search
space the exploration happens.

For many application areas, there exists a large body
of work which investigates the effectiveness of different
BBAs for individual problem instances. Often the perceived
best solutions depend not only on the executing hardware,
whether the algorithm is executed sequentially or in paral-
lel, but they also depend on the given data itself. Low-level
implementations of these algorithms are tedious, error-prone
and typically require a lot of fine-tuning to achieve reason-
able runtime performance.

This appears to be a setting where a declarative approach
might help, be it in the form of a DSL or in the form of
special language constructs. This paper presents our results
when looking at BBAs from a data parallel angle. While
a data-parallel approach may at first glance seem counter-
intuitive for this seemingly inherent task-parallel class of
algorithms, it turns out that nested reductions (folds) are a
very apt vehicle for formulating BBAs. They provide an easy
way to conveniently specifying the need for branching and,
at the same time, they enable a compilation into effectively
executable parallel code.

The main challenge, as in the manual case discussed
extensively in the literature, is an effective declaration of
the bounding needs. To our surprise, it turns out that very
few language mechanisms suffice to express the bounding
needs elegantly. We discuss what these mechanisms are and
we argue their versatility. Furthermore, we show that SaC
already provides suitable mechanisms. We use a classical
problem from graph theory as running example to present
and contrast several different specifications in SaC. This
allows us to obtain initial performance figures and to relate
these to the implementation features used.

Acknowledgments
This work was supported in part by grant EP/L00058X/1
from the UK Engineering and Physical Sciences Research
Council (EPSRC).

1 2014/9/8

– – DRAFT, extended abstract submitted to IFL 2014 – –

Stream Processing for Embedded
Domain Specific Languages

Markus Aronsson Emil Axelsson Mary Sheeran

Chalmers University of Technology

mararon@student.chalmers.se, emax@chalmers.se, ms@chalmers.se

Abstract

We present a library for expressing digital signal processing
(DSP) algorithms using a deeply embedded domain-specific
language (EDSL) in Haskell. The library supports definitions
in functional programming style, reducing the gap between
the mathematical description of streaming algorithms and
their implementation. The deep embedding makes it possi-
ble to generate efficient C code without any overhead as-
sociated with the high-level programming model. The sig-
nal processing library is intended to be an extension of the
Feldspar EDSL which, until now, has had a rather low-level
interface for dealing with synchronous streams. However, the
presented library is independent of the underlying expres-
sion language, and can be used to extend any pure EDSL
for which a C code generator exists with efficient stream
processing capabilities. The library is evaluated using ex-
ample implementations of common DSP algorithms and the
generated code is compared to its handwritten counterpart.

1. Introduction

In recent years, the amount of traffic passing through the
global communications infrastructure has been increasing at
a rapid pace. Worldwide, total Internet traffic is estimated
to grow at an average rate of 32% annually, reaching ap-
proximately eighty million terabytes per month by the end
of next year [16]. Mobile communications in particular have
been growing at a phenomenal rate, which can be largely
attributed to the rising popularity of mobile terminals.

For telecommunications infrastructure, the consequences
of such a rapid growth rate have been a dramatic increase
in the demand for network capacity and computational
power [1]. At the same time, telecom carriers are faced with
an increasing need to deliver new services faster, while si-
multaneously adapting the the recent diversification in avail-
able architecture. These factors, while positively influencing
the available computational power, have also significantly
increased the complexity of developing new solutions for
telecommunication systems.

[Copyright notice will appear here once ’preprint’ option is removed.]

Today, digital signal processing software is typically im-
plemented in low level C, which forces designers to focus
on low-level implementation details rather than the math-
ematical specification of the algorithms. Our group is de-
veloping an embedded domain-specific language (EDSL),
Feldspar [3], that aims to raise the abstraction level of signal
processing software by expressing algorithms as pure func-
tional programs.

However, signal processing is more than just pure com-
putations – it is also about how to connect those func-
tions in a network that operates on streaming data. A
suitable programming model for reactive systems that pro-
cess streams of data is synchronous dataflow (SDF) [19],
which offers natural, high-level descriptions of streaming al-
gorithms, while still permitting the generation of efficient
code. Feldspar does have a library for programming with
synchronous streams, but that library is quite low-level and
tedious to use.

This paper describes a library for extending an existing
Haskell EDSL with support for SDF. The underlying EDSL
is used to represent pure functions (which, of course, can be
arbitrarily complicated), and our library gives a means to
connect such functions using an SDF programming model.
If the underlying EDSL provides a C code generator with a
given interface, our library is capable of emitting C code for
SDF programs. We are interested in using Feldspar as the
expression language; however, the library is not dependent
on Feldspar, and so may be of interest to other EDSL
developers.

This paper makes the following contributions:

• We present a simple EDSL for synchronous dataflow
programming in Haskell. Practically, the result is a useful
addition to Feldspar.

• We make use of observable sharing [7] to achieve a deep
embedding without relying on combinators to express
sharing or cycles. This technique has long been used in
the hardware description EDSL Lava [6, 11], but our
work now permits the combination not just of simple
gates but of arbitrarily complex EDSL programs.

• We abstract away from the underlying expression lan-
guage by establishing an interface for the underlying ex-
pression compiler.

• We show how to generate C code from our library, and
evaluate the results on examples.

1.1 Synchronous dataflow programming

Dataflow programming is a paradigm which internally mod-
els an application as a directed graph [17, 21], similar to a

1 2014/9/9

dataflow diagram. Nodes in the graph are then executable
blocks, representing the different components of an appli-
cation: they receive input, apply some transformation, and
forward it to the other connected nodes. A dataflow appli-
cation is then, simply stated, a composition of such blocks,
with one or more source and sink blocks.

A later extension to dataflow programming is the intro-
duction of synchronous dataflow. SDF is a subset of pure
dataflow, in which the number of tokens produced or con-
sumed by nodes during each step of evaluation is known at
compile-time. Restricting the dataflow model in this way has
the advantage that it can be statically scheduled [18], which,
in turn, allows for generation of efficient code.

Lucid Synchrone [8, 20] is a member of the family of
synchronous languages and is designed to model reactive
systems. It was introduced as an extension of LUSTRE [13],
and demonstrated that the language could be extended with
new and powerful features. For instance, automatic clock
and type inference was introduced, and a restricted form
of higher-order functions was added. However, Lucid Syn-
chrone is a standalone language which cannot easily be in-
tegrated with EDSLs such as Feldspar. For this reason, we
chose to implement a library, partly inspired by Lucid Syn-
chrone, that brings an SDF programming model to existing
EDSLs, such as Feldspar.

2. Signal

This library is based on the concept of a signal, which repre-
sents an infinite sequence of values in some pure expression
language. Signals are constructed by the following interface:

map :: (exp a → exp b)

→ Signal exp a

→ Signal exp b

repeat :: exp a → Signal exp a

zip :: Signal exp a

→ Signal exp b

→ Signal exp (a, b)

fst :: Signal exp (a, b)

→ Signal exp a

where exp is the pure expression language. The map function
promotes a pure function to operate over signals; repeat

makes a constant-valued signal; zip and fst are used to make
nodes with multiple incoming or outgoing signals.

Sequential operations are supported through the follow-
ing functions, which manage a signal’s phase and frequency:

delay :: exp a

→ Signal exp a

→ Signal exp a

sample :: exp Int

→ Signal exp a

→ Signal exp a

While few in number, these sequential functions are quite
general and allow for arbitrary feedback networks to be
expressed.

The need to implement particular signal functions may
place demands on the underlying expression language, in

that support for common data types or functionality may be
required. For instance, in order to implement a signal version
of Haskell’s zipWith function, the expression language needs
to support tuples:

class TupExp exp

where

tup :: exp a → exp b → exp c

fst :: exp (a,b) → exp a

snd :: exp (a,b) → exp b

zipWith :: (TupExp exp , Signal exp ~ sig)

⇒ (exp a → exp b → exp c)

→ sig a → sig b → sig c

zipWith f s u = map (λp → f (fst p) (snd p))

$ zip s u

Classes such as TupExp provide a suitable interface with
the expression language, but without forcing a particular
language to be hardwired into the system.

2.1 Example: FIR Filter

Consider the mathematical definition of a finite impulse
response filter of rank N :

yn =

N∑
i=0

bi ∗ xn−i

This description is convenient for software realization, as it
can be deconstructed into three main components: a number
of successive unit delays, multiplication with coefficients
and a summation. We can represent the decomposed filter
graphically, as in Figure 1.

Figure 1. A direct form discrete-time FIR filter of order N

Support for such numerical operations over signals is
implemented by instantiating their corresponding classes in
Haskell:

instance (TupleExp exp , Num (exp a)) ⇒
Num (Signal exp a)

where

fromInteger = repeat . fromInteger

(+) = zipWith (+)

(-) = zipWith (-)

...

where similar instance declarations can be made for frac-
tional and floating point arithmetic.

Using Haskell’s standard classes in this way simplifies
the construction of signals by providing a homogeneous user
interface. Furthermore, as the pure Haskell code is separated
from our signal library in this way, it introduces a meta-
level of computation, helping us to reason about program

2 2014/9/9

correctness. The ability to use pure Haskell in this way
presents several benefits, as it improves the syntax and ease
of programming signals significantly. For instance, in order
to define complex networks, the user is only required to
be versed in Haskell’s standard library operators, thereby
further reducing the complexity of developing new networks.

Given this support for numerical operations, we now cre-
ate helper functions, modeling the three main components of
the FIR filter: summation and multiplication of signals and
successive delaying. Using Haskell’s standard library func-
tions, summation can be neatly expressed as a single fold
operation:

import qualified Prelude as P

sums :: (TupExp exp , Num (exp a))

⇒ [Signal exp a]

→ Signal exp a

sums = P.foldr1 (+)

Similarly, both of the remaining components can be ex-
pressed using standard Haskell functions:

muls :: (TupExp exp , Num (exp a))

⇒ [exp a]

→ [Signal exp a]

→ [Signal exp a]

muls = P.zipWith (λc s → repeat c * s)

delays :: [exp a]

→ Signal exp a

→ [Signal exp a]

delays as s = P.tail

$ P.scanl (P.flip delay) s as

The FIR filter can now be neatly expressed as:

fir :: (TupleExp exp , Num (exp Float))

⇒ [exp Float]

→ Signal exp Float

→ Signal exp Float

fir bs = sums . muls bs . delays ds

where

ds = P.replicate (P.length bs) 0

This description is close to the filter’s graphical represen-
tation, a beneficial attribute since domain experts in DSP
tend to be comfortable with composing sub-components in
this way.

2.2 Example: IIR Filter

Infinite impulse response (IIR) filters are digital filters with
an infinite impulse response and, unlike FIR filters, contain
feedback. These filters will therefore serve as an example of
how the signal library handles recursively defined signals,
that is, signals whose output depends on a combination of
previous input and output values.

The IIR filter is often described and implemented in
terms of a difference equation, which defines how the output
signal is related to the input signal:

yn =
1

a0

(
P∑

i=0

bi ∗ xn−j −
Q∑

j=1

aj ∗ yn−j

)

where P and Q are the feedforward and feedback filter
orders, respectively, and aj and bi are the filter coefficients.
We can represent the decomposed filter graphically, as in
Figure 2.

Figure 2. A direct form discrete-time IIR filter of order P
and Q

This description, besides the subtraction and division of
signals, is quite similar to the previous FIR filter when de-
constructed. This similarity seems to imply that they share
computational components. As it turns out, the previously
defined helper functions can indeed be reused to implement
the IIR filter as well:

iir :: (TupleExp exp

, Num (exp Float)

, Fractional (exp Float))

⇒ [exp Float]

→ [exp Float]

→ Signal exp Float

→ Signal exp Float

iir (a:as) bs s = repeat (1 / a) * (l - r)

where

l = sums $ muls bs $ delays (inits bs) s

r = sums $ muls as $ delays (inits as) r

inits = P.flip P.replicate 0 . P.length

where the rightmost summation, here called r, is defined in
terms of itself rather than the input signal. Recursive defi-
nitions like this are made possible by the lazy nature of the
delay operator. The general idea is that any recursion ex-
pressed using the signal library introduces feedback, while
recursion introduced by pure Haskell code produces repeti-
tive code instead.

3. Implementation

Signals are implemented on top of the following Stream data
type:

data Stream exp a =

Stream (Prog exp (Prog exp a))

The Prog exp monad is a deep embedding of an imperative
programming language that uses exp to represent pure ex-
pressions. In the above definition, the outer monad is used to
initialize the stream, and the inner action is used to retrieve
the next value of the stream. For example, the head func-
tion, which retrieves the first element of a stream is defined
as follows:

3 2014/9/9

head :: Stream exp a → Prog exp a

head (Stream init) = do

next ← init

next

The first line in the do block initializes the next action, and
the second line uses next to get the first element.

Our model of streams is essentially the same as in
Feldspar’s Stream library, except that the Prog exp monad
used here is a standalone monad that adds imperative pro-
gramming on top of any pure expression EDSL.

The problem with Stream is that is quite low-level and
cumbersome to program with. For example, in order to
define a filter that refers to previous values of some signal,
one has to manually create a mutable buffer and update
it on every iteration. Feldspar exports a few combinators
that hide the details of creating such networks, but these
combinators are rather ad hoc, and can only handle a few
predefined cases.

Our Signal type can be seen as a front end to Stream

that offers a much more convenient interface. In the end,
functions on signals are compiled to functions on streams,
as seen in the type of the compile function:

compile

:: (Typeable a, Typeable b)

⇒ (Signal exp a → Signal exp b)

→ IO (Stream exp a → Stream exp b)

The IO in the result type comes from the data-reify package
that performs observable sharing [10].

The basic way to create nodes in a signal network is by
lifting a stream function to a signal function:

lift :: (Stream exp a → Stream exp b)

→ Signal exp a

→ Signal exp b

We can, for example, use lift to define map from Section 2:

map f = lift (Stream.map f)

Lifting is however not enough to define generators, as those
are supposed to create signals from nothing. Another sig-
nal construct is therefore introduced, modeling the signals
identity morphism:

bot :: Signal exp a

which allows us to define repeat as:

repeat e = lift (const $ Stream.repeat e) bot

Here, Stream.map and Stream.repeat are the corresponding
functions defined for streams.

In this extended abstract, we will not show the definition
of Signal, lift and compile, but here is an outline of how it
all works:

• Signal is a tree type, whose nodes consist of lifted stream
functions, delay and sample. Observable sharing is used
to turn this tree into a DAG.

• The compiler assigns a mutable reference (supported
by the imperative Prog monad) for each node in the

graph and creates a program that executes all nodes in
sequence, reading and writing data to the corresponding
references.

• By analyzing the graph, certain references can be elimi-
nated, and chains of delay nodes can be turned into effi-
cient cyclic buffers.

While the stream type is kept abstract in signals, basing
them on the co-iterative approach [5] allows us to ensure
that no unused computations are performed. Co-iteration is
a concept for reasoning about infinite streams and allows one
to handle such streams in a strict manner. This strictness in
turn enables stream transformers to pick and remove parts
of streams as they please – ensuring that no unsued part of
a stream is ever computed. This property is kept for signals,
as lifted nodes are fused during compilation.

Furthermore, signals offer optimization for a common
concept in DSP: feedback networks. As the recursively de-
fined streams in feedback networks may reference a number
of previous values, memory efficient buffers are introduced
for storing the delayed values in these signals. These buffers
have memory proportional in size to the number of delays
and are used to minimize the number of read/write oper-
ations used during execution. Detecting such feedback in
signal networks is made possible by using observable shar-
ing [7], which allows us to reify signal networks into graphs
were the back-edges between nodes are visible.

4. Evaluation

In order to evaluate the signal library we will look at both
its expressiveness and the code it generates. As the actual
library is being finished at the time of writing, we delay
most of the evaluation until the final report and only in-
clude a comparison between the generated code of an ex-
ample and its hand-written counterpart. Note, too, that the
compiler has some notable limitations: it currently only han-
dles pure signal functions, that is, we can only compile types
of Signal exp a → Signal exp b. Also, while signals support
the notion of buffers, the compiler does not. The following
example will therefore not make use of circular arrays, but
will do so in the final version.

Disregarding the current state of our compiler, the pro-
duced code has room for several potential improvements.
Firstly, too many references are used during the compila-
tion process, which then spills into the compiled code and
produces a number of unused variables. There are also some
leftover pairs found in the produced code, remnants from
the zipping constructor. Both the numerous variables and
the pairs can however be optimized away, and should not
be present in the final report. There is also room for more
subtle improvements; for example, a dedicated initialization
function could remove the need for some if-statements. An-
other interesting improvement is to make use of C specific
memory management functions, such as memset or memcopy,
for cases when the data is neatly ordered – as it is in the
case of the FIR filter, for example.

For the actual comparison, we generated code from the
previous FIR filter and compared it to a hand-written ver-
sion. However, as the compiler only accepts signal functions,
we feed the FIR filter a one-element list of ones before com-
piling it – effectively making it a rank-1 FIR filter. This
produces the following code:

4 2014/9/9

typedef struct {

float first;

float second;

} pair;

int main()

{

FILE *v0;

v0 = fopen("test", "r");

FILE *v1;

v1 = fopen("test2", "w");

int i = 0;

while (i < 3)

{

float v3;

float v4;

fscanf(v0,"%f",v4);

float v5 = v4;

float v6;

pair v7;

float v8;

float v9;

bool v10 = true;

float v11 = v5;

bool v12;

if (v12 = v10)

{

v10 = false;

v8 = 0.0;

}

else

{

float v13 = v9;

v8 = v13;

}

v9 = v11;

float v14;

v14 = 1.0;

float v15 = v14;

float v16 = v8;

v7.first = v15;

v7.second = v16;

pair v17 = v7;

v6 = v17.first * v17.second;

float v18 = v6;

v3 = v18;

float v19 = v3;

fprintf(v1, "%f", v19);

i++;

}

return 0;

}

While the hand-written code is for a more general FIR filter,
where the number of coefficients hasn’t been fixed yet, the
comparison should however still be valid as the underlying
ideas have not changed.

double insamp[...];

void firInit(void)

{

memset(insamp , 0, sizeof(insamp));

}

void fir(double *coeffs ,

double *input , double *output ,

int length , int filterLength)

{

double acc; // accumulator for MACs

double *coeffp; // pointer to coefficients

double *inputp; // pointer to input samples

int n;

int k;

// put the new samples at the high

// end of the buffer

memcpy(&insamp[filterLength - 1], input ,

length * sizeof(double));

// apply the filter to each input sample

for (n = 0; n < length; n++) {

// calculate output n

coeffp = coeffs;

inputp = &insamp[filterLength - 1 + n];

acc = 0;

for (k = 0; k < filterLength; k++) {

acc += (* coeffp ++) * (* inputp --);

}

output[n] = acc;

}

// shift input samples back in time

// for next time

memmove(&insamp [0], &insamp[length],

(filterLength - 1) * sizeof(double));

}

While benchmarking would clearly be of interest here, we
delay it to the final paper.

5. Related Work

Lava is a family of simple hardware description languages
embedded in Haskell [6, 11]. What look like circuit descrip-
tions are actually circuit generators that are run to produce
internal representations, which can be used to produce fur-
ther useful artifacts such as netlists or formulas for use in
formal verification. Later versions of Lava have used observ-
able sharing to provide a more user-friendly approach to
capturing feedback in these circuit descriptions. There is a
close link between this approach to hardware description and
SDF languages like LUSTRE. One way to view the present
work is as a beefed up Lava in which the building blocks are
general data-processing functions rather than just Boolean
gates.

Lucid Synchrone is another functional language for SDF
and is hosted in OCaml, importing every ground type from
the host language and lifting them to corresponding stream
versions [8, 20]. Sequential operations over the imported
stream are also offered, similar to those from our signal li-
brary. Lucid Syncrhone incorporates several type systems

5 2014/9/9

(including clock inference) that guarantee safety properties
of the generated code. In addition, special syntax for defining
automata is provided. Our work is inspired by Lucid Syn-
crhone and we will investigate the inclusion of these features
in our signal library.

Functional reactive programming is another common
paradigm for modeling continuous signals, and its libraries
are typically implemented using Haskell’s arrow or ap-
plicative classes, see for example Yampa [9, 12], reactive-
banana [2] or Sodium [4]. Although we cannot support the
promotion of abstract functions required by these otherwise
attractive interfaces, we have still drawn inspiration from
the lifting functions of FRP.

The use of pure Haskell for modeling signals [22] has also
been investigated, demonstrating that functional program-
ming and lazy evaluation can directly model common signal
problems quite satisfactorily. Other related work includes
Atom [14], Ivory and Tower [15], but we delay the discus-
sion of these to the final paper.

6. Discussion

Functional programming encourages a style of programming
in which combinators or higher order functions capture
common patterns of computation. It is when we combine
SDF with a sufficiently general value type that the question
of how to design an appropriate set of combinators becomes
an interesting one. For instance, the ability to pass arrays,
or any similar data type, as values over signals means that
the programmer is concerned with processing chunks of
data rather than just individual values. This change of
perspective is necessary if we are to implement key functions
like FFT on signals. This generality does however come at
a cost, as ill-defined signals could be expressed and type-
checked due to a lack of constraints on sequential signals

The benefits of a general lifting constructor come into full
effect when the underlying expression language has powerful
features of its own. In the case of Feldspar, an expression
language which already supports a plethora of different
algorithms, several complex signal functions can often be
obtained by simply lifting the regular ones. For instance, as
Feldspar already contains an FFT algorithm over vectors, a
signal version can be obtained by simply lifting the existing
one.

The simplicity of the current signal library does mean
that some ill-defined signals can be expressed. Sequential
operations in particular are quite susceptible to grammatical
errors, as one can easily create signals with an undefined
behavior when using delay/sample. For instance, consider
the following function:

f :: Signal exp a → Signal exp a

f sig = sample 2 sig + sig

The clocks of these two streams are obviously not equal,
but there are at present no constraints in place to keep such
signals for being defined. Recursively defined signals suffer
from a similar problem: there is no constraint in place to
check whether the recursive signal has been delayed or not
before it is used. Signals with undefined initial values can
therefore be expressed by, for example, writing:

g :: Num (exp a) ⇒ Signal exp a

g = o where o = map (+1) o

Such ill-defined signals could however be identified during
the compilation process, by inspecting the signal’s reified
syntax tree.

Our plan is to develop this library futher, based on ideas
from Lucid Synchrone and FRP.

Acknowledgments

This research was funded by the Swedish Foundation for
Strategic Research (in the RAW FP project) and by the
Swedish Research Agency (Vetenskapsr̊adet).

References
[1] Cisco visual networking index: Forecast and methodology,

2012–2017, May 2013. URL http://www.cisco.com/c/
en/us/solutions/collateral/service-provider/ip-ngn-ip-next-
generation-network/white paper c11-481360.pdf.

[2] H. Apfelmus. Reactive-banana. Haskell library available at
http://www. haskell. org/haskellwiki/Reactive-banana, 2012.

[3] E. Axelsson, K. Claessen, G. Dev̀ai, Z. Horvat̀h, K. Keijzer,
B. Lyckeg̊ard, A. Persson, M. Sheeran, J. Svenningsson,
and A. Vajda. Feldspar: A domain specific language for
digital signal processing algorithms. In Formal Methods and
Models for Codesign (MEMOCODE), 2010 8th IEEE/ACM
International Conference on, pages 169–178, July 2010. .

[4] S. Blackheath. Sodium reactive programming (frp) sys-
tem, March 2014. URL https://hackage.haskell.org/package/
sodium.

[5] P. Caspi and M. Pouzet. A co-iterative characterization of
synchronous stream functions. Electronic Notes in Theo-
retical Computer Science, 11(0):1 – 21, 1998. ISSN 1571-
0661. . URL http://www.sciencedirect.com/science/article/
pii/S1571066104000507. {CMCS} ’98, First Workshop on
Coalgebraic Methods in Computer Science.

[6] K. Claessen. Embedded Languages for Describing and Ver-
ifying Hardware. PhD thesis, Chalmers University of Tech-
nology, 2001.

[7] K. Claessen and D. Sands. Observable sharing for functional
circuit description. In P. Thiagarajan and R. Yap, editors,
Advances in Computing Science — ASIAN’99, volume 1742
of Lecture Notes in Computer Science, pages 62–73. Springer
Berlin Heidelberg, 1999. ISBN 978-3-540-66856-5. . URL
http://dx.doi.org/10.1007/3-540-46674-6 7.

[8] J.-L. Colaço, A. Girault, G. Hamon, and M. Pouzet. To-
wards a higher-order synchronous data-flow language. In
Proceedings of the 4th ACM International Conference on
Embedded Software, EMSOFT ’04, pages 230–239, New York,
NY, USA, 2004. ACM. ISBN 1-58113-860-1. . URL
http://doi.acm.org/10.1145/1017753.1017792.

[9] A. Courtney, H. Nilsson, and J. Peterson. The yampa arcade.
In Proceedings of the 2003 ACM SIGPLAN Workshop on
Haskell, Haskell ’03, pages 7–18, New York, NY, USA, 2003.
ACM. ISBN 1-58113-758-3. . URL http://doi.acm.org/10.
1145/871895.871897.

[10] A. Gill. Type-safe observable sharing in haskell. In Pro-
ceedings of the 2Nd ACM SIGPLAN Symposium on Haskell,
Haskell ’09, pages 117–128, New York, NY, USA, 2009. ACM.
ISBN 978-1-60558-508-6. . URL http://doi.acm.org/10.1145/
1596638.1596653.

[11] A. Gill, T. Bull, G. Kimmell, E. Perrins, E. Komp, and
B. Werling. Introducing kansas lava. In M. Morazán and S.-
B. Scholz, editors, Implementation and Application of Func-
tional Languages, volume 6041 of Lecture Notes in Computer
Science, pages 18–35. Springer Berlin Heidelberg, 2010. ISBN
978-3-642-16477-4. . URL http://dx.doi.org/10.1007/978-3-
642-16478-1 2.

[12] G. Giorgidze and H. Nilsson. Switched-on yampa. In P. Hu-
dak and D. Warren, editors, Practical Aspects of Declarative

6 2014/9/9

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.pdf
https://hackage.haskell.org/package/sodium
https://hackage.haskell.org/package/sodium
http://www.sciencedirect.com/science/article/pii/S1571066104000507
http://www.sciencedirect.com/science/article/pii/S1571066104000507
http://dx.doi.org/10.1007/3-540-46674-6_7
http://doi.acm.org/10.1145/1017753.1017792
http://doi.acm.org/10.1145/871895.871897
http://doi.acm.org/10.1145/871895.871897
http://doi.acm.org/10.1145/1596638.1596653
http://doi.acm.org/10.1145/1596638.1596653
http://dx.doi.org/10.1007/978-3-642-16478-1_2
http://dx.doi.org/10.1007/978-3-642-16478-1_2

Languages, volume 4902 of Lecture Notes in Computer Sci-
ence, pages 282–298. Springer Berlin Heidelberg, 2008. ISBN
978-3-540-77441-9. . URL http://dx.doi.org/10.1007/978-3-
540-77442-6 19.

[13] N. Halbwachs. Synchronous programming of reactive sys-
tems. Number 215. Springer, 1992.

[14] T. Hawkins. Controlling hybrid vehicles with haskell. In
Proceedings of the 13th ACM SIGPLAN international con-
ference on Functional programming. ACM, 2008.

[15] P. C. Hickey, L. Pike, T. Elliott, J. Bielman, and J. Launch-
bury. Building embedded systems with embedded DSLs. In
Proceedings of the 19th ACM SIGPLAN international con-
ference on Functional programming, pages 3–9. ACM, 2014.

[16] ITU. Global itc development, 2001-2014, 2014. URL
http://www.itu.int/en/ITU-D/Statistics/Documents/
statistics/2014/stat page all charts 2014.xls.

[17] W. M. Johnston, J. R. P. Hanna, and R. J. Millar. Advances
in dataflow programming languages. ACM Comput. Surv.,
36(1):1–34, Mar. 2004. ISSN 0360-0300. . URL http:
//doi.acm.org/10.1145/1013208.1013209.

[18] E. Lee and D. Messerschmitt. Static scheduling of syn-
chronous data flow programs for digital signal processing.
Computers, IEEE Transactions on, C-36(1):24–35, Jan 1987.
ISSN 0018-9340. .

[19] E. Lee and D. Messerschmitt. Synchronous data flow. Pro-
ceedings of the IEEE, 75(9):1235–1245, Sept 1987. ISSN
0018-9219. .

[20] M. Pouzet. Lucid synchrone, version 3. Tutorial and refer-
ence manual. Université Paris-Sud, LRI, 2006.

[21] T. B. Sousa. Dataflow programming: Concept, languages
and applications. In Doctoral Symposium on Informatics
Engineering, 2012.

[22] H. Thielemann. Audio processing using Haskell. Zentrum
für Technomathematik, 2004.

7 2014/9/9

http://dx.doi.org/10.1007/978-3-540-77442-6_19
http://dx.doi.org/10.1007/978-3-540-77442-6_19
http://www.itu.int/en/ITU-D/Statistics/Documents/statistics/2014/stat_page_all_charts_2014.xls
http://www.itu.int/en/ITU-D/Statistics/Documents/statistics/2014/stat_page_all_charts_2014.xls
http://doi.acm.org/10.1145/1013208.1013209
http://doi.acm.org/10.1145/1013208.1013209

Extended Abstract Preprint for IFL 2014

Flipping Fold, Reformulating Reduction
An Exercise in Categorical Design

Gershom Bazerman
S&P/CapitalIQ

gershomb at gmail

1. Introduction
We begin this paper by considering the Haskell ‘Foldable‘ type-
class, a stalwart of the standard libraries. Unlike many other type-
classes, most famously Monad, Foldable itself has been equipped
with no required laws. This is rather surprising, as folds themselves
are some of the most well understood and studied aspects of func-
tional programming, and the universal properties of folds, in gen-
eral, are what we often use to prove laws. We will explore why it
is hard to give laws to Foldable on its own. From there we will de-
fine a naturally arising class, adjoint to Foldable, which we name
Buildable. In turn, we will explore how Foldable and Buildable
in conjunction, each individually lawless, nonetheless are mutually
constrained by an elegant set of laws arising from categorical prin-
ciples. We will then explore Buildable as an independently useful
class that allows us to compose systems of streaming and parallel
computation, and explore its relationship to a prior, similar formu-
lation. The aim of this paper is then threefold; to provide laws to
Foldable, to provide a new, useful class of Buildable types, and
along the way, to illustrate a way in which categorical thinking can
give rise to practical results.

2. Recalling Foldable
The ‘Data.Foldable‘ library, written by Ross Paterson, and part of
the standard libraries that ship with the Glasgow Haskell Compiler,
provides a Foldable typeclass. While it has many methods, all
methods can be derived by the user defining only one of foldr or
foldMap. So we consider the cleaner interface given below.

class Foldable t where
foldr ::

(a -> b -> b) -> b -> t a -> b Source
foldMap ::

Monoid m => (a -> m) -> t a -> m Source

In fact, there is a further function, not in the class, but included
in the file, which also provides a complete implementation of ‘fold-
able‘. We can consider its definition as follows:

toList :: Foldable t => t a -> [a]
toList t = foldr (:) [] t

[Copyright notice will appear here once ’preprint’ option is removed.]

Without much work, one can see how ‘foldr‘, ‘foldMap‘, and
‘build‘ are all interdefinable and hence equal in expressive power.
When one considers folds in general, one typically expects them
to universally characterize the meaning of a particular data struc-
ture in terms of all operations possible on it – in fact that is the
very definition of a proper fold. However, we can observe that the
‘foldr‘ given here in fact characterizes all operations possible on a
data structure when considered as a list. So the laws of folds them-
selves follow naturally from our usual constructions, and are given
directly. However, what it means to consider a data structure to a
list is left completely undefined. For example, we could equip all
type constructors of arity one with the Foldable instance who acts
as the empty list. This would violate user expectations, but not any
particular given typeclass law. Clearly something must be done.

3. Enter Buildable
If the laws of Foldable won’t come from the class itself, then
they must come from interaction with other classes. This is the
pattern we have seen elsewhere, recently where work by Jaske-
lioff, and later Bird and Gibbons has provided ‘Traversable‘ func-
tors with laws as given by their interrelationship with Applicative
actions.[6][1] Much earlier, of course, we had to define the rela-
tionship of ‘Eq‘ and ‘Ord‘ instances such that they agreed. Other
examples also abound.

What class shall we use to interact with ‘Foldable‘? A clue
is provided in the genuine definition of ‘toList‘, which in turn is
defined in terms of ‘build‘, imported from ‘GHC.Exts‘.

toList :: Foldable t => t a -> [a]
toList t = build (\ c n -> foldr c n t)

build ::
forall a.
(forall b. (a -> b -> b) -> b -> b)
-> [a]

build g = g (:) []

Why this indirection? Well, as the documentation tells us,
”GHC’s simplifier will transform an expression of the form ‘foldr k
z (build g)‘, which may arise after inlining, to ‘g k z‘, which avoids
producing an intermediate list.”. This is an instance of ”shortcut
fusion” as introduced by Gill, Launchbury, and Peyton Jones.[2]
Recent work by Hinze[?] has explored the relationship between
shortcut fusion and the categorical notion of an adjoint, which we
will come back to. In any case, in the special case of ‘foldr‘ and
‘build‘ on lists, we observe that they correspond to providing a full
isomorphism between lists and the partial application of the fold
function to lists, which is to say between lists seen ”initially” and
lists seen ”finally” as characterized by their universal property.

Extended Abstract Preprint for IFL 2014 1 2014/9/25

Just as as the ‘Foldable‘ typeclass simply wraps up ‘fold‘, we
now introduce a ‘Buildable‘ typeclass to wrap up ‘build‘. As all
Foldables can provide a ‘toList‘, we also provide a ‘fromList‘ to
help examine the behaviour of Buildables.

class Buildable f a where
build :: ((a -> f a -> f a) -> f a -> f a) -> f a
build g = g insert unit

singleton :: a -> f a
singleton x = build (\c n -> c x n)

unit :: f a
unit = build (\cons nil -> nil)

insert :: a -> f a -> f a
insert x xs = build (\cons nil -> x ‘cons‘ xs)

fromList :: Buildable f a => [a] -> f a
fromList xs = foldr insert unit xs

A minimal complete definition is given by ‘build‘, or by ‘insert‘
coupled with ‘unit‘. The ‘build‘ function can be seen as providing
the concrete constructors to a partially applied fold, and the ‘insert‘
and ‘unit‘ functions as just introducing the two constructors (the
binary and unary operations) explicitly.

There are a few design decisions here worth justifying. First, the
choice to use a multi-parameter typeclass, and second the choice
(only implicitly present here) not to require any sort of monoidal
behaviour, and instead a looser notion of “adjoint” laws. Both
decisions can be justified by examining a standard type that clearly
should be buildable, but nonetheless is not isomorphic to list –
‘Set‘. We can write a Buildable instance for ‘Set‘ like so:

instance Ord a => Buildable Set a where
unit = Set.empty
insert = Set.insert

Here the purpose of the extra type variable becomes clear –
while the ‘Ord‘ constraint is not necessary to “tear down” a set,
it certainly is necessary to build one up, and thus must be included
in our typeclass. While this costs us in terms of verbosity, at least it
introduces no loss in expressiveness.

Now we consider the behaviour of the interaction of fromList
and toList on ‘Set‘. Whatever laws we introduce must surely not
rule out such a basic instance. Clearly we expect ‘thereBack xs
:: toList . Set.fromList‘ to reorder our elements. Further-
more, we expect it to merge duplicate elements. However, we also
know that if we iterate ‘thereBack‘ repeatedly, it is idempotent. In
this case, ‘toList‘ is a retraction of ‘fromList‘, and the composi-
tion ‘fromList . toList‘ is a split idempotent. More generally, we
can consider the functorial nature of ‘Foldable‘ and ‘Buildable‘ to
produce a set of laws claiming that when both instances exist, they
should be adjoint.

4. Folds, Builds, and Adjunctions
The connection of adjointness to folds, unfolds and fusion laws has
been explored in the recent work of Ralf Hinze[4,5]. In general,
fusion laws are about moving to an “adjoint space” where compo-
sition is directly given, and then shifting back to the original space
to present the result. Although the movement between regular and
church-encoded lists given in fold/build fusion is an isomorphism,
in general there is no such restriction. Streams including ‘yield‘
are a bigger space than lists, etc. The purpose behind such adjunc-
tions is, loosely speaking, to allow us to capture “only what mat-
ters” about a computation. When “moving across” the two functors

which make up an adjoint, we are able to transport where the work
of functions occurs.

To examine how this plays out in the terrain of ‘Foldable‘ and
‘Buildable‘ we can translate a version of the adjoint laws to our
specialized usecase. In the ”hom-set adjunction” formulation, for
two categories C and D and two functors F : D → C and
G : C → D, we have the formula:

C(FX, Y) ∼= D(X,GY)

Take C to be some ‘Buildable‘ and ‘Foldable‘ functor f, and D
to be ‘List‘, and we arrive at the following Haskell claim: For
all functions ‘f : f a -> f b‘, there is a function ‘g : [a] ->
[b]‘ such that ‘f . fromList :: [a] -> f b‘ is isomorphic
to ‘toList . g :: [a] -> f b‘. That is to say, all functions
on ‘Foldables‘ can be translated to functions on ‘Buildables‘, and
vice versa, such that even if they do not actually coincide, when we
”move across” the types appropriately, they will.

When our ‘Buildable‘ and ‘Foldable‘ instances are lawful, we
can in fact write functions to witness this directly, if not efficiently.

f2g f = toList . f . fromList
g2f g = fromList . g . toList

And so we see that functions on lists may be seen as functions
on functors adjoint to list ”factored through” lists, and dually that
functions on functors adjoint to list may be viewed as actions on
lists ”factored” through the adjoint, and that such notions coincide.
In the specific case of ‘Set‘, this means that there is no function
on sets that cannot be written as a function on the list underlying
a set, and furthermore that there is no function yielding a list that
underlies a Set that cannot be transformed directly into a function
on sets.

5. Reducers as Buildables
Hinze and Jeuring introduced a predecessor class to ‘Foldable‘
named ‘Reduce‘.[5] However, it is in fact ‘Buildable‘ that really
provides the ”reduction” component directly – with ‘Foldable‘ de-
scribing the ”shape” of a reduction but ‘Buildable‘ providing the
actual target semantics of any given fold. ‘Foldable‘ describes how
to fold, but it is ‘Buildable‘ that fixes a fold to a concrete meaning.
In fact, ‘Buildable‘ provides a very close analog, though more the-
oretically motivated, to the ‘Monoidal Reducers‘ available in Ed-
ward Kmett’s reducers package.

The following code listing demonstrates the “basic” functional-
ity that all notions of reduction should share – the ability to define
multiple aggregations such as sum and count, and the ability to zip
them into one pass. Here the aggregations we define happen to be
in fact monoidal. But in general, no such restriction applies.

newtype Sum a = Sum {getSum :: a}
instance Num a => Monoid (Sum a) where

mempty = Sum 0
mappend (Sum x) (Sum y) = Sum (x + y)

newtype Count = Count Int deriving Show
instance Monoid Count where

mempty = Count 0
mappend (Count x) (Count y) = Count (x + y)

newtype Const m a = Const m

instance Num a => Buildable (Const (Sum a)) a where
unit = Const (Sum 0)
insert x (Const xs) = Const (Sum x ‘mappend‘ xs)

instance Buildable (Const Count) a where

Extended Abstract Preprint for IFL 2014 2 2014/9/25

unit = Const (Count 0)
insert x (Const xs) = Const (Count 1 ‘mappend‘ xs)

newtype Product f g a = Product (f a, g a)

instance (Buildable f a, Buildable g a) =>
Buildable (Product f g) a where

unit = Product (unit, unit)
insert x (Product (xs,ys)) =

Product (insert x xs, insert x ys)

The listing contains two items of particular interest. First, we
introduce a ‘Const‘ type to carry around explicit information about
what should be ”fed in” to a ‘Buildable‘, and more generally to
lift an aggregation into a functorial context. Second, we introduce
a traditional product of functors, and give it a ‘Buildable‘ instance
directly. By construction our builds only require one pass, and so
we can introduce concurrent reductions while operating in constant
space.

6. Composing Buildables Horizontally and
Vertically

7. Extensions and Transformations
8. Serial and Parallel Computation
9. Relating Builds to Traversals
10. Related Work
As discussed, the closest analogue to the work presented here is
Edward Kmett’s monoidal reducers package. The concrete differ-
ence is that rather than generalize over things of kind ‘* -> *‘,
Monoidal Reducers are equipped with two type parameters, each
of kind ‘*‘ – the things that reducers ”accept”, and the things that
reducers ”reduce to.” Furthermore, these reducers, as one would
infer from the name, are required to operate as a monoid does, i.e.
associatively. (Less importantly for our purposes, Monoidal Reduc-
ers, as one would not infer from the name, are in fact generalized
as to work over semigroups [i.e. they do not require an ”empty”
value equivalent to ‘unit‘ as presented here]). In the absence of any
other constraints, requiring associative structure is about the mini-
mal law one can require such a structure to hold. However, as have
seen, in the presence of an interaction with ‘Foldable‘, we can get
a looser but still sufficient notion of a lawful structure even without
requiring associativity – and in fact, there are very good reasons we
should not!

Rich Hickey also arrived at similar formulations to Kmett’s,
though in an untyped context, in the ‘reducers‘ library for Clojure.
The inspiration for both lines of work is owed to Guy Steele’s
2009 ICFP invited talk ”Organizing Functional Code for Parallel
Execution.”

11. Conclusion
Acknowledgments
References
[1] Bird, R., Gibbons, J., et al. Haskell 2013: 25-36

[2] Gill, A., Launchbury, J., and Peyton Jones, S. L. (1993) A short cut
to deforestation. Proceedings, Conference on Functional Languages and
Computer Architecture, 223-232.

[3] Hinze, R. Adjoint Folds and Unfolds. MPC 2010: 195-228

[4] Hinze, R. Type Fusion. AMAST 2010: 92-110

[5] Hinze, R. and Jeuring, J. Generic Haskell: Practice and theory.
Technical Report UU-CS-2003-15, Department of Computer Science,
Utrecht University, 2003.

[6] Jaskelioff, M., Rypacek, O. MSFP 2012: 40-49

Extended Abstract Preprint for IFL 2014 3 2014/9/25

Parametric lenses: change notification for bidirectional lenses

László Domoszlai
Radboud University Nijmegen, Netherlands, ICIS,

MBSD
dlacko@gmail.com

Bas Lijnse Rinus Plasmeijer
Radboud University Nijmegen, Netherlands, ICIS,

MBSD
b.lijnse@cs.ru.nl,rinus@cs.ru.nl

Abstract
In most complex applications it is inevitable to maintain dependen-
cies between the different subsystems based on some shared data.
The subsystems must be able to inform the dependent parties that
the shared information is changed. As every actual notification has
some communication cost, and every triggered task has associated
computation cost, it is crucial for the overall performance of the
application to reduce the number of notifications as much as pos-
sible. To achieve this, one must be able to define, with arbitrary
precision, which party is depending on which data. In this paper
we offer a general solution to this general problem. The solution
is based on an extension to bidirectional lenses, called parametric
lenses. With the help of parametric lenses one can define composi-
tional parametric views in a declarative way to access some shared
data. Parametric views, besides providing read/write access to the
shared data, also enable to observe changes of some parts, given by
an explicit parameter, the focus domain. The focus domain can be
specified as a type-based query language defined over one or more
resources using predefined combinators of parametric views.

1. Introduction
Complex applications commonly have to deal with shared data. It
is often confined to the use of a relational database coupled with
a simple concurrency control method, e.g., optimistic concurrency
control [2]. In other cases, when a more proactive behavior is re-
quired, polling or some ad hoc notification mechanism can be in-
voked. At the farther end of the range there are some very involved
applications (multi-user applications, workflow management sys-
tems, etc.), which are based on interdependent tasks connected by
shared data. In the most general case, one has to deal with com-
plex task dependencies defined by shared data coming from diverse
sources, e.g. different databases, shared memory, shared files, sen-
sors, etc.

As an example, consider the following case which is based on
a prototype we have developed for the Dutch Coastguard [3]; it
will be used throughout the paper to introduce the problem, and the
concepts of the proposed solution. We have a small database which
acts as a source of data of ships: name, cargo capacity, last known
position, etc. The positions of the ships are updated repeatedly as

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IFL ’14, October 1–3, 2014, Boston, Massachusetts, US.
Copyright c© 2014 ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

the ships move; ships have a transponder on board which send their
latest position on a regular basis. As a basic task, we simply want
to show the positions of the ships on a map, of which users are
allowed to select an area to view, the focus of their interest, the
focus domain. In this setting we can think of map instances and
update processes as interdependent tasks that are connected by the
data of ships they share. When the position of a ship is updated in
the database, the map instances, of which focus domain covers the
old or the new coordinates, must be refreshed.

From a theoretical perspective, it would be correct behavior to
notify every map instance on ship movement. However, this leads
to huge efficiency issues in practice. There are many thousands of
ships in the North Sea constantly moving around. Only those map
instances need to be refreshed on which area the position of a ship
is changed. As every actual notification has some communication
cost, and every triggered task has associated computation cost, it
is crucial for the overall performance of the application to reduce
the number of notifications as much as possible. Thus, we need a
notification system which, for efficiency reasons, is as accurate as
possible.

As the problem described above is a very common computa-
tional pattern, we would like to offer a general, reusable solution.
In addition, we would like to solve it efficiently enough to be com-
parable with the ad-hoc solutions.

From the computational perspective, focusing on a specific do-
main of the underlying data can be achieved by creating and work-
ing with one of its abstract views. Lenses [1] are commonly used
for creating abstract views. They can be used to support partial
reading and writing, for access restriction or to provide a specific
view of the data. Lenses enable to define bi-directional transforma-
tions. In a nutshell, a lens describes a function that maps the input
to an output (called get) and backwards (called put). The get func-
tion maps the input to some output, while the put function maps
the modified output, together with the original input, to a modified
input:

get ∈ X → Y
put ∈ Y ×X → X

In our example two kind of abstract views are needed for serving
different processes: one to show the ships located in a given area of
the map, and another one for the update process, which periodically
updates the coordinates of a ship in the database.

The general notification problem is as follows. Given is a set of
shared data sources of any type (A and B in the picture) holding a
set of data (DA, DB). There are also given some lenses defined on
top of the data sources and on each other. These are L1, L2, L3 and
L4 in the picture. One typical question can be, e.g., whether a given
update through L4 affects the L1 view or not? What about the other
way around?

Unfortunately, lens theory does not say anything about how to
discover when an update get issued through some lens may effect

the data seen through some other. In this paper we present a general
extension to lenses as a solution for this general problem. In this ex-
tension, called parametric lenses, lenses are partially defunctional-
ized to extract a first-order parameter (the focus domain: φ, ψ) that
groups a set of similar lenses into a single parametric lens in which
the parameter essentially encodes which part of the source domain
is mapped to the view domain by the lens. Parametric lenses also
return a predicate in the put direction. This predicate, called the
invalidation function, encodes some semantic information associ-
ated with the actual focus domain, and enables the engine to decide
which domains are affected by a change of data. It tells whether
the particular update of focus p ∈ φ affects a get operation of a
given focus q ∈ φ. With other words, it says whether the value of a
previous read of some focus q is still valid or not. It returns true to
indicate that the given focus must be re-read to be up to date.

getF ∈ φ×X → Yφ
putF ∈ φ× Yφ ×X → X × (φ×Bool)

In our example, the focus domain is a type which enables to
specify the area of the map one wants to focus on; the invalidation
function then would predicate whether two values of the focus
domain, two areas, overlap or not.

Pure parametric lenses cannot be applied to some shared data
directly, therefore they attached to the shared data through a non-
pure abstract interface called parametric view. The parametric
views are allowed to be composed using predefined combinators.
Using these combinators, one is able to specify the focus domain as
a type-based query language defined over one or more resources.
With the query language, one can focus on a specific part of the
underlying shared data during reading, writing, or it can be used
for notification purposes.

We offer the following contributions in the paper:

1. We introduce parametric lenses as a general extension to lenses
which enables to develop efficient notification libraries for
them;

2. Parametric lenses are embedded into compositional parametric
views which are defined over shared data;

3. The executable semantics, using Haskell [4], of the com-
binators and an underlying notification engine is provided
and explained. The complete Haskell implementation along
with the example developed in the paper can be found at
https://wiki.clean.cs.ru.nl/File:Pview.zip;

4. Parametric lenses have been introduced in the iTask coastguard
case study described above.

References
[1] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce,

and A. Schmitt. Combinators for bidirectional tree trans-
formations: A linguistic approach to the view-update problem.
ACM TPL, 29(3), May 2007. ISSN 0164-0925. . URL
http://doi.acm.org/10.1145/1232420.1232424.

[2] H. T. Kung and J. T. Robinson. On optimistic meth-
ods for concurrency control. ACM Trans. Database Syst.,
6(2):213–226, June 1981. ISSN 0362-5915. . URL
http://doi.acm.org/10.1145/319566.319567.

[3] B. Lijnse, J. Jansen, R. Nanne, and R. Plasmeijer. Capturing the
netherlands coast guard’s sar workflow with itasks. In D. Mendonca and
J. Dugdale, editors, Proceedings of the 8th International Conference on
Information Systems for Crisis Response and Management, ISCRAM
’11, Lisbon, Portugal, May 2011.

[4] S. L. Peyton Jones. The Implementation of Functional Program-
ming Languages (Prentice-Hall International Series in Computer Sci-
ence). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1987. ISBN
013453333X.

Making a Century in HERMIT

Extended Abstract

Neil Sculthorpe

Computer Science Department
Swansea University

{N.A.Sculthorpe}@swansea.ac.uk

Andrew Farmer Andrew Gill

Information and Telecommunication Technology Center
The University of Kansas

{afarmer,andygill}@ittc.ku.edu

Abstract

A benefit of pure functional programming is that it encourages
equational reasoning. However, the Haskell language currently
lacks direct tool support for such reasoning. Consequently, rea-
soning about Haskell programs is either performed manually, or in
another language that does provide tool support (e.g. Agda). HER-
MIT is a Haskell-specific toolkit designed to support equational
reasoning and user-guided program transformation, and to do so
as part of the GHC compilation pipeline. This extended abstract
presents a detailed case study of HERMIT usage in practice: mech-
anising Bird’s classic “Making a Century” pearl. We also use the
mechanised pearl to introduce recent HERMIT developments for
supporting for equational reasoning.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Applicative (functional) lan-
guages; F.3.1 [Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs—Mechanical verification

Keywords HERMIT, Equational Reasoning, Optimisation

1. Introduction

Currently, most equational reasoning on Haskell programs is per-
formed manually, using pen-and-paper or text editors, because
of the lack of up-to-date tool support. While some equational-
reasoning tools do exist for Haskell [14, 35], they either target
Haskell 98 or some subset thereof, and have not attempted to keep
pace with the (frequently advancing) GHC-extended version of
Haskell that is widely used in practice. They also work at the syn-
tactical level, without access to the results of the type inference
performed by the Haskell compiler. This is unfortunate, as pen-
and-paper reasoning is slow, error prone, and allows the reasoner
to neglect details of the semantics. For example, a common mis-
take is to neglect to consider partial and infinite values, which are
notoriously tricky [7]. This was recently demonstrated by Jeuring
et al. [18], who showed that the standard implementations of the
state monad do not satisfy the monad laws.

Copyright held by author(s). This is an unrefereed extended abstract, distributed for the

purpose of feedback toward submitting a complete paper on the same topic to IFL’14.

This work was performed while Neil Sculthorpe was at the University of Kansas.

An alternative approach is to transliterate a Haskell program
into a language or proof assistant that does provide support for
equational reasoning, such as Agda [22] or Coq [33]. The de-
sired transformations and proofs can then be performed in that lan-
guage, and the resultant program or property transliterated back
into Haskell. However, the semantics of these languages differ
from Haskell, sometimes in subtle ways, so the transformations and
proofs used may not carry over to Haskell. Again, partial and infi-
nite values are a particular concern.

To address this situation, we have implemented a GHC plugin
called HERMIT [9, 10, 29]. HERMIT is a toolkit that supports in-
teractive equational reasoning on Haskell programs, and the me-
chanical verification of proof scripts. HERMIT operates on GHC’s
internal core language, part-way through the compilation process.
User proofs of program properties are checked, and user-specified
transformations are applied to the program being compiled. By per-
forming proof checking during compilation, HERMIT ensures not
only that the proof is correct, but that it corresponds to the current
implementation of the program, in the context of the language ex-
tensions currently being used.

The initial HERMIT implementation [9] only supported equa-
tional reasoning that was transformational in nature; that is, HER-
MIT allowed the user to apply a sequence of correctness-preserving
transformations to the Haskell program, resulting in an equivalent
but (hopefully) more efficient program. This was sufficient to al-
low some specific instances of known program transformations to
be mechanised [29], as well as for encoding prototypes of new op-
timisation techniques [1, 11]. However, some of the transformation
steps used were only valid in certain contexts, and HERMIT had no
facility for checking the necessary preconditions. Thus these pre-
conditions had to verified by hand. Furthermore, it was not possible
to state and prove auxiliary lemmas, or to use inductive proof tech-
niques. This extended abstract describes the addition of these facil-
ities to HERMIT, and discusses our experiences of using them on a
case study. Specifically, the two main contributions of this extended
abstract are:

• We describe the new equational reasoning infrastructure pro-
vided by HERMIT, discussing the challanges that arose dur-
ing implementation, and the design choices we made for pro-
viding equational-reasoning support to Haskell programmers.
(Section 2).

• Using our new infrastructure, we present a case study of equa-
tional reasoning in HERMIT, by mechanising a chapter from
Pearls of Functional Algorithm Design [2], a recent textbook
about deriving Haskell programs by calculation (Section 3).

2. Equational Reasoning using HERMIT

HERMIT is a GHC plugin that allows a user to apply custom trans-
formations to a Haskell program amid GHC’s optimisation passes.
HERMIT operates on the program after it has been translated into
GHC Core, GHC’s internal intermediate language. GHC Core is

an implementation of System F�

C
, which is System F [16, 25] ex-

tended with let-binding, constructors, and first-class type equalities
[32]. Type checking is performed during the translation, and GHC
Core retains the typing information as annotations.

HERMIT provides commands for navigating a GHC Core ab-
stract syntax tree, applying transformations, version control, select-
ing different pretty printers, and invoking GHC analyses and opti-
misation passes. To direct and combine transformations, HERMIT
uses the strategic programming language KURE [30] to provide a
family of rewriting combinators. HERMIT offers three main inter-
faces:

• An interactive read-eval-print loop (REPL). This allows a user
to view and explore the program code, as well as to experiment
with transformations.

• HERMIT scripts. These are sequences of REPL commands,
which can either be loaded and run from within the REPL, or
automatically applied by GHC during compilation.

• A domain-specific language for transformation [30], embedded
in Haskell. This allows the user to construct a custom GHC plu-
gin using all of HERMIT’s capabilities. The user can run trans-
formations in different stages of GHC’s optimisation pipeline,
and add custom transformations to the REPL. New transforma-
tions can be encoded by defining Haskell functions directly on
the Haskell data type representing the GHC Core abstract syn-
tax, rather than using the more limited (but safer), monomor-
phically typed combinator language available to the REPL and
scripts.

This extended abstract describes HERMIT’s new equational
reasoning infrastructure, but will not otherwise discuss its imple-
mentation or existing commands. Interested readers should consult
the previous HERMIT publications [9, 29], or try out the HERMIT
toolkit [10] for themselves.

2.1 Stating and Proving Lemmas

As discussed in Section 1, the HERMIT toolkit initially only sup-
ported program transformation, and any equational reasoning had
to be structured as a sequence of transformation steps applied to the
original source program [e.g. 29]. This was limiting, as it is often
necessary to state and prove auxiliary lemmas, which can then be
used to validate the transformation steps.

To address this, we have added support for auxiliary lemmas in
HERMIT. As encoding a complete logic in HERMIT is a substan-
tial task, we have begun with the simplest form of lemma that al-
lows us to perform some interesting equational reasoning. A HER-
MIT lemma is (currently) an equality between two GHC Core ex-
pressions, which may contain universally quantified variables. For
example:

Map Fusion

∀ f g . map f ◦map g ≡ map (f ◦ g)

HERMIT maintains a set of lemmas, and records which have
been proven and which have not. Proven lemmas can be applied as
transformations (left-to-right or right-to-left), or used to validate
transformation steps that have preconditions. A user can prove
a lemma by providing a sequence of transformations on either
(or both) sides of the lemma. HERMIT then checks the proof
by comparing both sides of the transformed lemma using alpha

equality. This proof can either be performed interactively, or loaded
from a script.

Currently, we generate lemmas by exploiting GHC rewrite-rule
pragmas [23]. For example, the Map Fusion lemma above can be
expressed using the following RULES pragma:

{-# RULES “map-fusion”[∼]

∀ f g . map f ◦map g = map (f ◦ g)
#-}

HERMIT previously allowed any rewrite rule in scope to be
utilised directly as a unidirectional HERMIT transformation [9].
Any such rule can now also be converted into a HERMIT lemma,
and thence proved. A side-benefit of this is that a user can experi-
ment with applying GHC rewrite rules backwards, which was not
possible previously. Note that there are some restrictions on the
form of the left-hand-side of a GHC rewrite rule [23, Section 2.2],
so this approach can only generate a subset of all possible lemmas.

Rewrite rules that are not intended to be used by GHC’s opti-
miser can be annotated with the notation [∼], as we did for map-
fusion above. This causes GHC to consider the rule as always in-
active, and never attempt to use it for optimisation [12, Section
7.21.1]. In the long term, we aim to add a specific HERMIT pragma
to GHC, allowing HERMIT lemmas to be stated in the source file
yet be clearly distinguished from any rewrite rules. We could then
be more liberal with the lemmas that can be stated than the limita-
tions of GHC rewrite rules.

2.2 Structural Induction

Haskell programs usually contain recursive functions defined over
(co)inductive data types. Proving even simple properties of such
programs often requires the use of an induction principle. For
example, consider this standard definition of list concatenation:

(++) :: [a] → [a] → [a]
[] ++ ys = ys

(x : xs) ++ ys = x : (xs ++ ys)

While [] ++ xs ≡ xs can be proved simply by unfolding the
definition of ++, proving the similar property xs++[] ≡ xs requires
reasoning inductively about the structure of xs .

Inductive reasoning cannot be expressed as a sequence of trans-
formation steps: both the source and target expression must be
known in advance, and the validity of rewriting one to the other
is established by verifying the inductive and base cases. There are
several induction principles that are relevant to Haskell programs.
Thus far, we have encoded only one such principle in HERMIT:
structural induction. This is implemented as a built-in proof tech-
nique that can be used to prove a lemma. Structural induction has
been sufficient to prove all of the lemmas in our cases studies, but
we anticipate that we will need to add other forms of induction
when attempting more complex examples. The remainder of this
section will formalise the structural-induction inference rule that
HERMIT provides.

We first introduce some notation. Given a1, a2 :: A for any
type A, then let a1 ≡ a2 denote that a1 and a2 are semantically
equivalent. We write −→

vs to denote a sequence of variables, and
∀(C −→

vs ::A) to quantify over all constructors C of the data type A,
fully applied to a sequence −→

vs of length matching the arity of C .
Let C : A B denote that C is an expression context containing
one or more holes of type A, and having an overall type B . For any
expression a :: A, then CJaK denotes the context C with all holes
filled with the expression a .

The structural-induction inference rule provided by HERMIT
is defined in Figure 1. The conclusion of the rule is called the
induction hypothesis. Informally, the premises require that:

• the induction hypothesis holds for undefined values;

Given contexts C,D : A B , for any types A and B , then structural-induction provides the following inference rule:

CJ⊥K ≡ DJ⊥K ∀(C −→
vs :: A) . (∀(v ∈ −→

vs, v :: A) . CJvK ≡ DJvK) ⇒ (CJC −→
vsK ≡ DJC −→

vsK)

∀(a :: A) . CJaK ≡ DJaK
STRUCTURAL INDUCTION

Figure 1: Structural induction.

Given contexts C,D : [A] B , for any types A and B , then:

CJ⊥K ≡ DJ⊥K CJ[]K ≡ DJ[]K ∀(a :: A, as :: [A]) . (CJasK ≡ DJasK) ⇒ (CJa : asK ≡ DJa : asK)

∀(xs :: [A]) . CJxsK ≡ DJxsK
LIST INDUCTION

Figure 2: Structural induction on lists.

• the induction hypothesis holds for any fully applied constructor,
given that it holds for any argument of that constructor (of
matching type).

As a concrete example, specialising structural induction to the list
data type gives the inference rule in Figure 2.

This form of structural induction is somewhat limited in that
it only allows the induction hypothesis to be applied to a variable
one constructor deep. While this is sufficient for the case study we
describe in this extended abstract, it does not allow inductive proofs
over recursive types where the recursion is deeper in the data type.
The following type of rose trees is one such type, having a recursive
call that is two constructors deep:

data RoseTree a = Node a [RoseTree a]

As future work we need to generalise HERMIT’s structural induc-
tion principle to n constructors deep.

3. Case Study: Making a Century

To assess how well HERMIT supports general-purpose equational
reasoning, we decided to mechanise some existing textbook reason-
ing as a case study. We selected the chapter Making a Century from
the textbook Pearls of Functional Algorithm Design [2, Chapter
6]. The book is entirely dedicated to reasoning about Haskell pro-
grams, with each chapter calculating an efficient program from an
inefficient specification program. Additionally, many of the trans-
formation steps used have preconditions, and thus there are several
proof obligations along the way.

The program in Making a Century computes the list of all arith-
metic expressions formed from ascending digits, where juxtaposi-
tion, addition, and multiplication evaluate to 100. For example, one
possible solution is

100 = 12 + 34 + 5× 6 + 7 + 8 + 9

The details of the program are not overly important to the case
study, and we refer the interested reader to the textbook for de-
tails [2, Chapter 6]. What is important, is that the derivation of
an efficient program involves a substantial amount of equational
reasoning, and the use of a variety of proof techniques, including
fold/unfold transformation [4], structural induction (Section 2.2),
fold fusion [21], and numerous auxiliary lemmas.

We will not present the entire case study here. Instead, we will
give a representative extract, and then discuss the aspects of the
mechanisation that proved challenging. The complete case study is
available on the authors’ web pages.

3.1 HERMIT Scripts

Our approach to mechanisation was to first state any auxiliary lem-
mas as (inactive) rewrite rules in the Haskell source file (as dis-

cussed in Section 2.1). To verify these lemmas, we first worked
in HERMIT’s interactive mode until the proof was successful, and
then saved the final proof to a script that could be invoked there-
after. Finally, we developed the main transformation interactively,
invoking these auxiliary proof scripts as necessary. For this case
study the proofs were simply transliterations of the proofs in the
textbook, but we expect developing new proofs would proceed in
a similar manner, but with more experimentation and backtracking
during the interactive phases.

As an example, we present the proof of Lemma 6.8, comparing
the textbook proof with the HERMIT script. Figure 3a presents the
proof extracted verbatim from the textbook [2, Page 36], and Fig-
ure 3b presents the corresponding HERMIT script. Note that lines
beginning “--” in a HERMIT script are comments, and for readabil-
ity we have typeset them differently to the (monospace) HERMIT
code. These comments represent the current expression between
transformation steps, and correspond to the output of the HERMIT
REPL when performing the proof interactively. We manually added
these comments to the HERMIT proof scripts to help readability
and maintenance of the scripts.

When translating the textbook proof into HERMIT, we decided
to split the middle step into two steps, as we felt that made the
proof easier to read, but this is purely stylistic. Otherwise, the
main difference between the two calculations is that in HERMIT
we must specify where, and in which direction, to apply a lemma,
whereas in the textbook the lemma is merely named, relying on
the reader to be able to deduce how it was applied. Here, one-td
(once, traversing top-down) and any-td (anywhere, traversing top-
down) are strategy combinators from KURE [30], the strategic
programming language that underlies HERMIT.

In this proof, and most others in the case study, we think that
the HERMIT scripts are as clear, and not much more verbose,
than the textbook calculations. There is one notable exception
though, which involves manipulating terms containing adjacent
occurrences of the function composition operator.

3.2 Associative Operators

On paper, associative binary operators such as function composi-
tion are typically written without parentheses. However, in HER-
MIT, a term is represented as an abstract syntax tree, with no special
representation for associative operators. Terms that are equivalent
semantically because of associativity properties can thus be repre-
sented by different trees. Consequently, it is sometimes necessary
to perform a tedious restructuring of the abstract syntax tree before
a transformation can match the term.

One way to avoid this is to work with eta-expanded terms and
unfold all occurrences of function composition, as this always pro-
duces an abstract syntax tree consisting of a left-nested sequence of

unzip ·map (fork (f , g))

= {definition of unzip }

fork (map fst ,map snd) ·map (fork (f , g))

= {(6.6) and map (f · g) = map f ·map g }

fork (map (fst · fork (f , g)),map (snd · fork (f , g)))

= {(6.5) }

fork (map f ,map g)

(a) Textbook extract.

-- unzip ·map (fork (f , g))

one-td (unfold ’unzip)

-- fork (map fst ,map snd) ·map (fork (f , g))

forward (lemma "6.6")

-- fork (map fst ·map (fork (f , g)),map snd ·map (fork (f , g)))

any-td (forward (lemma "map-fusion"))

-- fork (map (fst · fork (f , g)),map (snd · fork (f , g)))

one-td (forward (lemma "6.5a"))

one-td (forward (lemma "6.5b"))

-- fork (map f ,map g)

(b) HERMIT script.

Figure 3: Comparison of HERMIT script with textbook calculations for Lemma 6.8 (fork (map f ,map g) ≡ unzip ◦map (fork (f , g))).

applications. However, we did not do so for this case study, as the
textbook proofs are written in a point-free style, and we wanted to
match those proofs as closely as possible.

More generally, rewriting terms containing associative (and
commutative) operators is a well-studied problem [e.g. 3, 8, 19],
and it remains as future work to provide better support for manipu-
lating such operators in HERMIT.

3.3 Proofs Omitted in the Textbook

During mechanisation we discovered that several auxiliary proper-
ties in the textbook (Lemmas 6.2, 6.3, 6.4, 6.5, 6.6, 6.7 and 6.10,
and several minor unnamed properties) are stated as assumptions
without proof. The lack of proofs is not commented on in the text-
book, but we suspect that they are deemed either “obvious” or
“uninteresting”, as is common practice with pen-and-paper proofs.
While performing reasoning beyond that presented in the textbook
was not intended to be part of the case study, we decided to inves-
tigate how easy it is to prove these auxiliary properties.

In most cases, these properties had fairly straightforward induc-
tive proofs, which were easy to encode in HERMIT. This mostly
consisted of inlining definitions and then simplifying the resultant
expressions as much as possible. Systematic proofs such as these
are ripe for mechanisation, and HERMIT provides several strate-
gies that perform a suite of basic simplifications to help with this.
Consequently, the proof scripts were short and concise.

Assumption 6.2 also had a simple proof, but it relied on arith-
metic properties of Haskell’s built-in Int type (specifically, that m
≡ n ⇒ m 6 n). HERMIT does not yet provide any support for
reasoning about built-in types, so we were not able to encode this
proof. This is a clear deficiency of HERMIT, and adding such sup-
port is important future work. We found that assumptions 6.3 and
6.4 were non-trivial properties, without (to us) obvious proofs.

Additionally, the simplification of the definition of expand is
stated in the textbook without presenting the transformation steps
[2, Page 40]. This simplification is non-trivial, and involves chang-
ing the type of an auxiliary function, and we did not find an easy
way to encode this in HERMIT.

3.4 Proof Techniques Unsupported by HERMIT

Two proof techniques are used in the textbook that HERMIT does
not directly support. The first is the fold fusion law [21]. Specialised
to lists, fold fusion gives the following inference rule:

f⊥ ≡ ⊥ f a ≡ b ∀x , y . f (g x y) ≡ h x (f y)

f ◦ foldr g a ≡ foldr h b

This cannot be expressed as a HERMIT lemma, as HERMIT (cur-
rently) only supports equality lemmas, not implications. We there-
fore encoded foldr-fusion as a new primitive transformation using
HERMIT’s transformation DSL. We were able to reuse a substan-
tial amount of existing HERMIT infrastructure to encode this rule,
and so the encoding of the rule was only 20 lines of Haskell code.
The plugin as a whole took another 30 lines of Haskell code, but
that involved reusable auxiliary functions and plugin infrastructure
that would be shared with any other user-added transformations.
While this approach is only recommended for experienced HER-
MIT users, we think this is a viable approach for encoding custom
transformations in HERMIT.

The second (unsupported) proof technique that the textbook
uses is to postulate the existence of an auxiliary function (expand),
use that function in the foldr-fusion rule, and then calculate a defini-
tion for that function starting from the foldr-fusion pre-conditions.
This style of reasoning is not supported by HERMIT, nor is there
an easy way to encode it. However, we were able to verify the cal-
culation by working in reverse: starting from the definition in the
textbook, we proceeded to prove the foldr-fusion pre-condition and
thus validate the use of fold-fusion.

3.5 Calculation Sizes

As demonstrated by Figure 3, the HERMIT proof scripts are
roughly the same size as the textbook calculations. It is difficult
to give a precise comparison, as the textbook uses both formal
calculation and natural language. We present some statistics in Ta-
ble 1, but we don’t recommend extrapolating anything from them
beyond a rough approximation of the scale of the proofs. We give
the size of the two main calculations (transforming solutions and
deriving expand), as well as the named auxiliary lemmas. In the
textbook we measure lines of natural language reasoning as well
lines of formal calculation, but not definitions, statement of lem-
mas, or surrounding discussion. In the HERMIT scripts, we mea-
sure the number of transformations applied, and the number of
navigation and strategy combinators used to direct the transfor-
mations to the desired location in the term. We do not measure
HERMIT commands for stating lemmas, loading files, switching
between transformation and proof mode, or similar, as we consider
these comparable to the surrounding discussion in the textbook.
To get a feel for the scale of the numbers given, we recommend
that the user compares Lemma 6.8 in Table 1 to the calculation in
Figure 3.

Calculation
Textbook HERMIT Commands

Lines Transformation Navigation Total

solutions 16 12 7 19
expand 19 18 20 38
Lemma 6.5 not given 4 4 8
Lemma 6.6 not given 2 1 3
Lemma 6.7 not given 2 0 2
Lemma 6.8 7 5 8 13
Lemma 6.9 1 4 4 8
Lemma 6.10 not given 23 13 36
Total 43 70 57 127

Table 1: Comparison of calculation sizes.

3.6 Summary

Our overall experience was that mechanising the textbook calcula-
tions was fairly straightforward, and it was pleasing that we could
translate most steps of the textbook reasoning into an equivalent
HERMIT command. The only annoyance was the need to manu-
ally apply associativity occasionally (see Section 3.2), so that the
structure of the term would match the transformation we were ap-
plying.

While having to specify where in a term each lemma must be
applied does result in more complicated proof scripts than in the
textbook, we don’t actually consider that to be more work. Rather,
we view a pen-and-paper proof that doesn’t specify the location
as passing on the work to the reader, who must determine for
herself where, and in which direction, the lemma is intended to
be applied. Furthermore, when desired, strategic combinators such
as any-td (apply the lemma anywhere it matches) can be used to
avoid specifying precisely which sub-term the lemma should be
applied to.

Encoding the foldr-fusion rule (Section 3.4) was a non-trivial
amount of work, but once encoded, it was a reusable transforma-
tion. Furthermore, in the future we plan to extend HERMIT’s rep-
resentation of lemmas with logical connectives. This would allow
rules such as foldr-fusion to be represented as lemmas rather than
as primitive transformations, which would greatly simplify encod-
ing them in HERMIT.

During the case study we also discovered one error in the text-
book. Specifically, the inferred type of the modify function [2, Page
39] does not match its usage in the program. We believe that its def-
inition should include a concatMap, which would correct the type
mismatch and give the program its intended semantics, so we have
modified the function accordingly in our source code. However, we
cannot claim this as detecting an error in a pen-and-paper proof, as
this was caught by GHC’s type checker, not by HERMIT.

4. Related Work

Equational reasoning is used both to prove properties of Haskell
programs and to validate the correctness of program transforma-
tions. Most equational reasoning about Haskell programs is per-
formed manually with pen-and-paper or text editors, of which there
are numerous examples in the literature [e.g. 2, 7, 13, 15]. Prior to
HERMIT there have been several tools for mechanical equational
reasoning on Haskell programs, including the Programming As-
sistant for Transforming Haskell (PATH) [35], the Ulm Transfor-
mation System (Ultra) [17], and the Haskell Equational Reasoning
Assistant (HERA) [14]. However, to our knowledge, none of these
tools is currently being maintained. Furthermore, these tools all op-
erate on Haskell source code (or some variant thereof), and do not
attempt to support GHC-extended Haskell.

Another similar tool is the Haskell Refactorer (HaRe) [20, 34],
which supports user-guided refactoring of Haskell programs. How-
ever, the objective of HaRe is slightly different, as refactoring is
concerned with program transformation, whereas HERMIT sup-
ports both transformation and proof. The original version of HaRe
targets Haskell 98 source code, but recently work has begun on a
re-implementation of HaRe that targets GHC-extended Haskell.

Other than equational reasoning, there have been two main ap-
proaches taken to verifying properties of Haskell programs: testing
and automated theorem proving. The most prominent testing tool is
QuickCheck [5], which automatically generates large quantities of
test cases in an attempt to find a counterexample. Other testing tools
include SmallCheck [27], which exhaustively generates test values
of increasing size so that it can find minimal counter examples, and
Lazy SmallCheck [24, 27], which also tests partial values. Jeuring
et al. [18] have recently developed infrastructure to support using
QuickCheck to test type class laws, as well as to test the individual
steps of user-provided equational-reasoning proofs of those laws.
Of course testing does not constitute a proof, but it is lightweight
and effective at finding counter-examples for false properties.

There are several tools that attempt to automatically prove prop-
erties of Haskell programs, by interfacing with an automated the-
orem prover and passing it (a translation of) the Haskell program
and the desired properties. These include Liquid Haskell [36], Zeno
[31] and the Haskell Inductive Prover (Hip) [26]. Properties in Liq-
uid Haskell are refinement types, which the user may add as type
annotations in the source file. Like HERMIT, Liquid Haskell and
Zeno operate on GHC Core, whereas Hip translates Haskell source
code directly into first-order logic. These tools can all support in-
ductive proofs, but a limitation of Hip is that it only attempts to
apply induction to user-specified conjectures, not to any intermedi-
ate lemmas that may be needed to complete the proof. HipSpec [6]
is a tool built on Hip that addresses this limitation by exhaustively
generating conjectures (up to a fixed term size) about the involved
functions. These conjectures are first passed to Hip to prove, and
any successes are then made available when attempting the main
proof. Thus the user need not state the exact properties to which
induction needs to be applied.

5. Future Work and Conclusions

While HERMIT has been used to successfully prototype GHC op-
timisations [1, 11], it is still very much an experimental tool, and
development is ongoing. The next step is to add different modes
to HERMIT that will limit the commands that are available. This
will include a “read-only” mode, a “safe” mode, and a “super-
user” mode. The read-only mode will allow navigation and alpha-
renaming, but prohibit any other modifications to the code. The
safe mode will only allow transformations that are known to be
semantics preserving, and thus any rewrite rules or unproven lem-
mas will be prohibited. The super-user mode will correspond to the
current capabilities of HERMIT, with no imposed limitations. We
also anticipate the need for additional modes, perhaps with more
fine-grained notions of safety. For example, a transformation that
could potentially transform a terminating program into a diverging
program should not be available in the safe mode, but a converse
transformation that may introduce termination might be acceptable.

Thus far, structural induction (Section 2.2) is HERMIT’s only
proof technique for reasoning directly about recursive definitions,
and it is limited to induction hypotheses that are one constructor
deep. Future work includes generalising this to n constructors deep,
and adding support for corecursive proof techniques [13].

We have successfully encoded some high-level transformation
techniques as primitive HERMIT transformations with precondi-
tions. The foldr-fusion rule in Section 3.4 is one example of this,
and the worker/wrapper transformation [15, 28] is another. In a

prior publication [29] we described encoding worker/wrapper in
HERMIT, but at the time HERMIT had no means of verifying
the preconditions, so they were not mechanically enforced. Us-
ing HERMIT’s new equational reasoning infrastructure described
in this extended abstract, we have updated the worker/wrapper en-
coding such that it checks a proof that the preconditions hold be-
fore performing the transformation. All of the preconditions for the
examples in that previous publication have now been verified by
HERMIT, and the proofs are bundled with the HERMIT package
[10]. However, encoding primitive transformations in HERMIT is
a non-trivial task for the user, so our long-term goal is to build up
a library of such high-level transformations, to complement HER-
MIT’s existing library of low-level transformations.

HERMIT continues to prove useful for developing compile-
time program transformation and reasoning capabilities that can
be used on real Haskell programs. By mechanising proofs dur-
ing compilation, HERMIT enforces the connection between the
source, proof, and compiled program. GHC plugins developed us-
ing HERMIT can be deployed with Haskell’s Cabal packaging sys-
tem, meaning they integrate with a developer’s normal work-flow.
HERMIT development is on-going, and we seek to target ever-
larger examples.

Acknowledgments

We would like the thank the Haskell Symposium reviewers for their
useful comments on an earlier version of this work. This material
is based upon work supported by the National Science Foundation
under Grant No. 1117569.

References

[1] M. D. Adams, A. Farmer, and J. P. Magalhães. Optimizing SYB is
easy! In Workshop on Partial Evaluation and Program Manipulation,
pages 71–82. ACM, 2014.

[2] R. Bird. Pearls of Functional Algorithm Design. Cambridge Univer-
sity Press, 2010.

[3] T. Braibant and D. Pous. Tactics for reasoning modulo AC in Coq. In
International Conference on Certified Programs and Proofs, volume
7086 of Lecture Notes in Computer Science, pages 167–182. Springer,
2011.

[4] R. M. Burstall and J. Darlington. A transformation system for devel-
oping recursive programs. Journal of the ACM, 24(1):44–67, 1977.

[5] K. Claessen and J. Hughes. QuickCheck: A lightweight tool for
random testing of Haskell programs. In International Conference on

Functional Programming, pages 268–279. ACM, 2000.

[6] K. Claessen, M. Johansson, D. Rosén, and N. Smallbone. HipSpec:
Automating inductive proofs of program properties. In Workshop on

Automated Theory eXploration 2012, volume 17 of Proceedings in

Computing, pages 16–25. EasyChair, 2013.

[7] N. A. Danielsson and P. Jansson. Chasing bottoms: A case study in
program verification in the presence of partial and infinite values. In
International Conference on Mathematics of Program Construction,
volume 3125 of Lecture Notes in Computer Science, pages 85–109.
Springer, 2004.

[8] N. Dershowitz, J. Hsiang, N. A. Josephson, and D. A. Plaisted.
Associative-commutative rewriting. In International Joint Conference

on Artificial Intelligence, volume 2, pages 940–944. Morgan Kauf-
mann, 1983.

[9] A. Farmer, A. Gill, E. Komp, and N. Sculthorpe. The HERMIT in
the machine: A plugin for the interactive transformation of GHC core
language programs. In Haskell Symposium, pages 1–12. ACM, 2012.

[10] A. Farmer, A. Gill, E. Komp, and N. Sculthorpe.
http://hackage.haskell.org/package/hermit, 2014.

[11] A. Farmer, C. Höner zu Siederdissen, and A. Gill. The HERMIT in the
stream: Fusing Stream Fusion’s concatMap. In Workshop on Partial

Evaluation and Program Manipulation, pages 97–108. ACM, 2014.

[12] GHC Team. The Glorious Glasgow Haskell Compila-

tion System User’s Guide, Version 7.8.2, 2014. URL
http://www.haskell.org/ghc/docs/7.8.2/.

[13] J. Gibbons and G. Hutton. Proof methods for corecursive programs.
Fundamenta Informaticae, 66(4):353–366, 2005.

[14] A. Gill. Introducing the Haskell equational reasoning assistant. In
Haskell Workshop, pages 108–109. ACM, 2006.

[15] A. Gill and G. Hutton. The worker/wrapper transformation. Journal

of Functional Programming, 19(2):227–251, 2009.

[16] J.-Y. Girard. Interprétation fonctionelle et élimination des coupures de

l’arithmétique d’ordre supérieur. PhD thesis, Université Paris Diderot,
1972.

[17] W. Guttmann, H. Partsch, W. Schulte, and T. Vullinghs. Tool support
for the interactive derivation of formally correct functional programs.
Journal of Universal Computer Science, 9(2):173–188, 2003.

[18] J. Jeuring, P. Jansson, and C. Amaral. Testing type class laws. In
Haskell Symposium, pages 49–60. ACM, 2012.

[19] H. Kirchner and P.-E. Moreau. Promoting rewriting to a program-
ming language: A compiler for non-deterministic rewrite programs
in associative-commutative theories. Journal of Functional Program-

ming, 11(2):207–251, 2001.

[20] H. Li, S. Thompson, and C. Reinke. The Haskell refactorer, HaRe,
and its API. In Workshop on Language Descriptions, Tools, and

Applications, volume 141 of Electronic Notes in Theoretical Computer

Science, pages 29–34. Elsevier, 2005.

[21] E. Meijer, M. M. Fokkinga, and R. Paterson. Functional programming
with bananas, lenses, envelopes and barbed wire. In Conference

on Functional Programming Languages and Computer Architecture,
volume 523 of Lecture Notes in Computer Science, pages 124–144.
Springer, 1991.

[22] S.-C. Mu, H.-S. Ko, and P. Jansson. Algebra of programming in
Agda: Dependent types for relational program derivation. Journal of

Functional Programming, 19(5):545–579, 2009.

[23] S. Peyton Jones, A. Tolmach, and T. Hoare. Playing by the rules:
Rewriting as a practical optimisation technique in GHC. In Haskell

Workshop, pages 203–233. ACM, 2001.

[24] J. S. Reich, M. Naylor, and C. Runciman. Advances in lazy small-
check. In 24th International Symposium on Implementation and Ap-

plication of Functional Languages, volume 8241 of Lecture Notes in

Computer Science, pages 53–70. Springer, 2013.

[25] J. C. Reynolds. Towards a theory of type structure. In Colloque sur

la Programmation, volume 19 of Lecture Notes in Computer Science,
pages 408–423. Springer, 1974.

[26] D. Rosén. Proving equational Haskell properties using automated
theorem provers. Master’s thesis, University of Gothenburg, 2012.

[27] C. Runciman, M. Naylor, and F. Lindblad. Smallcheck and Lazy
Smallcheck: Automatic exhaustive testing for small values. In Haskell

Symposium, pages 37–48. ACM, 2008.

[28] N. Sculthorpe and G. Hutton. Work it, wrap it, fix it, fold it. Journal

of Functional Programming, 24(1):113–127, 2014.

[29] N. Sculthorpe, A. Farmer, and A. Gill. The HERMIT in the tree:
Mechanizing program transformations in the GHC core language. In
24th International Symposium on Implementation and Application of

Functional Languages, volume 8241 of Lecture Notes in Computer

Science, pages 86–103. Springer, 2013.

[30] N. Sculthorpe, N. Frisby, and A. Gill. The Kansas University Rewrite
Engine: A Haskell-embedded strategic programming language with
custom closed universes. Journal of Functional Programming, 24(4):
434–473, 2014.

[31] W. Sonnex, S. Drossopoulou, and S. Eisenbach. Zeno: An automated
prover for properties of recursive data structures. In International

Conference on Tools and Algorithms for the Construction and Analysis

of Systems, volume 7214 of Lecture Notes in Computer Science, pages
407–421. Springer, 2012.

[32] M. Sulzmann, M. M. T. Chakravarty, S. Peyton Jones, and K. Don-
nelly. System F with type equality coercions. In 3rd Workshop on

http://hackage.haskell.org/package/hermit
http://www.haskell.org/ghc/docs/7.8.2/

Types in Language Design and Implementation, pages 53–66. ACM,
2007.

[33] J. Tesson, H. Hashimoto, Z. Hu, F. Loulergue, and M. Takeichi. Pro-
gram calculation in Coq. In Algebraic Methodology and Software

Technology, volume 6486 of Lecture Notes in Computer Science,
pages 163–179. Springer, 2011.

[34] S. Thompson and H. Li. Refactoring tools for functional languages.
Journal of Functional Programming, 23(3):293–350, 2013.

[35] M. Tullsen. PATH, A Program Transformation System for Haskell.
PhD thesis, Yale University, 2002.

[36] N. Vazou, P. M. Rondon, and R. Jhala. Abstract refinement types. In
22nd European Symposium on Programming, volume 7792 of Lecture

Notes in Computer Science, pages 209–228. Springer, 2013.

Dynamic resource adaptation for coordinating runtime systems
Extended Abstract

Stuart Gordon
Heriot-Watt University

sg315@hw.ac.uk

Sven-Bodo Scholz
Heriot-Watt University
S.Scholz@hw.ac.uk

Abstract
In this paper we propose a new approach towards negotiat-
ing resource distributions between several parallel applica-
tions running on a single multi-core machine. Typically, this
negotiation process is delegated to the operating system or
a common managed runtime layer. Alternatively, we have
formulated a modest extension for arbitrary runtime systems
that enables dynamic resource adaptations to be triggered
from the outside, i.e., through a separate coordination appli-
cation.

We demonstrate the effectiveness of the approach in the
context of SaC. The paper delineates the required exten-
sions of SaC’s runtime system and it discusses how the func-
tional setting substantially eases the process. Furthermore,
we demonstrate the effectiveness of our approach when it
comes to maximising the overall performance of several par-
allel applications that share a single multi-core system.

1. Introduction & motivation
As multi-core architectures have now become the norm, an
application must not only be able to perform well, it must
also have the ability to scale well over parallel architec-
tures and operate in harmony alongside other parallel ap-
plications. One might hope that such a negotiation of shared
resources can be delegated to the operating system as this
traditionally happens when several single-threaded applica-
tions share a machine. Although in principle this is possible,
the joint performance of several parallel applications on a
shared multi-core system typically is rather unsatisfactory.
This effect has various technical reasons; in the end these
boil down to the fact that the operating system has little if
any knowledge about the side conditions that exist in the

[Copyright notice will appear here once ’preprint’ option is removed.]

individual parallel applications: As soon as the parallel ap-
plications jointly request more resources than available this
over-subscription is resolved by the operating system with-
out taking possible interdependencies into account. To make
matters worse, different runtime systems typically have dif-
ferent interdependencies.

An ideal solution would be to express all parallelism as
a high-level abstraction open to all languages. Attractive in
principle, it has so far proven to be an elusive goal. This is
evident by the rapid onset of parallel language implemen-
tations and programming models, with no consensus as to
which is best. Expressing parallelism may require specific
domain, or application knowledge in order to be expressed in
an optimal form. Alternatively, language implementations,
such as Lithe (Pan et al. 2010), attempt to provide low-level
abstractions, with an emphasize efficient parallelism imple-
mented using a standard interface, to implement runtime sys-
tems. But however affective this maybe, it requires codes to
be heavily modified and reimplemented. A technique also
offered by Callisto (Harris et al. 2014), a resource manage-
ment layer for parallel runtimes, that relies on heavy adap-
tation in order to be implemented and used as a basis for all
runtime systems.

In this paper we propose a radically different approach.
Instead of coordinating low-level threads bottom up we pro-
pose to coordinate them top-down. The whole approach
builds on the idea that it suffices to enable runtime systems
to dynamically adapt the number of resources used in order
to avoid an over-subscription of resources. That way, the par-
allel applications can be executed almost entirely indepen-
dently guaranteeing efficient performance of each individual
application.

The contributions of this paper are as follows:

• We propose a generic programming interface to facilitate
the negotiation of shared resources.

• A web based application that serves as the user interface.
• We provide a detailed analysis of:

SaC’s extended runtime system, providing details of
the implementation, outlining the relevant benefits of
a functional setting.

1 2014/9/9

we demonstrate the effectiveness of our approach de-
tailing the the overall performance variations of sev-
eral parallel applications that share a single multi-core
system.

Acknowledgments
This work was supported in part by grant EP/L00058X/1
from the UK Engineering and Physical Sciences Research
Council (EPSRC).

References
T. Harris, M. Maas, and V. J. Marathe. Callisto: Co-

scheduling parallel runtime systems. In Proceedings of
the Ninth European Conference on Computer Systems,
EuroSys ’14, pages 24:1–24:14, New York, NY, USA,
2014. ACM. ISBN 978-1-4503-2704-6. . URL
http://doi.acm.org/10.1145/2592798.2592807.

H. Pan, B. Hindman, and K. Asanović. Composing parallel
software efficiently with lithe. In Proceedings of the 2010
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI ’10, pages 376–387, New York,
NY, USA, 2010. ACM. ISBN 978-1-4503-0019-3. . URL
http://doi.acm.org/10.1145/1806596.1806639.

2 2014/9/9

Editing Functional Programs Without Breaking Them

Edward Amsden Ryan Newton Jeremy Siek
Indiana University

{eamsden,rrnewton,jsiek}@indiana.edu

Abstract
We present a set of editing actions on terms in the simply-typed
lambda calculus. These actions preserve the well-typedness of
terms, and allow the derivation of any well-typed term beginning
with any other well-typed term, without resorting to metavariables
or other forms of placeholders. We are in the process of proving
these properties, and we discuss how general-purpose program-
ming might proceed given this set of editing actions.

Categories and Subject Descriptors CR-number [subcategory]:
third-level

General Terms term1, term2

Keywords keyword1, keyword2

1. Introduction
Modern typed functional programming languages such as Haskell [11],
OCaml [7], SML [13], Idris [2], and Agda [14] offer programmers
extremely powerful and flexible type systems to ensure the cor-
rectness of their code. However, type systems are useful for far
more than checking programs as programmers have already writ-
ten them. In particular, a type system can be used to guide a term
editor such that ill-typed terms are never produced in the first place.

Text editing and submission of the program to a compiler or
interpreter for error checking and evaluation is the venerable and
proven means of creating and maintaining programs. However, this
paradigm has several disadvantages.

• It does not directly integrate semantic knowledge of program
components (such as scope and types) into the editing system,
requiring local parsing or linking with the language implemen-
tation to derive this information from the program text.
• It requires the programmer to reason about the well-typedness

of programs either manually, or by trial-and-error by submitting
them to a typechecker.
• It is unsuitable for more restrictive human-computer interaction

platforms, such as touch-based mobile platforms, game con-
soles, and accessible interfaces.
• Most importantly, text editing actions do not relate directly to

meaningful operations on programs. Insertion or deletion of

[Copyright notice will appear here once ’preprint’ option is removed.]

text will often make a program syntactically invalid. It is likely
to introduce scoping errors. It will almost certainly make the
program ill-typed.

Languages such as Scratch [10], Kodu [9], and YinYang [12] are
first steps toward addressing these issues, but do not offer a clear
path toward leveraging the vast body of accomplished and ongoing
research in programming languages. We propose instead to take a
well-understood language, the lambda calculus, and show how to
edit its terms directly.

In particular, we intend to use types to guide the editing opera-
tions on terms. Rather than entering programs as text, programmers
will have at their disposal a set of actions for modifying, combining,
and uncombining complete and well-typed lambda calculus terms.
These actions are sufficient to arrive at any well-typed term from
any other well-typed term, guarantee the well-typedness of derived
terms, and do not require placeholders such as metavariables [14].

For this presentation, we consider the simply-typed lambda
calculus. We expect this approach to generalize to polymorphic and
dependently-typed calculi. We point out particular and interesting
ways in which the application of this approach to more powerful
type systems will differ from that presented here.

We make the following contributions:

• We describe a set of actions which allow programmers to con-
struct and deconstruct terms in the simply-typed lambda calcu-
lus (Sections 2 and 3).

These actions operate only on lambda calculus terms. There
are no holes or other placeholders.

• We sketch a proof that this set of actions is sound. That is,
beginning with well-typed terms, only well-typed terms may
be derived using these actions (Section 4.1).
• We sketch a proof that this set of actions is complete. That

is, any well-typed term may be constructed via these actions,
starting with any other well-typed term (Section 4.2).
• We describe how these actions support various general ap-

proaches to programming, specifically “top-down” program-
ming (where the programmer begins building the top-level pro-
gram, binding components for later construction) and “bottom-
up” programming (where the programmer begins constructing
small components and composes them into the top-level pro-
gram) (Section 5).

2. Terms, Types and Paths
For this presentation, we consider terms (and associated types) in
the simply-typed lambda calculus. We assume that terms and types
in the simply-typed lambda calculus are familiar to our readers.
However, we include them in our presentation for reference while
reading our formulations of paths and actions and our proofs of
“soundness” and “completeness” for our editing system. We use
De Bruijn indices for this presentation, as this avoids issues of

1 2014/9/25

Variables(x) ::= N
Types(t) ::= unit | t→ t
Terms(e) ::= x | λ : t.e | e e | •
Paths(p) ::= top | p lamty | p lambod

| p apprator | p apprand
| p typein | p typeout

Environments(Γ) ::= ε | Γ; t

Figure 1. Grammars for terms, types, and paths.

Γ ` e : t

UNITTY
Γ ` • : unit

VARIABLESUCCTY
Γ ` x : t

Γ; text ` x+ 1 : t

VARIABLEZEROTY
Γ; t ` 0 : t

LAMTY
Γ; tin ` e : tout

Γ ` λ : tin.e : tin → tout

APPTY
Γ ` erator : tin → tout Γ ` erand : tin

Γ ` erator erand : tout

Figure 2. Typing rules for the Simply-Typed Lambda Calculus

naming in the consideration of actions on terms. The typing rules
are given in Figure 2 as we refer to them for proofs of soundness
and completeness of the editing actions later in the paper.

In order to designate which part, or subterm, of a term we wish
to operate on, we define a notion of paths into terms. Paths are
simply sequences which recursively describe which subterm of a
particular term to pick out. The grammars for terms, types, and
paths appear in Figure 1.

2.1 Variables
We require a few operations on variables and variables in terms in
support of the definitions of our editing actions. In particular, we
will need to compare variables to see if the scope of one variable
is within the scope another. We will also need to adjust variables
in order to maintain their binding structure as we add and remove
bindings. This is done with the ↑c (e) and ↓c (e) operations.
These operations are given in Figure 3. The presentation is due to
Pierce [16, p. 79] with a few modifications.

The shift operation ↑dc (e) given by Pierce is parameterized over
the offset d as well as the cutoff c. We will only want to shift by an
offset of 1, so d is fixed at 1 and we write ↑c (e), or simply ↑ (e)
for the case where c = 0.

We introduce an unshift operation ↓c (e). This is a partial
function, which is undefined exactly on variables matching the
cutoff. Judgements with this function in their premises do not hold
in cases where it is undefined. We write ↓ (e) for the case where
c = 1. ↓ (e) is thus undefined on variables which would be bound
to the nearest binder surrounding e. Since unshifting is used when
replacing a binding which has no bound occurrences with the body
of the binding, this is the expected behavior.

2.2 Paths
Paths are intended to mark the part of a term which is under consid-
eration for a particular action. For the purpose of our presentation,
we consider paths as separate entities from terms. Paths are de-
scribed as sequences of atoms, each of which describes a choice of
subterm. There are several relations on paths and terms employed

↑c (x) =

{
x x < c
x+ 1 x ≥ c

↑c (λ : t.e) = λ : t. ↑c+1 (e)
↑c (e1 e2) =↑c (e1) ↑c (e2)
↑ (e) =↑0 (e)

↓c (x) =

{
x x < c− 1
x− 1 x ≥ c

↓c (λ : t.e) = λ : t. ↓c+1 (e)
↓c (e1 e2) =↓c (e1) ↓c (e2)
↓ (e) =↓1 (e)

Figure 3. Shifting (↑) and unshifting (↓) of De Bruijn indices.
Adapted from the presentation by Pierce [16, p. 79].

in the definitions of the editing actions. These relations are defined
in Figure 4.

The relation p(e) extracts the subterm (expression or type) of
e to which the path p points. Extraction of subterms is used to
determine their type, as well to use them when constructing new
terms by λ-abstraction or application.

The relation γ(p, e) gives the typing environment at the subterm
of e to which the path p points. This relation is used to determine
what bindings are in scope at a particular point in support of
the variable replacement operation. It is also used by the c(p, e)
operation when determining what types are valid at a path. Finally,
it is employed in the definitions of editing actions to check that new
terms do in fact meet their typing constraints.

The relation c(p, e) gives the set of types which the subterm of
e to which the path p points may match. This relation allows the
definitions of editing actions to ensure that they do not make the
term surrounding the subterm on which they operate ill-typed by
changing the type of that subterm. For instance, if e1 is applied to
e2, then λ-abstracting e2 will yield a well-typed term derived from
e2, but the application will no longer be well-typed in the STLC.

The relation efull[esub/p] or efull[t/p] gives a new term in
which esub or t is substituted for the subterm of efull to which p
points. This relation is used to define the operation of actions on
subterms. In general, the p(e) relation is used to extract a subterm,
the subterm is suitably modified, and the modified term put back in
its place by the efull[esub/p] relation.

The relation appable(p) asserts that a path is suitable for con-
structing an application with. This is used to ensure that the appli-
cation operation is not employed in subterms of applications. Were
this allowed, it is not clear which of several possible outcomes of
this operation would be the correct one. Further, disallowing this
does not affect the soundness or completeness of the editing oper-
ations. However, allowing application under applications is almost
certain to be a desirable feature in the implementation, so future
work will describe a resolution of this ambiguity and lift the re-
striction on application operations under applications.

3. Editing Actions
The core of our contributions is a set of editing actions, which
describe how to combine and manipulate lambda calculus terms
in a way that maintains well-typedness. These actions are shown in
Figure 5.

Not all actions are available at all paths into a subterm. Actions
will usually change the type of a subterm, and may not do so in a
way that would make the containing term ill-typed. This may seem
an onerous restriction. However, we are able to show that any well-
typed term may be reached from any other well-typed term using
our restriction. Further, the mechanism of constraints which we use
to judge whether a type-change will make the containing term ill-

2 2014/9/25

p(e) = esub

TOPPATH
top(e) = e

LAMTYPATH
p(e) = λ : tty.ebod

p lamty(e) = tty

LAMBODPATH
p(e) = λ : tty.ebod

p lambod(e) = ebod

APPRATORPATH
p(e) = erator erand

p apprator(e) = erator

APPRANDPATH
p(e) = erator erand

p apprand(e) = erand

TYPEINPATH
p(e) = tin → tout

p typein(e) = tin

TYPEOUTPATH
p(e) = tin → tout

p typeout(e) = tout

γ(p, e) = Γ

TOPPATHCTX
γ(top, e) = ε

LAMBODPATHCTX
γ(p, e) = Γ p(e) = λ : t.ebod

γ(p lambod, e) = Γ; t

APPRATORPATHCTX
γ(p, e) = Γ p(e) = erator erand

γ(p apprator, e) = Γ

APPRANDPATHCTX
γ(p, e) = Γ p(e) = erator erand

γ(p apprand, e) = Γ

c(p, e) = C

TOPPATHTYPES
c(top, e) = L(t)

LAMTYPATHTYPES
c(p, e) = C γ(p, e) = Γp(e) = λ : t.ebod

c(p lamty, e) = {tin|Γ; tin ` ebod : tout ∧ tin → tout ∈ C}

LAMBODPATHTYPES
c(p, e) = C p(e) = λ : tin.ebod

c(p lambod, e) = {tout|tin → tout ∈ C}

APPRATORPATHTYPES
c(p, e) = C p(e) = erator erand γ(p, e) = Γ Γ ` erand : tin

c(p apprator, e) = {tin → tout|tout ∈ C}

APPRANDPATHTYPES
c(p, e) = C p(e) = erator erand γ(p, e) = Γ Γ ` erator : tin → tout

c(p apprand, e) = {tin}

TYPEINPATHTYPES
c(p, e) = C p(e) = tin → tout

c(p typein, e) = {t|t→ tout ∈ C}

TYPEOUTPATHTYPES
c(p, e) = C p(e) = tin → tout

c(p typeout, e) = {t|tin → t ∈ C}

efull[esub/p] = enew

TOPPATHSUB
efull[esub/top] = esub

LAMTYPATHSUB
p(efull) = λ : t.e efull[λ : tsub.e/p] = enew

efull[tsub/p lamty] = enew

LAMBODPATHSUB
p(efull) = λ : t.e efull[λ : t.esub/p] = enew

efull[esub/p lambod] = enew

APPRATORPATHSUB
p(efull) = erator erand efull[esub erand/p] = enew

efull[esub/p apprator] = enew

APPRANDPATHSUB
p(efull) = erator erand efull[erator esub/p] = enew

efull[esub/p apprand] = enew

TYPEINPATHSUB
p(efull) = tin → tout efull[tsub → tout/p] = enew

efull[tsub/p typein] = enew

TYPEOUTPATHSUB
p(efull) = tin → tout efull[tin → tsub/p] = enew

efull[tsub/p typeout] = enew

appable(p)

TOPPATHAPPABLE
appable(top)

LAMBODAPPABLE
appable(p)

appable(p lambod)

Figure 4. Definitions of path relations. L(t) denotes the language of the nonterminal t.

3 2014/9/25

Actions(a) ::=
Usage Action Denoted By

Construction

λ-abstract λ
→-abstract →
Replace p(e) with x replacex
Replace p(e) with • replace•
Apply apply

Destruction Delete binding unbind
Unapply unapply

Movement

Type of a lambda lamty
Body of a lambda lambod
Operator of an app apprator
Operand of an app apprand
Input of a type arrow tyin
Output of a type arrow tyout
Up up

Action Sequences(s) ::= ε | s a(p, e) | s a(p, e, e)

Figure 5. Editing Actions

typed will also allow us to describe exactly how circumscribed the
set of actions is for any term, and see how these boundaries will
be extended when our editing theory is extended to polymorphic
calculi.

The language of actions is given by the non-terminal a. Editor
states E are subsets of L(p) × L(e)1. To define an action, we give
a rule for one of three relations: a(p, e) E , a(p, e1, e2) E ,
or a(p1, e1)

!
 (p2, e2). The non-terminal s describes sequences

of actions. The relation s(E1)
∗
 E2 defines how a sequence of

actions takes one editor state to another, in terms of the relations
on individual actions. The definitions of these relations are given in
Figure 6.

The λ-abstract action wraps a λ binding around the subterm
of e at path p. This does not affect which binders the variables of
the subterm reference, since the action shifts the variable indices
of variables which are free in the subterm. Thus, in the new λ-
abstracted subterm, there are no variable occurrences bound by the
new binding.

The→-abstract action replaces the type t at path p by the type
unit→ t. This is how types for bindings are built up.

The replacement action replaces the subterm at path p with a
variable x which is in scope at that path, or with the unit term •.
This is how elements of base types and references to bindings are
introduced after the bindings are introduced by λ-abstraction.

The apply action takes the subterms of e1 and e2 pointed to
by the path p, and constructs their application under the same
sequence of binders. It cannot be applied when p goes into an
application, as discussed in the description of the appable(p)
relation in Section 2.

The delete binding action replaces a λ-bound subterm with the
body of the binding, assuming that their are no occurences of the
bound varialbe. The variable occurences in the body are adjusted
to continue to point to the same bindings. This is how terms with λ
bindings may be deconstructed.

The unapply action splits a term at an application site, producing
a term with the operator substituted for the application, and another
term with the operand substituted for the application. This is how
terms with applications may be deconstructed into their component
terms.

The movement operations are straightforward. Movement oper-
ations extend paths with the atoms corresponding to their names, in

1L denotes the set of trees matched by a nonterminal.

the case that the extended path is valid on the corresponding term.
The exception is the up action, which removes the last atom from a
path, corresponding to selecting the parent subterm of a subterm.

4. Properties
We define the properties of “soundness” and “completeness” for
editing semantics with respect to typing semantics, and prove that
they hold for the set of actions described in Section 3. These
concepts are analogous to soundness and completeness for type
systems, with the crucial difference that a sound and complete
editing system (with respect to a particular type system) is in fact
possible.

4.1 Soundness
The soundness theorem (Theorem 1) states that if all of the terms
input to an action are well-typed, then all terms in its output are
well-typed as well.

In support of the statement of this theorem, we define a pred-
icate which is true if and only if all terms in an editing state are
well-typed:

Definition 1.

welltyped(E) ≡ ∀(p, e) ∈ E .∃t ∈ L(t). ` e : t

The formal statement of the soundness theorem is:

Theorem 1.

welltyped(E1) ∧ s(E1)
∗
 E2 ⇒ welltyped(E2)

Proof. (See Section A.2)

Informally, this theorem states that we do not “break” the well-
typedness of programs. Together with the absence of holes in the
terms, this theorem means that only complete and well-typed pro-
grams can occur in an editing derivation which started with a set of
well-typed terms.

The proof strategy is induction over sequences of actions. In
the base case (the empty sequence), no terms are added to or
removed from the set, and so the preservation of well-typedness
holds trivially. In the inductive step, we show that for each action,
either the new terms are well-typed, or the single step relations
and !
 do not hold, and thus the action is impossible at that step.

This is the case because the judgements for the relation restrict
substituted terms to those whose types are in the set c(p, e) = C,
and we can show that for any type in C, the context will typecheck
given a term of that type.

4.2 Completeness
The completeness theorem (Theorem 2) says that any well-typed
term can be reached from the unit term.

Theorem 2.

` e : t⇒ ∃s, E .s({(top, •)}) ∗ E ∧ (top, e) ∈ E

Proof. (See Section A.3)

Informally, this theorem states that we do not give up the ability
to derive any well-typed program. This property is of course impor-
tant for a general software development tool, so it is encouraging
to demonstrate that our editing system maintains it.

The proof strategy for the construction lemma (Lemma ??) is to
first prove, by induction on sizes of sets and induction over STLC
terms without applications, that all terms in the unzipping of the
term targeted for construction can be constructed. Informally, the
unzipping is the set of all variables and constants from the term in

4 2014/9/25

a(p, e) E

LAMABST
p(e) = ebod

↑ (ebod) = enew γ(p, e) = Γ Γ; unit ` enew : t c(p, e) = C unit→ t ∈ C e[λ : unit.enew/p] = enewnew

λ(p, e) {(p, enewnew)}

ARRABST
p(e) = t c(p, e) = C unit→ t ∈ C e[unit→ t/p] = enew

→ (p, e) {(p, enew)}

REPLACE
c(p, e) = C γ(p, e) = Γ Γ ` x : t t ∈ C e[x/p] = enew

replacex(p, e) {(p, enew)}

REPLACEUNIT
c(p, e) = C unit ∈ C e[•/p] = enew

replace•(p, e) {(p, enew)}

UNBIND
p(e) = λ : t.ebod ↓ (ebod) = enew c(p, e) = C γ(p, e) = Γ Γ ` enew : tnew tnew ∈ C e[enew/p] = enewnew

unbind(p, e) {(p, enewnew)}

UNAPPLY
c(p, e) = C γ(p, e) = Γ

p(e) = erator erand Γ ` erator : trator Γ ` erand : trand trator ∈ C trand ∈ C e[erator/p] = e1 e[erand/p] = e2

unapply(p, e) {(p, e1), (p, e2)}

a(p, e1, e2) E

APPLY
p(e1) = erator p(e2) = erand appable(p) c(p, e1) = C

γ(p, e1) = Γ γ(p, e2) = Γ Γ ` erator : tin → tout Γ ` erand : tin tout ∈ C e1[erator erand/p] = enew

app(p, e1, e2) {(p, enew)}

a(p1, e1)
!
 (p2, e2)

LAMTYMOVE
p(e) = λt : ebod

lamty(p, e)
!
 (p lamty, e)

LAMBODMOVE
p(e) = λt : ebod

lambod(p, e)
!
 (p lambod, e)

APPRATORMOVE
p(e) = erator erand

apprator(p, e)
!
 (p apprator, e)

APPRANDMOVE
p(e) = erator erand

apprand(p, e)
!
 (p apprand, e)

TYINMOVE
p(e) = tin → tout

tyin(p, e)
!
 (p typein, e)

TYOUTMOVE
p(e) = tin → tout

tyout(p, e)
!
 (p typeout, e)

UPMOVE
q ∈ {lambod, lamty, apprator, apprand, tyin, tyout}

up(p q, e)
!
 (p, e)

s(E1)
∗
 E2

ACTION

s(E1)
∗
 E2 (p, e) ∈ E2 a(p, e) E3

s a(p, e)(E1)
∗
 E2 ∪ E3

DOUBLEACTION

s(E1)
∗
 E2 (p, e1) ∈ E2 (p, e2) ∈ E2 a(p, e1, e2) E3

s a(p, e1, e2)(E1)
∗
 E2 ∪ E3

ACTIONMUTATE

s(E1)
∗
 E2 (p, e) ∈ E2 a(p, e)

!
 (pnew, enew)

s a(p, e)(E) (E2 − {(p, e)}) ∪ {(pnew, enew)}

ACTIONREFLEXIVE

(E)
∗
 E

Figure 6. Definitions of editing actions.

5 2014/9/25

the binding context which they appear. With this proof in hand, we
show by induction on the number of applications in a term how the
terms from the unzipping may be combined to form the target term.

The destruction lemma is straightforward, as the action to re-
place a term with unit is sufficient to accomplish all it requires.

The proof strategy appears readily generalizable to more pow-
erful type systems. In fact, the construction of terms will likely be
less constrained, as the polymorphism of type systems such as Sys-
tem F [6, 17] and various dependent calculi will liberalize the con-
straints imposed on editing actions (Section 6.1).

5. Programming With Editing Actions
Functional languages lend themselves to two general program-
ming strategems. In top-down programming, a programmer begins
writing the top-level structure of a program, referencing not-yet-
implemented functionality by means of identifiers which will later
be bound to an implementation. In bottom-up programming, a pro-
grammer begins by writing small pieces of functionality, and com-
poses them into larger pieces until the top-level program emerges.
Our system supports both of these approaches, without locking the
programmer into one or the other.

Top-down programming is supported primarily by the λ action.
Upon encountering the need for a new piece of functionality, the
programmer λ-abstracts over the structure he has written so far,
and alters the type of the λ binding to be the type of the component
required. The programmer can later implement this component and
apply the top-level structure to it. Of course, an action to β-reduce
or inline would be of great utility here (see Section 8).

Bottom-up programming is supported primarily by the apply
action. Once a programmer has implemented some components,
some combinator (often function composition) must be applied in
order to compose them. Alternately, once an intermediate value is
obtained, a function is applied to obtain the final or next intermedi-
ate value.

6. Discussion
6.1 Generalization to Other Typed λ-Calculi
The simply-typed lambda calculus is quite restrictive and does not
admit many interesting programs. It is instructive to consider the
application of this technique to polymorphic calculi. In particular,
the operation of the type-constraint operation c(p, e) to the operand
of an application will change significantly. In the simply-typed
lambda calculus, the operand of an application is constrained to
a single type, namely, the input type of the operator.

In a polymorphic calculus, the set of acceptable types expands
to any type which is compatible with the input type of the operator.
Further, the acceptable types of operators expands to any type
with whose input type the type of the operand is compatible. This
supports the intuitive expectation that a more powerful and flexible
calculi will be more flexible to edit under this system as well.

6.2 Additional Actions
The set of actions described here is theoretically complete, but sev-
eral more desirable actions immediately spring to mind. For in-
stance, the top-down programming approach would benefit greatly
from an operation to inline or β-reduce an application. Refactoring
of programs would benefit from operations to re-order bindings and
applications.

There are two ways of introducing additional actions. Actions
can be added to the initial set of actions, which provides more
definitional power but requires re-proving the soundness theorem.
Alternately, actions can be composed to form new actions. For
instance, it is plausible to imagine a composite action which λ-

abstracts a term, gives the binding the appropriate type, and applies
the term to the bound variable.

6.3 Implementation and User Interface
One advantage of defining editing actions directly on terms is that
the the set of actions does not constrain the user interface. Text
input and editing is awkward at best on touch-centric and mobile
devices, game systems, and accessible interfaces. We expect the
approach described here to work well on these platforms, as both
movement through the program and alterations to the program
are done at the granularity of subterms, rather than characters in
program strings.

We are in the process of implementing these editing actions for
the simply-typed lambda calculus. Our initial implementation will
target Javascript for local in-browser editing of STLC terms. As we
extend this work to more polymorphic calculi, we intend to imple-
ment the extensions as well. Further, we intend to perform human-
computer interaction studies to ascertain the best possible user in-
terface for this approach to term editing on multiple platforms.

One interesting aspect of the user interface is the attachment and
presentation of term metadata. Such metadata might be names for
bindings (which are semantically formulated as De Bruijn indices),
comments, library documentation, and version history. We expect
the kind and presentation of this metadata to be of great import in
the experience of programmers using our proposed system.

7. Related Work
Graphical programming languages by their nature must eschew
text-editing actions as the primary means of creating programs,
in favor of actions on graphical elements and structures. The
Scratch [10] programming language is a graphical and impera-
tive programming language in which programs control sprites in
a virtual arena. The Kodu programming language [9] is a small
graphical language, running on the XBox game console and in-
tended for children. Kodu allows users to create games by compos-
ing tiles, which are graphical representations of concurrent actors.
YinYang [12] is another tile-based concurrent graphical language,
which adds the ability to define new tiles and is targeted at touch
devices, and intended for more general software development.

Structural editors have a long history, going back at least as
far as MENTOR [5] and the Cornell Program Synthesizer [18]. A
structural editor is an editor which provides actions on the syn-
tax of a language, instead of or in addition to text-editing actions.
Many modern structural editors (such as ParEdit [3] and Struc-
tured Haskell Mode [4]) take the second route, extending existing
text editors with structural editing actions (for s-expressions and
Haskell, respectively.) The Lamdu [8] programming environment
uses a structured editor and abstract representations of programs as
the basis of an integrated development environment for a Haskell-
like language.

Theorem proving systems such as Isabelle [15], Coq [19], and
ACL2 [1] provide actions called tactics for constructing proof
terms. However, these actions generally do not support deconstruct-
ing or refactoring the proof terms, and the particular term produced
is generally considered irrelevant so long as its existence is demon-
strated.

The ability to construct terms by automated theorem proving
has proven useful for programming in the dependently-typed lan-
guage Idris [20]. In particular, automated theorem proving is often
used to construct a term of a desired type from a similar term of
a different type. Since our soundness theorem asserts that for any
starting set of well-typed terms, we can only further reach well-
typed terms, it is plausible to consider introducing well-typed terms
from other sources, such as automated theorem provers, so long as
these terms are typechecked beforehand.

6 2014/9/25

8. Conclusions and Further Work
We have described a set of editing actions on terms in the simply-
typed lambda calculus. Further, we have sketched proofs that this
set of actions is sound (beginning with well-typed terms, only
well-typed terms may be derived) and complete (any term may be
reached from any other term. We have described how this set of
actions may be used to produce programs in both top-down and
bottom-up style. We have shown that this approach has promise for
extension to more powerful typed λ-calculi.

There are several lines of further work open from this point. The
simply-typed lambda calculus is, of course, not the most powerful
or flexible language. Thus, we intend to generalize this approach to
editing to more polymorphic (and eventually, dependent) calculi.

We are working to implement the actions described here, with
the intent to eventually re-implement this system in itself. The im-
plementation of the rules is straightfoward, but the question of the
appropriate user interface opens up a cross-disciplinary line of in-
quiry between programming languages and human-computer inter-
action. Further, while the set of rules described here is certainly suf-
ficient to derive any term from any other term, it is not at all clear
that it is convenient or efficient to program with. We believe that
a cross-disciplinary inquiry between the fields of human-computer
interaction and programming languages will provide insight into
the additional actions necessary for a pleasant and productive pro-
gramming experience.

Acknowledgments
Michael Vitousek assisted with the proof strategies for this paper.
Tim Zakian provided many helpful comments and assisted with
LATEX formatting.

References
[1] R. S. Boyer and J. S. Moore. A Computational Logic. ACM Mono-

graph. Academic Press, New York, 1979. ISBN 0-12-122950-5. URL
http://www.cs.utexas.edu/users/boyer/acl.pdf.

[2] E. Brady. Idris, a general-purpose dependently typed programming
language: Design and implementation. Journal of Functional
Programming, 23:552–593, 9 2013. ISSN 1469-7653. . URL
http://journals.cambridge.org/article S095679681300018X.

[3] T. Campbell. ParEdit. URL
http://mumble.net/~campbell/emacs/paredit.el.

[4] C. Done. Structured Haskell mode.
https://github.com/chrisdone/structured-haskell-mode, 2014.

[5] V. Donzeau-Gouge, G. Huet, B. Lang, G. Kahn, et al. Programming
environments based on structured editors: The MENTOR experience.
1980.

[6] J.-Y. Girard. Interprétation fonctionnelle et élimination des coupures
de l’arithmétique d’ordre supŕieur. PhD thesis, Université Paris 7,
1972.

[7] X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Rémy,
and J. Vouillon. The OCaml system release 4.01.
http://caml.inria.fr/pub/docs/manual-ocaml-4.01/,
September 2013.

[8] E. Lotem and Y. Chuchem. Lambdu. URL
https://peaker.github.io/lamdu.

[9] M. B. MacLaurin. The design of kodu: A tiny visual program-
ming language for children on the xbox 360. In Proceedings of
the 38th Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL ’11, pages 241–246, New
York, NY, USA, 2011. ACM. ISBN 978-1-4503-0490-0. . URL
http://doi.acm.org/10.1145/1926385.1926413.

[10] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond.
The Scratch programming language and environment. Trans. Comput.
Educ., 10(4):16:1–16:15, Nov. 2010. ISSN 1946-6226. . URL
http://doi.acm.org/10.1145/1868358.1868363.

[11] S. Marlow, editor. Haskell 2010 Language Report. 2010. URL
http://www.haskell.org/onlinereport/haskell2010/.

[12] S. McDirmid. Coding at the speed of touch. In Proceedings of the 10th
SIGPLAN Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software, ONWARD ’11, pages 61–76, New
York, NY, USA, 2011. ACM. ISBN 978-1-4503-0941-7. . URL
http://doi.acm.org/10.1145/2048237.2048246.

[13] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition
of Standard ML: Revised. MIT Press, 1997. ISBN 9780262631815.
URL http://books.google.com/books?id=e0PhKfbj-p8C.

[14] U. Norell. Towards a practical programming language based on
dependent type theory. PhD thesis, Department of Computer Sci-
ence and Engineering, Chalmers University of Technology, SE-412
96 Göteborg, Sweden, September 2007.

[15] L. Paulson. The foundation of a generic theorem prover. Journal of
Automated Reasoning, 5(3):363–397, 1989. ISSN 0168-7433. . URL
http://dx.doi.org/10.1007/BF00248324.

[16] B. C. Pierce. Types and Programming Languages. MIT Press,
Cambridge, Massachussetts, 2002. ISBN 978-0-262-16209-8. URL
http://www.cis.upenn.edu/~bcpierce/tapl/.

[17] J. Reynolds. Towards a theory of type structure. Colloque sur la
Programmation, pages 408–425, April 1974.

[18] T. Teitelbaum and T. Reps. The Cornell program synthe-
sizer: A syntax-directed programming environment. Commun.
ACM, 24(9):563–573, Sept. 1981. ISSN 0001-0782. . URL
http://doi.acm.org/10.1145/358746.358755.

[19] The Coq Development Team. Coq Reference Manual. 2012. URL
http://coq.inria.fr/distrib/current/refman/index.html.

[20] The Idris Community. Programming in Idris, A Tutorial. 2014. URL
http://eb.host.cs.st-andrews.ac.uk/writings/idris-tutorial.pdf.

A. Proofs
A.1 Definitions
Very often we care that a particular term is in a state, without caring
what path is associated with it. The has(E , e) predicate captures
this notion:

Definition 2.
has(E , e) ≡ ∃p.(p, e) ∈ E

The keeps(E1, E2) predicate says that for all terms in a state E1,
E2 has that term.

Definition 3.

keeps(E1, E2) ≡ ∀(p, e) ∈ E1.has(E2, e)

A.2 Proof of Theorem 1
Proof. (Proof in progress)

A.3 Proof of Theorem 2
In order to prove Theorem 2, we shall require another function on
terms, and two lemmas. The function u(e) (defined in Figure 7)
splits the term tree into sequences of lambda bindings, essentially
breaking it apart at application sites. Lemma 1 states that for any
goal term e, the set of terms u(e) (with associated paths) can be
derived from the unit term. Lemma 2 states that a goal term e can
be derived from the set of terms u(e).

Lemma 1.

` e : t⇒ ∃s, E .s({(top, •)}) ∗ E ∧ {(top, e1)|e1 ∈ u(e)} ⊆ E

Proof. By induction on |u(e)|

Case 1: Base case: |u(e)| = 0
(a) |u(e)| is never 0, so this case holds vacuously.

7 2014/9/25

u(•) = {•}
u(v) = {v}

u(λ : t.e) = {λ : t.eu|eu ∈ u(e)}
u(e1 e2) = u(e1) ∪ u(e2)

Figure 7. Definition of the term splitting function.

Case 2: : |u(e)| > 0.
(a) WLOG, pick some e′ ∈ u(e). Then
` e : t⇒
∃s′, E ′.s′({(top, •)}) ∗ E ′∧
{(top, eu)|eu ∈ u(e)− {e′}}

(b) Assume ` e : t.
(c) By (2b), Lemma 4, and modus ponens: keeps({(top, •)}, E ′).

By the definition of keeps (Definition 3) and of has
(Definition 2), ∃p′.(p′, •) ∈ E ′.

(d) (Proof in progress.)

Lemma 2.

` e : t⇒ ∀E1 ⊇ {(top, e1)|e1 ∈ u(e)}.∃s, E2.(s(E1)
∗
 E2∧(top, e) ∈ E2)

Proof. (Proof in progress)

With these lemmas, the proof of Theorem 2 is simple:

Proof. Assume ` e : t. Then by Lemma 1 and modus ponens,
∃s, E .s({(top, •)}) ∗

 E ∧ {(top, e1)|e1 ∈ u(e)} ⊆ E . By
Lemma 2 and modus ponens,
∀E1 ⊇ {(top, e1)|e1 ∈ u(e)}.∃s′, E2.(s′(E1)

∗
 E2 ∧ (top, e) ∈

E2). Since {(top, e1)|e1 ∈ u(e)} ⊆ E , let E1 = E . Then
∃s′, E2.(s′(E)

∗
 E2 ∧ (top, e) ∈ E2). By Lemma 6 and modus

ponens, s s′({(top, •)}) ∗ E2. Then s s′ and E2 are the witnesses
for the existential in the theorem.

A.4 Utility Lemmas
Lemma 3.

s(E1)
∗
 E2 ∧ E1 ⊆ E3 ⇒ ∃E4.(E2 ⊆ E4 ∧ s(E3)

∗
 E4)

Proof. By induction on s:

• s = ε:
1. The only rule for the empty sequence is

ACTIONREFLEXIVE.
2. So E1 = E2.
3. E1 ⊆ E3 by the assumption of the lemma.
4. Then by substitution using (2) in (3), E2 ⊆ E3.
5. E3

∗
 E3 by ACTIONREFLEXIVE.

6. So if we let E4 = E3, then we have a witness to the
existential ∃E4.(E2 ⊆ E4 ∧ s(E3)

∗
 E4).

• s = s′ a(p, e):
By cases on the derivation of s′ a(p, e)(E1)

∗
 E2:

ACTION:

1. By the use of the ACTION rule in the derivation, we
know that:
(a) s′(E1)

∗
 E2s′ .

(b) (p, e) ∈ E2s′ .

(c) a(p, e) Ea.
(d) E2 = E2s′ ∪ Ea.

2. By the inductive hypothesis, we know that
∀E3|E1 ⊆ E3.∃E4s′ .(E2s′ ⊆ E4s′ ∧ s′(E3) E4s′).

3. By the properties of sets, (1b), and (2), we have
(p, e) ∈ E4s′ .

4. By the ACTION rule, (1c), (2), and (3), we have
s′ a(p, e)(E3)

∗
 E4s′ ∪ Ea.

5. By (2) and equational reasoning, we have that
E2s′ ∪ Ea ⊆ E4s′Ea.

6. By (1d), (5). and substitution, we have that
E2 ⊆ E4s′ ∪ Ea.

7. By the conjunction of (5) and (6), we have
E2s′ ∪ Ea ⊆ E4s′Ea ∧ E2 ⊆ E4s′ ∪ Ea.

8. By (7), we see that E4s′∪Ea is a witness to the existential
in our conclusion.

ACTIONMUTATE:

1. By the use of the ACTIONMUTATE rule in the deriva-
tion, we know that:
(a) s′(E1)

∗
 E2s′ .

(b) (p1, e1) ∈ E2s′ .
(c) a(p1, e1)

!
 (p2, e2).

(d) E2 = (E2s′ − {(p1, e1)}) ∪ {(p2, e2)}.
2. By the inductive hypothesis, we know that
∀E3|E1 ⊆ E3.∃E4s′ .(E2s′ ⊆ E4s′ ∧ s′(E3) E4s′).

3. By the properties of sets, (1b), and (2), we have
(p1, e1) ∈ E4s′ .

4. By the ACTIONMUTATE rule, (1c), (2), and (3), we have
s′ a(p, e)(E3)

∗
 ((E4s′ − {(p1, e1)}) ∪ {(p2, e2)}).

5. By (2) and equational reasoning, we have that
((E2s′−{(p1, e1)})∪{(p2, e2)}) ⊆ ((E4s′−{(p1, e1)})∪
{(p2, e2)}).

6. By (1d), (5). and substitution, we have that
E2 ⊆ ((E4s′ − {(p1, e1)}) ∪ {(p2, e2)}).

7. By the conjunction of (5) and (6), we have
((E2s′−{(p1, e1)})∪{(p2, e2)}) ⊆ ((E4s′−{(p1, e1)})∪
{(p2, e2)})∧ E2 ⊆ ((E4s′ − {(p1, e1)})∪ {(p2, e2)}).

8. By (7), we see that ((E4s′ −{(p1, e1)})∪{(p2, e2)}) is
a witness to the existential in our conclusion.

• s = s a(p, e1, e2):
By cases on the derivation of s′ a(p, e1, e2)(E1)

∗
 E2:

DOUBLEACTION:

1. By the use of the DOUBLEACTION rule in the deriva-
tion, we know that:
(a) s′(E1)

∗
 E2s′ .

(b) (p, e1) ∈ E2s′ .
(c) (p, e2) ∈ E2s′ .
(d) a(p, e1, e2) Ea.
(e) E2 = E2s′ ∪ Ea.

2. By the inductive hypothesis, we know that
∀E3|E1 ⊆ E3.∃E4s′ .(E2s′ ⊆ E4s′ ∧ s′(E3) E4s′).

3. By the properties of sets, (1b), (1c), and (2), we have
(p, e1) ∈ E4s′ ∧ (p, e2) ∈ E4s′.

4. By the DOUBLEACTION rule, (1d), (2), and (3), we have
s′ a(p, e)(E3)

∗
 E4s′ ∪ Ea.

5. By (2) and equational reasoning, we have that
E2s′ ∪ Ea ⊆ E4s′Ea.

6. By (1e), (5). and substitution, we have that
E2 ⊆ E4s′ ∪ Ea.

8 2014/9/25

7. By the conjunction of (5) and (6), we have
E2s′ ∪ Ea ⊆ E4s′Ea ∧ E2 ⊆ E4s′ ∪ Ea.

8. By (7), we see that E4s′∪Ea is a witness to the existential
in our conclusion.

Lemma 4.
s(E1)

∗
 E2 → keeps(E1, E2)

Proof. By induction on s.

Case 1: Base case: s = ε.
(a) Assume s(E1)

∗
 E2.

(b) By ACTIONREFLEXIVE rule in the derivation of s(E1)
∗

E2 (1a), E1 = E2.
(c) By (1b), keeps(E1, E2) holds trivially.

Case 2: s = s′a(p, e).
(a) Inductive hypothesis:

s′(E1)
∗
 E ′2 ⇒ keeps(E1, E ′2)

(b) Assume:
i. s1(E1)

∗
 E2

(c) By (2a) and the definition of keeps (Definition 3), and
the definition of has (Definition 2):
s′(E1)

∗
 E ′2 ⇒ ∀(p, e) ∈ E1∃p′.(p′, e) ∈ E ′2

(d) The derivation of s(E1)
∗
 E2 (2(b)i) is either ACTION

or ACTIONMUTATE. By cases:
i. ACTION:

A. By the premises of the ACTION rule in the
derivation (2(d)i):
s′(E1)

∗
 E ′2.

B. By (2(d)iA), (2a), and modus ponens: ∀(p, e) ∈
E1.∃p′.(p′, e) ∈ E ′2

C. By the conclusion of the ACTION rule:
E2 = E ′2 ∪ E3

D. By (2(d)iC), s′2 ⊆ s2.
E. By (2(d)iD), ∀(p, e) ∈ E ′2.(p, e) ∈ E2.
F. By (2(d)iD) and (2(d)iA), ∀(p, e) ∈ E1.∃p′.(p′, e) ∈
E2.

G. By (2(d)iF), the definition of keeps (Defini-
tion 3), and the definition of has (Definition 2),
keeps(E1, E2).

ii. ACTIONMUTATE:
A. By the premises of the ACTIONMUTATE rule in

the derivation (2(d)ii):
s′(E1)

∗
 E ′2.

B. By (2(d)iiA), (2a), and modus ponens: ∀(p, e) ∈
E1.∃p′.(p′, e) ∈ E ′2

C. By the premises of the ACTIONMUTATE rule in
the derivation (2(d)ii): a(p, e)

!
 E3.

D. By Lemma 5, (2(d)iiC), and modus ponens:
has(E3, e).

E. By the conclusion of the ACTIONMUTATE rule
in the derivation (2(d)ii),
E2 = (E ′2 − {(p, e)}) ∪ E3

F. Observing that has(E , e) ⇒ has(E ′ ∪ E , e),
and by (2(d)iiB), (2(d)iiD) and (2(d)iiE):
∀(p, e) ∈ E1.has(E2, e) and thus, by the defi-
nition of keeps (Definition 3), keeps(E1, E2).

Lemma 5.
a(p, e)

!
 (p′, e′)⇒ has(E , e)

Proof. 1. Assume a(p, e)
!
 E .

2. By cases on the derivation of a(p, e)
!
 (p, e) (1):

Case (a): LAMTYMOVE

i. By the conclusion of the derivation of
LAMTYMOVE (2(a)i),
e = e′ and thus has({(p′, e′)}, e).

Case (b): LAMBODMOVE

i. By the conclusion of the derivation of
LAMBODMOVE (2(b)i),
e = e′ and thus has({(p′, e′)}, e).

Case (c): APPRATORMOVE

i. By the conclusion of the derivation of
APPRATORMOVE (2(c)i),
e = e′ and thus has({(p′, e′)}, e).

Case (d): APPRANDMOVE

i. By the conclusion of the derivation of
APPRANDMOVE (2(d)i),
e = e′ and thus has({(p′, e′)}, e).

Case (e): TYINMOVE

i. By the conclusion of the derivation of
TYINMOVE (2(e)i),
e = e′ and thus has({(p′, e′)}, e).

Case (f): TYOUTMOVE

i. By the conclusion of the derivation of
TYOUTMOVE (2(f)i),
e = e′ and thus has({(p′, e′)}, e).

Case (g): UPMOVE

i. By the conclusion of the derivation of
UPMOVE (2(g)i),
e = e′ and thus has({(p′, e′)}, e).

Lemma 6.

s1(E1)
∗
 E2 ∧ s2(E2)

∗
 E3 ⇒ s1s2(E1)

∗
 E3

Proof. By induction on s2.

Case 1: Base case: s2 = ε.
(a) Assume

i. s1(E1)
∗
 E2

ii. s2(E2)
∗
 E3

(b) Since s2 = ε, the derivation of s2(E2)
∗
 E3 (1(a)ii) is

ACTIONREFLEXIVE, and E2 = E3.
(c) Since s2 = ε, s1s2 = s1.
(d) Substituting (1c) and (1d) into (1(a)i), s1s2(E1)

∗
 E3

Case 2: s2 = s′2a(p, e).
(a) Inductive hypothesis:

s1(E1)
∗
 E2 ∧ s′2(E2)

∗
 E ′3 ⇒ s1s

′
2(E1)

∗
 E ′3

(b) Assume
i. s1(E1)

∗
 E2

ii. s2(E2)
∗
 E3

(c) The derivation of s2(E2)
∗
 E3 (2(b)ii) is either AC-

TION or ACTIONMUTATE. By cases:
i. ACTION:

A. By the ACTION rule in the derivation: s′2(E2)
∗

E ′3

9 2014/9/25

B. By the ACTION rule in the derivation: (p, e) ∈
E ′3

C. By the ACTION rule in the derivation: a(p, e)
E4

D. By the ACTION rule in the derivation: E ′3∪E4 =
E3

E. By (2(b)i), (2(c)iA), (2a) and modus ponens:
s1s
′
2(E1)

∗
 E ′3.

F. By (2(c)iE), (2(c)iB), (2(c)iC) and the ACTION
rule,
s1s
′
2a(p, e)(E1)

∗
 E ′3 ∪ E4.

G. By substition of (2) and (2(c)iD) into (2(c)iF),
s1s2(E1)

∗
 E3.

ii. ACTIONMUTATE:
A. By the ACTIONMUTATE rule in the derivation:

s′2(E2)
∗
 E ′3

B. By the ACTIONMUTATE rule in the derivation:
(p, e) ∈ E ′3

C. By the ACTIONMUTATE rule in the derivation:
a(p, e) E4

D. By the ACTIONMUTATE rule in the derivation:
E ′3 ∪ E4 = E3

E. By (2(b)i), (2(c)iiA), (2a) and modus ponens:
s1s
′
2(E1)

∗
 E ′3.

F. By (2(c)iiE), (2(c)iiB), (2(c)iiC) and the AC-
TION rule,
s1s
′
2a(p, e)(E1)

∗
 E ′3 ∪ E4.

G. By substition of (2) and (2(c)iiD) into (2(c)iiF),
s1s2(E1)

∗
 E3.

Case 3: s2 = s′2a(p, e1, e2).
(a) Inductive hypothesis:

s1(E1)
∗
 E2 ∧ s′2(E2)

∗
 E ′3 ⇒ s1s

′
2(E1)

∗
 E ′3

(b) Assume
i. s1(E1)

∗
 E2

ii. s2(E2)
∗
 E3

(c) By the DOUBLEACTION rule in the derivation:
s′2(E2)

∗
 E ′3

(d) By the DOUBLEACTION rule in the derivation:
(p, e1) ∈ E ′3

(e) By the DOUBLEACTION rule in the derivation:
(p, e2) ∈ E ′3

(f) By the DOUBLEACTION rule in the derivation:
a(p, e1, e2) E4

(g) By the DOUBLEACTION rule in the derivation:
E ′3 ∪ E4 = E3

(h) By (3(b)i), (3c), (3a) and modus ponens:
s1s
′
2(E1)

∗
 E ′3.

(i) By (3h), (3d), (3e), (3f) and the DOUBLEACTION rule,
s1s
′
2a(p, e)(E1)

∗
 E ′3 ∪ E4.

(j) By substition of (3) and (3g) into (3i), s1s2(E1)
∗
 E3.

10 2014/9/25

Towards a native higher-order RPC

Olle Fredriksson Dan R. Ghica Bertram Wheen
University of Birmingham, UK

Abstract
We present a new abstract machine, called DCESH, which mod-
els the execution of higher-order programs running in distributed
architectures. DCESH implements a native general remote higher-
order function call across node boundaries. It is a modernised ver-
sion of SECD enriched with specialised communication features
required for implementing the RPC mechanism. The key correct-
ness result is that the termination behaviour of the RPC is in-
distinguishable (bisimilar) to that of a local call. The correctness
proofs and the requisite definitions for DCESH and other related
abstract machines are formalised using Agda. We also formalise a
generic transactional mechanism for transparently handling failure
in DCESHs.

We use the DCESH as a target architecture for compiling a con-
ventional call-by-value functional language ("FLOSKEL") which
can be annotated with node information. Conventional benchmarks
show that the single-node performance of FLOSKEL is compara-
ble to that of OCAML, a semantically similar language, and that
distribution overheads are not excessive.

1. Native RPC and transparent distribution
Remote Procedure Call (RPC) [7] is a widely used mechanism
for higher-level inter-process communication. However, the RPC
mechanism tends to be bolted on top of a pre-existing language,
as a library for example, rather than be seamlessly integrated into
it. This leads to significant syntactic differences between calling a
local library function and a remote function. Even if these syntactic
differences can be smoothed using stubs that wrap remote calls into
local calls [6] important differences still persist, of which the most
important is that arguments must be of ground types.

Generalising RPC to all types and incorporating it seamlessly
in the language has been considered but dismissed on grounds of
potential inefficiencies [41]. However, considering that a number
of technologies that trade efficiency for convenience have been re-
jected on similar grounds (from machine independent languages to
functional programming, garbage collection or automated program
verification – to name only a few), we decided it is time to revisit
this issue. Because the execution of applications is increasingly and
rapidly moving from single devices to networks of (often heteroge-
neous) devices a case can be made that such revisiting is timely.

[Copyright notice will appear here once ’preprint’ option is removed.]

A native RPC system, offering as an immediate benefit transparent
and automated distribution, can be useful in domains where pro-
grammer effectiveness is more important than machine efficiency.

We attack this problem in a principled manner. We want the
seamless integration of the RPC in the language to be not merely
syntactic but semantic as well: the RPC is a native call of our lan-
guage, on the same level as a conventional local call. This is re-
alised by introducing a new kind of abstract machine which extends
the conventional SECD machine [26], or rather a modernised ver-
sion of it, with communication primitives. These are not general-
purpose low-level communication primitives but are especially de-
signed to support the implementation of RPCs. Even though we
aim for simplicity first, some of the technicalities, especially the
proofs of correctness, are quite intricate. For this reason the abstract
machine net framework and its correctness properties are fully for-
malised using the Agda language [34]. The technical challenge is
not just one of handling complicated formalisms but also mathe-
matical, the key correctness proof requiring the adaptation of the
step-index relations technique [2] to bisimulation

Note that we are language rather than system oriented. We
assume the existence of a run-time infrastructure to handle system-
level aspects associated with distribution such as failure detection,
load balancing, global reset and initialisation, and so on. From
a systems perspective we only deal with failure handling, which
is particularly important in a distributed setting, using a general
transactional approach.

The abstract machine nets can serve as a target for the compila-
tion of a conventional call-by-value language which we call FLOSKEL.
The interesting new thing about it is that there is almost noth-
ing new about it. It uses a HASKELL-like syntax but it has the
semantics of the pure fragment of OCAML. RPC calls are indis-
tinguishable from native calls except for an annotation, which can
be applied to any sub-term, indicating that it is to be executed on a
different node. From the point of view of the language, and of the
programmer, this annotation has no syntactic, semantic or typing
implication. It is a mere pragma-like directive.

Prior work on native RPCs and seamless distribution are spe-
cialised to web programming [11], thus domain-specific. We aim
to be as generic as possible in this context. Some existing work
uses as a starting point interaction-based semantic paradigms which
lend themselves naturally to a communication-centric implementa-
tion: Geometry of Interaction [17] and Game Semantics [18]. Such
approaches have two significant disadvantages. The exotic opera-
tional behaviour makes it impossible to apply known optimisation
techniques, and to interact with code compiled conventionally. This
can be seen in the low performance of single-node execution of
programs compiled using such techniques. On the other hand, the
single-node compilation of FLOSKEL is very similar to the conven-
tional compilation of a language such as OCAML, and the bench-
marks indicate that the overhead required by the RPC run-time is
not excessive.

1 2014/9/8

In a nutshell, we believe that this paper can help make the case
that functional languages with native RPCs could be a lot more
useful than presumed.

1.1 Technical outline and contributions
Our main contributions are in the following areas:

Compiler and run-time We describe the syntax (Sec. 2.1) and im-
plementation (Sec. 2.2) of FLOSKEL, a general-purpose functional
language with native RPCs. Our basis is a conventional compiler
for such a language, and we show how it is modified to support
RPCs and, additionally, ubiquitous functions, i.e. functions avail-
able on all nodes. Our benchmarks suggest that FLOSKEL’s per-
formance is comparable to the state of the art OCAML compiler
(Sec. 2.4) for single-node execution.

Abstract machines The semantics of a core of FLOSKEL has been
formalised in Agda (Sec. 3) in the form of an abstract machine
that can be used to guide an implementation. To achieve this we
make gradual refinements to a machine, based on Landin’s SECD
machine [26], that we call the CES machine (Sec. 3.1). First we
add heaps for dynamically allocating closures, forming the CESH
machine (Sec. 3.2); we show that the CES and CESH execution
is bisimilar. We then add communication primitives (synchronous
and asynchronous) by defining a general form of networks of nodes
that run an instance of an underlying abstract machine (Sec. 3.3).
Using these networks, we illustrate the idea of subsuming function
calls by communication protocols by constructing a degenerate
distributed machine, DCESH1 (Sec. 3.4), that decomposes some
machine instructions into message passing, but only runs on one
node. Execution on the fully distributed CESH machine called
DCESH (Sec. 3.5), is shown to be bisimilar to the CESH machine
— our main theoretical result. Finally, we model a general-purpose
fault-tolerant environment for DCESH-like machines (Sec. 4) by
layering a transactional abstract machine that provides a simple
commit-and-rollback mechanism for an abstract machine that may
unexpectedly fail.

Formalisation in Agda The theorems that we present in this
paper have been proved correct in Agda [34], an interactive proof
assistant and programming language based on intuitionistic type
theory. The definitions and proofs in this paper are intricate, so
carrying them out manually would be error-prone, arduous and
perhaps unconvincing. Agda has been a helpful tool in producing
these proofs, providing a pleasant interactive environment in which
to play with alternative definitions. To eliminate another source of
error, we do not present our results in informal mathematics; the
code blocks in Sec. 3 come directly from the formalisation.

The formalisation is organised as follows, where the arrows
denote dependence, the lines with ∼ symbols bisimulations, and
the parenthesised numerals section numbers:

CES
(3.1)

CESH
(3.2)

DCESH
(3.5)

Heaps Networks
(3.3)

DCESH1

(3.4)

∼
(3.2.1)

∼
(3.5.1)

2. FLOSKEL: a location-aware language
2.1 Syntax
At the core of the FLOSKEL language is a call-by-value func-
tional language with user-definable algebraic data types and pattern
matching. FLOSKEL is semantically similar to languages in the ML

family, and syntactically similar to HASKELL. The main syntactic
difference between FLOSKEL and HASKELL is that pattern match-
ing clauses are given without the leading function name and that
type annotations are given after a single colon, as in the following
example:

map : (a → b) → [a] → [b]
f [] = []
f (x::xs) = f x :: map f xs

Node annotations An ordinary function definition, like map, is a
ubiquitous function by default. This means that it is made available
on all nodes in the system, and a call to such a function is always
done locally – a plain old function call.

On the other hand, a function or sub-term defined with a node
annotation, such as

query@Database : Query → Response
x = ...,

is located and compiled only to the specified node (here Database).
In the rest of the program query can be used like any other function,
but the compiler and run-time system treat it differently. A call to
query from a node other than Database is a remote call.

Since the programmer can use located functions like any other
functions, and this is a functional language, it means that the lan-
guage has, by necessity, support for higher-order functions across
node boundaries. For instance the function

f@A : (Query → Response) → X
q = ... use q ...

can be applied to query yielding f query : X.
Node annotations can also be applied to sub-expressions, as in

the following example:

sum [] = 0
(x::xs) = x + sum xs

xs@A = ...
ys@B = ...
result@C = (sum xs) @A + (sum ys) @B

Here we want to calculate the sum, on node C, of the elements
of two lists located on nodes A and B. If the lists are lengthy, it is
better to calculate the sums on A and B, and to then send the final
sum to C, since this saves us having to send the full lists over the
network.

2.2 Compilation
The FLOSKEL compiler [1] currently targets C using the MPI
library for communication, though other targets are possible. Most
of the compiler’s pipeline is standard for a functional language
implementation. It works by applying a series of transformations
to the source program until reaching a level low enough to be
straightforwardly translated to C. Since the source language has
pattern matching, it first compiles the pattern matching to simple
case trees [4]. Local definitions are then lifted to the top-level using
lambda lifting [25], and lastly the program is closure converted [31]
to support partially applied functions.

Up until the lambda lifting, a node annotation is a construc-
tor in the abstract syntax tree of the language’s expressions. The
lambda lifter lifts such sub-expressions to the top-level such that
annotations are afterwards associated with definitions (and not ex-
pressions).

The main work specific to FLOSKEL is done in the closure
conversion and the run-time system that the compiled programs
make use of.

Closures For function applications, the closure converter distin-
guishes between known functions – those that are on the top-level

2 2014/9/8

and have a known arity, and unknown functions – those that are
provided e.g. as function arguments.

A known function f that is either ubiquitous or available on the
same node as the definition that is being compiled is compiled to
an ordinary function call if there are enough arguments. If there are
not, and the function is ubiquitous we have to construct a partial
application closure, which contains a pointer to the function and
the arguments so far. The compiler maintains the invariant that
unknown functions are always in the form of a closure, whose
general layout is:

gptr gid arity payload. . .

Since the function may require access to the payload of the
closure, gptr is a function of arity arity + 1: when applying a
closure cl as above to arguments x1, ..., xarity, the call becomes
gptr (cl, x1, ..., xarity) meaning that the function has access to the
payload through cl. To construct the initial closure for a partial
application of a function f of arity arity with nargs arguments,
we have to conform to this rule, so we construct the closure
(f ′ptr, f

′
id, n, y1, ..., ynargs) where n = arity - nargs and f ′ is a new

ubiquitous top-level function defined as follows:

f ′ cl x1 ... xn = case cl of
(, , , y1, ..., ynargs) → f (y1, ..., ynargs, x1, ..., xn)

A family of applyi functions handle, in a standard way, applica-
tions (of i arguments) of unknown functions by inspecting the arity
stored in the closure to decide whether to construct a new partial
application closure with the additional arguments or to apply the
function.

The field fid is an integer identifier assigned to every function
at compile-time used as a system-wide identifier if the function
is ubiquitous, or a node-specific identifier if not. If there are k
ubiquitous functions they are assigned the first k identifiers, and
the nodes of the system may use identifiers greater than k for
their respective located functions. Determining if a function is
ubiquitous is thus a simple comparison: fid < k. Additionally, every
node has a table of functions that maps ubiquitous or local located
function identifiers to local function pointers, which is used by the
deserialiser.

If we have a saturated call to a known remote function, we
make a call to the function rApplyarity, defined in the run-time
system (to be described). If we have a non-saturated call to
a known remote or located function, we construct the closure
(f ′ptr, f

′
id, arity, y1, ..., ynargs) where f ′ is a new ubiquitous top-level

function defined as follows:

f ′ cl x1 ... xn = case cl of
(, , , y1, ..., ynargs) →

if myNode ≡ fnode then
lookup (fid) (y1, ..., ynargs, x1, ..., xn,)

else
rApplyarity (fnode, fid, y1, ..., ynargs, x1, ..., xn)

Here myNode is the identifier of the node the code is currently
being run at. If it is the same node as the node of f , we can make
an ordinary function call by looking up the function corresponding
to fid in the function table. Otherwise we call the run-time system
function rApplyarity.

In this way, we construct a closure for located functions that
looks just like the closure of an ubiquitous function.

2.3 Run-time
The run-time system defines a family of ubiquitous functions
rApplyarity, that, as we saw above, are used for remote procedure
calls and to construct closures for located functions. The function
takes a function identifier, a node identifier, and arity arguments. It

serialises the arguments and sends them together with the function
identifier to the given node:

rApply fnode fid x1 ... xarity =
send (fid, serialise (x1), ..., serialise (xarity)) to fnode;
receive answer from fnode →
answer

When the node fnode receives this message, it looks the function
up in its function table, calls it with the deserialised arguments, and
sends back the result:

receive (fid, y1, ..., yarity) from remoteNode →
let result = lookup (fid) (deserialise (y1), ..., deserialise (yarity))
in send result to remoteNode

Serialisation In a remote function call the arguments may be
values from arbitrary algebraic data types (like lists and trees), in
addition to primitive types and functions.

The serialisation of a primitive type is the identity function,
while algebraic data-types require a traversal and flattening of the
heap structure. We use tags in the lower bits of a value’s field to
differentiate between pointers and non-pointers, which makes this
flattening straightforward. The interesting part of serialisation is
how to handle closures, both in the case of ubiquitous and located
functions.

For closures around ubiquitous functions, we serialise the clo-
sure almost as is, but use the function identifiers to resolve the func-
tion pointer on the receiving node, as it is not guaranteed to be the
same on each node.

To handle located functions, the most straightforward imple-
mentation is to use “mobilised” closures that work by exchanging
the located function with a ubiquitous function that calls rApply to
perform the remote procedure call. This is what our implementa-
tion currently does. Our formalisation will describe an optimised
variant of this scheme, which instead saves the closure on the send-
ing node and sends a pointer to that. The optimised scheme means
that we do not unnecessarily send closures containing (potentially
large) arguments that are going to end up on the node they origi-
nated from anyway. The cost of this optimisation, however, is that
it requires us to keep track of heap-allocated pointers across node
boundaries using distributed garbage collection. The serialisation
currently implemented does not require such garbage collection,
but may be slow when dealing with large data.

In detail, to serialise a closure

fptr fid arity payload. . .

we put a placeholder, CL, in the place of fptr:

CL fid arity payload’ . . .

where payload′ represents the serialised payload and CL is a tag that
can be used to identify that this is a closure. To deserialise this on
the receiving end, we look up the function pointer associated with
fid in the ubiquitous function table and substitute that for CL.

2.4 Performance benchmarks
Single-node Before we measure the performance of the imple-
mentation of the native RPC, we analyse how the single-node per-
formance is affected by the distribution overhead even if it is not
used — is it feasible for a general-purpose language to be based on
the DCESH?

Fig. 1 shows absolute and relative timings of a number of
small benchmarks using integers, lists, trees, recursion, and a small
amount of output for printing results. We compare the performance
of FLOSKEL programs compiled with our compiler, and equivalent
OCAML programs compiled using ocamlopt, a high-performance
native-code compiler. Since our compiler targets C, we further

3 2014/9/8

trees nqueens qsort primes tak fib
FLOSKEL 91.2s 12.2s 9.45s 19.3s 16.5s 10.0s
ocamlopt 43.0s 3.10s 3.21s 6.67s 2.85s 1.68s

relative 2.12 3.94 2.94 2.9 5.77 5.95

Figure 1. Single-node performance.

trees nqueens qsort primes tak fib
µs/remote call 618 382 4.77 13.4 6.94 6.87
B/remote call 1490 25.8 28.1 27.0 32.0 24.0

Figure 2. Distribution overheads.

compile the generated files to native code using gcc -O2. We can
see that the running time of programs compiled with our compiler
is between two and six times greater than that of those compiled
with ocamlopt. These results should be viewed in the light of the
fact that our compiler only does a minimal amount of optimisation,
whereas a considerable amount of time and effort has been put into
ocamlopt.

Moreover, our compiler only produces C code rather than as-
sembly. Compiling to C rather than assembly, especially in the style
we use, prevents the C compiler from using whole-program optimi-
sations and is, therefore, a serious source of inefficiencies.

Distribution overhead We measure the overhead of our imple-
mentation of native remote procedure calls by running the same
programs as above, but distributed to between two and nine nodes.
The distribution is done by adding node annotations in ways that
generate large amounts of communication. We run the benchmarks
on a single physical computer with local virtual nodes, which
means that the contributions of network latencies are factored out.
These measurements give the overhead of the other factors related
to remote calls, like serialisation and deserialisation. The results
are shown in Fig. 2. The first row, µs/remote call, is obtained by
running the same benchmark with and without node annotations,
taking the delta-time of those two, and then dividing by the number
of remote invocations in the distributed program. The second row
measures the amount of data transmitted per remote invocation, in
bytes.

It is expected that this benchmark depends largely on the kinds
of invocations that are done, since it is more costly to serialise and
send a long list or a big closure than an integer. The benchmark
hints at this; we appear to get a higher cost for remote calls that are
big.

An outlier is the nqueens benchmark, which does not do remote
invocations with large arguments, but still has a high overhead per
call, because it intentionally uses many localised functions.

3. Abstract machines and nets
Having introduced the programming language, its compiler and its
run-time system we now present the theoretical foundation for the
correctness of the compiler. We start with the standard abstract
machine model of CBV computation, which we refine, in several
steps, into increasingly expressive abstract machines with heap
and networking capabilities, while showing along the way that
correctness is preserved, via bisimulation results. All definitions
and theorems are formalised using the proof assistant Agda, the
syntax of which we will follow. We give some of the key definitions
and examples in Agda syntax, but most of the description of the
formalisation is intended as a high-level guide to the Agda code,
which is available online [1]. In order to help the reader navigate the
code when a significant theorem or lemma is mentioned the fully
qualified Agda name is given in a footnote. Note that we shall not

formalise the whole of FLOSKEL but only a core language which
coincides with Plotkin’s (untyped) call-by-value PCF [37].

3.1 The CES machine
The starting point is a variation of Landin’s SECD machine [26]
called Modern SECD [27], which can be traced to the SECD
machine variation of Henderson [22] and to the CEK machine of
Felleisen [15], which we call CES (Agda module CES). Just like the
machine of Henderson, it uses bytecode for the control component
of the machine, and just like the CEK it places the continuations
that originally resided in the dump directly on the stack, simplifying
the machine configurations.

A CES configuration (Config) is a tuple consisting of a fragment
of code (Code), an environment (Env), and a stack (Stack). Evalua-
tion begins with an empty stack and environment, and then follows
a stack discipline. Sub-terms push their result on the stack so that
their super-terms can consume them. When (and if) the evaluation
terminates, the program’s result is the sole stack element.

Source language The source language has constructors for
lambda abstractions (λ t), applications (t $ t’), and variables (var n),
represented using De Bruijn indices [13], so a variable is a natural
number. Additionally, we have natural number literals (lit n), bi-
nary operations (op f t t’), and a conditional (if0 t then t0 else t1).
Because the language is untyped, we can express a fixed-point
combinator without adding additional constructors.

The machine operates on bytecode and does not directly inter-
pret the source terms, so the terms need to be compiled before they
can be executed. The main work of compilation is done by the func-
tion compile’, which takes a term t and a fragment of code c used as
a postlude. The bold upper-case names (CLOS, VAR, and so on)
are the bytecode instructions, which are sequenced using _;_. In-
structions can be seen to correspond to the constructs of the source
language, sequentialised.

compile’ : Term→ Code→ Code
compile’ (λ t) c = CLOS (compile’ t RET) ; c
compile’ (t $ t’) c = compile’ t (compile’ t’ (APPL ; c))
compile’ (var x) c = VAR x ; c
compile’ (lit n) c = LIT n ; c
compile’ (op f t t’) c = compile’ t’ (compile’ t (OP f ; c))
compile’ (if0 b then t else f) c =

compile’ b (COND (compile’ t c) (compile’ f c))

Example 3.1 (codeExample). To compile a term t we supply END
as a postlude: compile t = compile’ t END. The term t =

(λx. x) (λx y. x) is compiled as follows:

compile ((λ var 0) $ (λ (λ var 1))) = CLOS (VAR 0 ; RET) ;
CLOS (CLOS (VAR 1 ; RET) ; RET) ; APPL ; END

Environments (Env) are lists of values (List Value), which are ei-
ther natural numbers (nat n) or closures (clos cl). A closure (Closure)
is a fragment of code paired with an environment (Code × Env).
Stacks (Stack) are lists of stack elements (List StackElem), which are
either values (val v) or continuations (cont cl), represented by clo-
sures.

Fig. 3 shows the definition of the transition relation for con-
figurations of the CES machine. A note on Agda syntax: The in-
struction constructor names are overloaded as constructors for the
relation; their usage is disambiguated by context. Arguments in
curly braces are implicit and can be automatically inferred. Equal-
ity (propositional) is written _≡_.

Stack discipline is clear in the definition of the transition rela-
tion. When e.g. VAR is executed, the CES machine looks up the
value of the variable in the environment and pushes it on the stack.
A somewhat subtle part of the relation is the interplay between the

4 2014/9/8

VAR : ∀ {n c e s v} → lookup n e ≡ just v→ (VAR n ; c, e, s) −−→
CES

(c, e, val v :: s)

CLOS : ∀ {c’ c e s} → (CLOS c’ ; c, e, s) −−→
CES

(c, e, val (clos (c’, e)) :: s)

APPL : ∀ {c e v c’ e’ s} → (APPL ; c, e, val v :: val (clos (c’, e’)) :: s) −−→
CES

(c’, v :: e’, cont (c, e) :: s)

RET : ∀ {e v c e’ s} → (RET, e, val v :: cont (c, e’) :: s) −−→
CES

(c, e’, val v :: s)

LIT : ∀ {n c e s} → (LIT n ; c, e, s) −−→
CES

(c, e, val (nat n) :: s)

OP : ∀ { f c e n1 n2 s} → (OP f ; c, e, val (nat n1) :: val (nat n2) :: s) −−→
CES

(c, e, val (nat (f n1 n2)) :: s)

COND-0 : ∀ {c c’ e s} → (COND c c’, e, val (nat 0) :: s) −−→
CES

(c, e, s)

COND-1+n : ∀ {c c’ e n s} → (COND c c’, e, val (nat (1 + n)) :: s) −−→
CES

(c’, e, s)

Figure 3. The definition of the transition relation of the CES machine.

APPL instruction and the RET instruction. When performing an ap-
plication, two values are required on the stack, one of which has
to be a closure. The machine enters the closure, adding the value
to the environment, and pushes a return continuation on the stack.
The code inside a closure will be terminated by a RET instruction,
so once the machine has finished executing the closure (and thus
produced a value on the stack), that value is returned to the contin-
uation. Note that it will be useful to establish that the CES machine
is deterministic.1

Example 3.2. We trace the execution of Ex. 3.1 defined above,
which exemplifies how returning from an application works. Here
we write a −−→

CES
〈 x 〉 b meaning that the machine uses rule x to

transition from a to b.

let c1 = VAR 0 ; RET
c2 = CLOS (VAR 1 ; RET) ; RET
cl1 = val (clos (c1, [])); cl2 = val (clos (c2, []))

in (CLOS c1 ; CLOS c2 ; APPL ; END, [], [])
−−→
CES
〈 CLOS 〉 (CLOS c2 ; APPL ; END, [], [cl1])

−−→
CES
〈 CLOS 〉 (APPL ; END, [], [cl2, cl1])

−−→
CES
〈 APPL 〉 (VAR 0 ; RET, [cl2], [cont (END, [])])

−−→
CES
〈 VAR refl 〉 (RET, [cl2], [cl2, cont (END, [])])

−−→
CES
〈 RET 〉 (END, [], [cl2])

The final result is therefore the second closure, cl2.

The CES machine terminates with a value v, written cfg ↓CES v
if it, through the reflexive transitive closure of −−→

CES
, reaches the

end of its code fragment with an empty environment, and v as its
sole stack element. It terminates, written cfg ↓CES if there exists a
value v such that it terminates with the value v. It diverges, written
cfg ↑CES if it is possible to take another step from any configuration
reachable from the reflexive transitive closure of −−→

CES
.

We do not prove formally that the compilation of CBV-PCF to
the CES machine is correct, as it is a standard result [12].

3.2 CESH: A heap machine
In a compiler implementation of the CES machine targeting a low-
level language, closures have to be dynamically allocated in a heap.
However, the CES machine does not make this dynamic allocation
explicit. Now we make it explicit in a new machine, called the
CESH, which is a CES machine with an extra heap component in
its configuration.

While heaps are not strictly necessary for a presentation of the
CES machine, they are of great importance to us. The distributed
machine that we will later define needs heaps for persistent storage
of data, and the CESH machine forms an intermediate step between
that and the CES machine. A CESH configuration is defined as

1 CES.Properties.determinism-CES

Config = Code × Env × Stack × Heap Closure

where Heap is a type constructor for heaps parameterised by the
type of its content. The only difference in the definition of the
configuration constituents, compared to the CES machine, is that
a closure value (the clos constructor of the Value type) does not
contain an actual closure, but just a pointer (Ptr). The stack is as
in the CES machine.

Fig. 4 shows those rules of the CESH machine that are signifi-
cantly different than the CES: CLOS and APPL. To build a closure,
the CESH allocates it in the heap, using the _I_ function, which,
given a heap and an element, gives back an updated heap and a
pointer to the element. When performing an application, the ma-
chine has a pointer to a closure, so it looks it up in the heap using
the _!_ function, which, given a heap and a pointer, gives back the
element that the pointer points to (if it exists).

A CESH configuration cfg can terminate with a value v, written
as cfg ↓CESH v, terminate (cfg ↓CESH), or diverge (cfg ↑CESH).
These are analogous to the definitions for the CES machine, except
that the CESH machine is allowed to terminate with any heap.

3.2.1 Correctness
To show that our definition of the machine is correct, we construct a
bisimulation between the CES and CESH, which given the similar-
ity between the two machines, is almost equality. The difference is
dealing with closure values, since the CESH stores pointers rather
than closures. The relation for closure values must be parameterised
by the heap of the CESH configuration, where the (dereferenced)
value of the closure pointer is related to the CES closure.

Formally, the relation is constructed separately for the differ-
ent components of the machine configurations. For bytecode it is
equality, and for closures it is defined component-wise. Values are
related only if they have the same head constructor and related con-
stituents: if the two values are number literals, they are related if
they are equal; a CES closure and a pointer are related only if the
pointer leads to a CESH closure that is in turn related to the CES
closure. Environments are related if they have the same list spine
and their values are pointwise related. The relation on stacks is de-
fined similarly, using the relation on values and continuations. Fi-
nally, two configurations are RCfg-related if their components are
related.

In the formalisation we define heaps and their properties ab-
stractly, rather than using a specific heap implementation. The first
key property we require is that dereferencing a pointer in a heap
where that pointer was just allocated with a value gives back the
same value:

∀ h x→ let (h’, ptr) = h I x in h’ ! ptr ≡ just x

We will require a preorder ⊆ for sub-heaps. The intuitive reading
for h ⊆ h’ is that h’ can be used where h can, i.e. that h’ contains at
least the allocations of h. The second key property that we require

5 2014/9/8

CLOS : ∀ {c’ c e s h} → let (h’, ptrcl) = h I (c’, e) in (CLOS c’ ; c, e, s, h) −−−→
CESH

(c, e, val (clos ptrcl) :: s, h’)

APPL : ∀ {c e v ptrcl c’ e’ s h} → h ! ptrcl ≡ just (c’, e’)→ (APPL ; c, e, val v :: val (clos ptrcl) :: s, h) −−−→
CESH

(c’, v :: e’, cont (c, e) :: s, h)

Figure 4. The definition of the transition relation of the CESH machine (excerpt).

of a heap implementation is that allocation does not overwrite any
previously allocated memory cells (proj1 means first projection):

∀ h x→ h ⊆ proj1 (h I x)

For any two heaps h and h’ such that h ⊆ h’, if RCfg cfg (c, e, s, h),
then RCfg cfg (c, e, s, h’).2

Our first correctness result is that RCfg is a simulation relation.3

The proof is by cases on the CES transition, and, in each case,
the CESH machine can make analogous transitions. The property
mentioned above is then used to show that RCfg is preserved.

It is helpful to introduce the notion of a presimulation relation,
defined as:

Presimulation _−→_ _−→’_ _R_ =
∀ a a’ b→ (a −→ a’)→ a R b→ ∃ λ b’→ (b −→’ b’)

Then, the inverse of RCfg is a presimulation.4 In general, if R is a
simulation between relations −→ and −→’, R -1 is a presimulation,
and −→’ is deterministic at states b related to some a, then R -1 is
a simulation,5 from which it follows that RCfg is a bisimulation, be-
cause we have already established that the CESH is deterministic.
In particular, if RCfg cfg1 cfg2 then cfg1 ↓CES nat n ↔ cfg2 ↓CESH

nat n and cfg1 ↑CES ↔ cfg2 ↑CESH.6

To finalise the proof we note that there are configurations in
RCfg. One such example is the initial configuration for a fragment
of code: For any c, we have RCfg (c, [], []) (c, [], [], ∅) (where ∅ is the
empty heap).

3.3 Network models
In this section we define models for networks with synchronous and
asynchronous communication, that are parameterised by an under-
lying labelled transition system. Both kinds of networks are mod-
elled by two-level transition systems, which is common in oper-
ational semantics for concurrent and parallel languages. A global
level describes the transitions of the system as a whole, and a local
level the local transitions of the nodes in the system. Synchronous
communication is modelled by rendezvous, i.e. two nodes have
to be ready to send and receive a message at a single point in
time. Asynchronous communication is modelled using a “message
soup”, representing messages currently in transit, that nodes can
add and remove messages from, reminiscent of the Chemical Ab-
stract Machine [5].

The model (Agda module Network) is parameterised by the un-
derlying transition relation of the machines _ ` _ _−−−−→

Machine
_. The

sets Node, Machine, and Msg are additional parameters. Elements
of Node will act as node identifiers, and we assume that these en-
joy decidable equality.7 The type Machine is the type of the nodes’
configurations, and Msg the type of messages that the machines can
send. The presence of the Node argument means that the configura-
tion of a node may know about and can depend on its own identi-
fier. The type constructor Tagged is used to separate different kinds

2 CESH.Simulation.HeapUpdate.config
3 CESH.Simulation.simulation
4 CESH.Presimulation.presimulation
5 Relation.presimulation-to-simulation
6 CESH.Bisimulation.termination-agrees, CESH.Bisimulation.divergence-agrees
7 In MPI, they would correspond to the so called integer “node ranks”.

of local transitions: A Tagged Msg can be τ (i.e. a silent transition),
send msg, or receive msg (for msg : Msg).

A synchronous network (SyncNetwork) is an indexed family
of machines, Node → Machine, representing the nodes of the
system. An asynchronous network (AsyncNetwork) is an indexed
family of machines together with a list of pending messages
(Node→ Machine) × List Msg.

Fig. 5 shows the definition of the transition relation for syn-
chronous and asynchronous networks. It is uses update, a func-
tion that corresponds to the usual function update (often written
(f | x 7→ y)) which updates an element of an indexed family (here
relying on the decidable equality of node identifiers).

There are two ways for a synchronous network to make a tran-
sition. The first, silent-step, occurs when a machine in the network
makes a transition tagged with τ , and is allowed at any time. The
second, comm-step, is the aforementioned rendezvous. A node s first
takes a step sending a message, and afterwards a node r (which can
be s) takes a step receiving the same message. Asynchronous net-
works only have one rule, step, which can be used if a node steps
with a tagged message that “agrees” with the pending messages. If
the node receives a message, the message has to be in the list before
the transition. If the node sends a message, it has to be there after.
If the node takes a silent step, the list stays the same before and
after.8

Asynchronous networks actually subsume synchronous net-
works.9 Going in the other direction is not possible in general,
but for some specific instances of the underlying transition relation
it is, as we will see later.

3.4 DCESH1: A trivially distributed machine
In higher-order distributed programs containing location specifiers,
we will sometimes encounter situations where a function is not
available locally. For example, when evaluating the function f in
the term (f @ A) (g @ B), we may need to apply the remotely
available function g. Our general idea is to do this by decomposing
some instructions into communication. In the example, the function
f may send a message requesting the evaluation of g, meaning that
the APPL instruction is split into a pair of instructions: APPL-send
and APPL-receive.

This section outlines an abstract machine, called DCESH1,
which decomposes all application and return instructions into com-
munication. The machine is trivially distributed, because it runs as
the sole node in a network, sending messages only to itself. Al-
though it is not used as an intermediate step for the proofs, it is
included because it illustrates this decomposition.

A configuration of the DCESH1 machine (Machine) is a tuple
consisting of a possibly running thread (Maybe Thread), a closure
heap (Heap Closure), and a “continuation heap” (Heap (Closure × Stack)).
Since the language is sequential we have at most one thread
running at once. The thread resembles a CES configuration,
Thread = Code × Env × Stack, but stacks are defined differ-
ently. A stack is now a list of values paired with an optional pointer
(into the continuation heap), Stack = List Val × Maybe ContPtr
(ContPtr is a synonym for Ptr). When performing an application,
when CES would push a continuation on the stack, the DCESH1

8 This is formalised using a function called detag, which creates lists of input
and output messages from a tagged message.
9 Network.−→Sync-to-−→Async+

6 2014/9/8

silent-step : ∀ { i m’} → i ` nodes i τ−−−−→
Machine

m’→ nodes −−→
Sync

update nodes i m’

comm-step : ∀ {s r msg sender’ receiver’} → let nodes’ = update nodes s sender’ in

s ` nodes s
send msg−−−−−→
Machine

sender’→ r ` nodes’ r
receive msg−−−−−−→

Machine
receiver’→ nodes −−→

Sync
update nodes’ r receiver’

step : ∀ {nodes} msgsl msgsr { tmsg m’ i} → let (msgsin,msgsout) = detag tmsg in

i ` nodes i
tmsg−−−−→

Machine
m’→ (nodes,msgsl ++ msgsin ++ msgsr) −−−→Async

(update nodes i m’,msgsl ++ msgsout ++ msgsr)

Figure 5. The definition of the transition relations for synchronous and asynchronous networks.

machine is going to stop the current thread and send a message,
which means that it has to save the continuation and the remainder
of the stack in the heap for them to persist the thread’s lifetime.

The optional pointer in Stack is an element at the bottom of the
list of values. Comparing it to the definition of the CES machine,
where stacks are lists of either values or continuations (just clo-
sures), we can picture their relation: Whereas the CES machine
stores the values and continuations in a single, contiguous stack,
the DCESH1 machine stores first a contiguous block of values un-
til reaching a continuation, at which point it stores (just) a pointer
to the continuation closure and the rest of the stack.

The definition of closures, values, and environments are other-
wise just like in the CESH machine. The machine communicates
with itself using two kinds of messages, APPL and RET, corre-
sponding to the instructions that we are replacing with communi-
cation.

Fig. 6 defines the transition relation for the DCESH1 machine,
written m

tmsg−−→ m’ for a tagged message tmsg and machine
configurations m and m’. Most transitions are the same as in the
CESH machine, just framed with the additional heaps and the just
meaning that the thread is running. We elide them for brevity.

The interesting rules are the decomposed application and return
rules. When an application is performed, an APPL message con-
taining a pointer to the closure to apply, the argument value and
a pointer to a return continuation (which is first allocated) is sent,
and the thread is stopped (nothing). We call such a machine inac-
tive. The machine can receive an application message if the thread
is not running. When that happens, the closure pointer is derefer-
enced and entered, adding the received argument to the environ-
ment. The stack is left empty apart from the continuation pointer of
the received message. When returning from a function application,
the machine sends a return message containing the continuation
pointer and the value to return.

On the receiving end of that communication, it dereferences the
continuation pointer and enters it, putting the result value on top of
the stack.

Example 3.3. We trace the execution of Ex. 3.1 in a synchronous
network of nodes indexed by the unit type. Heaps with pointer
mappings are written {ptr 7→ element}. The last list shown in each
step is the message list of the asynchronous network.

let hcl = {ptr1 7→ (c1, [])}
h’cl = {ptr1 7→ (c1, []), ptr2 7→ (c2, [])}
hcnt = {ptrcnt 7→ ((END, []), [], nothing)}

in (just (CLOS c1 ; CLOS c2 ; APPL ; END, [], [], nothing), ∅, ∅), []
−→〈 step CLOS 〉
(just (CLOS c2 ; APPL ; END, [], [clos ptr1], nothing), hcl, ∅), []
−→〈 step CLOS 〉
(just (APPL ; END, [], [clos ptr2, clos ptr1], nothing), h’cl, ∅), []
−→〈 step APPL-send 〉
(nothing, h’cl, hcnt), [APPL ptr1 (clos ptr2) ptrcnt]
−→〈 step APPL-receive 〉
(just (VAR 0 ; RET, [clos ptr2], [], just ptrcnt), h’cl, hcnt), []
−→〈 step (VAR refl) 〉

(just (RET, [clos ptr2], [clos ptr2], just ptrcnt), h’cl, hcnt), []
−→〈 step RET-send 〉
(nothing, h’cl, hcnt), [RET ptrcnt (clos ptr2)]
−→〈 step RET-receive 〉
(just (END, [], [clos ptr2], nothing), h’cl, hcnt), []

Comparing this to Example 3.2 we can see that an APPL-send fol-
lowed by an APPL-receive amounts to the same thing as the APPL
rule in the CES machine, and similarly for the RET instruction.

3.5 DCESH: The distributed CESH machine
We have so far seen two refinements of the CES machine. We
have seen CESH, that adds heaps, and DCESH1, that decomposes
instructions into communication in a degenerate network of only
one node. Our final refinement is a distributed machine, DCESH,
that supports multiple nodes. The main problem that we now face
is that there is no centralised heap, but each node has its own
local heap. This means that, for supporting higher-order functions
across node boundaries, we have to somehow keep references to
closures in the heaps of other nodes. Another problem is efficiency;
we would like a system where we do not pay the higher price of
communication for locally running code. The main idea for solving
these two problems is to use remote pointers, RPtr = Ptr × Node,
pointers paired with node identifiers signifying on what node’s heap
the pointer is located. This solves the heap problem because we
always know where a pointer comes from. It can also be used to
solve the efficiency problem since we can choose what instructions
to run based on whether a pointer is local or remote. If it is local,
we run the rules of the CESH machine. If it is remote, we run the
decomposed rules of the DCESH1 machine.

The final extension to the term language and bytecode will add
support for location specifiers. We add a term construct t @ i, and
an instruction REMOTE c i for its compilation. The location spec-
ifiers, t @ i, are taken to mean that the term t should be evaluated
on node i. For compilation, we require that the terms t in all loca-
tion specification sub-terms t @ i are closed. Terms where this does
not hold are transformed automatically using lambda lifting [25]
(transform every sub-term t @ i to t’ = ((λ fv t. t) @ i) (fv t)).
The REMOTE c i instruction will be used to start running a code
fragment c on node i in the network. We also extend the compile’
function to handle the new term construct:

compile’ (t @ i) c = REMOTE (compile’ t RET) i ; c

Note that we reuse the RET instruction to return from a remote
computation.

The definition of closures, values, environments and closure
heaps are the same as in the CESH machine, but using RPtr instead
of Ptr for closure pointers.

The stack combines the functionality of the CES(H) machine,
permitting local continuations, with that of the DCESH1 machine,
making it possible for a stack to end with a continuation on another
node. A stack element is a value or a (local) continuation signified
by the val and cont constructors. A stack (Stack) is a list of stack el-
ements, possibly ending with a (remote) pointer to a continuation,
List StackElem × Maybe ContPtr (where ContPtr = RPtr). Threads

7 2014/9/8

APPL-send : ∀ {c e v ptrcl s r hcl hcnt} → let (h’cnt, ptrcnt) = hcnt I ((c, e), s, r) in

(just (APPL ; c, e, v :: clos ptrcl :: s, r), hcl, hcnt)
send (APPL ptrcl v ptrcnt)−−−−−−−−−−−−−−−→ (nothing, hcl, h’cnt)

APPL-receive : ∀ {hcl hcnt ptrcl v ptrcnt c e} → hcl ! ptrcl ≡ just (c, e)→

(nothing, hcl, hcnt)
receive (APPL ptrcl v ptrcnt)−−−−−−−−−−−−−−−−→ (just (c, v :: e, [], just ptrcnt), hcl, hcnt)

RET-send : ∀ {e v ptrcnt hcl hcnt} →

(just (RET, e, v :: [], just ptrcnt), hcl, hcnt)
send (RET ptrcnt v)
−−−−−−−−−−−→ (nothing, hcl, hcnt)

RET-receive : ∀ {hcl hcnt ptrcnt v c e s r} → hcnt ! ptrcnt ≡ just ((c, e), s, r)→

(nothing, hcl, hcnt)
receive (RET ptrcnt v)
−−−−−−−−−−−−→ (just (c, e, v :: s, r), hcl, hcnt)

Figure 6. The definition of the transition relation of the DCESH1 machine (excerpt).

and machines are defined like in the DCESH1 machine. The mes-
sages that DCESH can send are those of the DCESH1 machine but
using remote pointers instead of plain pointers, plus a message for
starting a remote computation, REMOTE c i rptrcnt. Note that send-
ing a REMOTE message amounts to sending code in our formali-
sation, which is something that we would not like to do. However,
because no code is generated at run-time, every machine can be
“pre-loaded” with all the bytecode it needs, and the message only
needs to contain a reference to a fragment of code.

Fig. 7 defines the transition relation of the DCESH machine,
written i ` m

tmsg−−→ m’ for a node identifier i, a tagged message
tmsg and machine configurations m and m’. The parameter i is taken
to be the identifier of the node on which the transition is taking
place. For local computations, we have rules analogous to those
of the CESH machine, so we omit them and show only those for
remote computations. The rules use the function i ` h I x for
allocating a pointer to x in a heap h and then constructing a remote
pointer tagged with node identifier i from it. When starting a remote
computation, the machine allocates a continuation in the heap and
sends a message containing the code and continuation pointer to the
remote node in question. Afterwards the current thread is stopped.

@ A @ B
REMOTE c' B; c
e
s
r

REMOTE
c' B rptr

nothing

nothing

(c, e, (s, r))

c'
[]
[]
just rptr

*
RET
e
val v
rptr

RET
rptr v

c
e
val v :: s
r

On the receiving end of such a communication, a new thread is
started, placing the continuation pointer at the bottom of the stack
for the later return to the caller node. To run the apply instruction
when the function closure is remote, i.e. its location is not equal to
the current node, the machine sends a message containing the clo-
sure pointer, argument value, and continuation, like in the DCESH1

machine. On the other end of such a communication, the machine
dereferences the pointer and enters the closure with the received
value. The bottom remote continuation pointer is set to the received
continuation pointer. After either a remote invocation or a remote
application, the machine can return if it has produced a value on the
stack and has a remote continuation at the bottom of the stack. To
do this, a message containing the continuation pointer and the re-
turn value is sent to the location of the continuation pointer. When
receiving a return message, the continuation pointer is dereferenced
and entered with the received value.

A network of abstract machines is obtained by instantiating
the Network module with the −→Machine relation. From here on
SyncNetwork and AsyncNetwork and their transition relations refer to
the instantiated versions.

Unsurprisingly, if all nodes in a synchronous network except
one are inactive, then the next step is deterministic.10 Another key
ancillary property of DCESH nets is that synchronous or asyn-
chronous networks for single threaded computations behave essen-
tially the same,11 which means it is enough to deal with the simpler
synchronous networks.

DCESH nets nodes can terminate with a value v (nodes ↓Sync v),
terminate (nodes ↓Sync), or diverge (nodes ↑Sync). A network
terminates with a value v if it can step to a network where only one
node is active, and that node has reached the END instruction with
the value v on top of its stack. The other definitions are analogous
to those of the CES(H) machine.

3.5.1 Correctness
To prove the correctness of the machine, we will now establish a
bisimulation between the CESH and the DCESH machines.

To simplify this development, we extend the CESH machine
with a dummy rule for the REMOTE c i instruction so that both
machines run the same bytecode. This rule is almost a no-op, but
since we are assuming that the code we run remotely is closed, the
environment is emptied, and since the compiled code c will end in
a RET instruction a return continuation is pushed on the stack.

(REMOTE c’ i ; c, e, s, h) −−−→
CESH

(c’, [], cont (c, e) :: s, h)

The relation that we are about to define is, as before, almost
equality. But since values may be pointers to closures, it must be
parameterised by heaps. A technical problem is that both machines
use pointers, and the DCESH machine also uses remote pointers
and has two heaps for each node: so the relation must be parame-
terised by all the heaps in the system. The extra parameter is a syn-
onym for an indexed family of the closure and continuation heaps,
Heaps = Node → DCESH.ClosHeap × DCESH.ContHeap. The com-
plexity of this relation justifies our use of mechanised reasoning.

The correctness proof itself is not routine. Simply following
the recipe that we used before does not work. In the old proof,
there can be no circularity, since that bisimulation was constructed
inductively on the structure of the CES configuration. But now both
systems, CESH and DCESH, have heaps where there is a potential
for circular references (e.g. a closure, residing in a heap, whose
environment contains a pointer to itself), preventing a direct proof
via structural induction. This is perhaps the most mathematically
(and formally) challenging point of the paper. The solution lies in
using the technique of step-indexed relations, adapted to the context

10 DCESH.Properties.determinism-Sync
11 DCESH.Properties.−→Async+-to-−→Sync+

8 2014/9/8

REMOTE-send : ∀ {c’ i’ c e s r hcl hcnt} → let (h’cnt, rptr) = i ` hcnt I ((c, e), s, r) in

i ` (just (REMOTE c’ i’ ; c, e, s, r), hcl, hcnt)
send (REMOTE c’ i’ rptr)−−−−−−−−−−−−−−−→ (nothing, hcl, h’cnt)

REMOTE-receive : ∀ {hcl hcnt c rptrcnt} →

i ` (nothing, hcl, hcnt)
receive (REMOTE c i rptrcnt)−−−−−−−−−−−−−−−−−→ (just (c, [], [], just rptrcnt), hcl, hcnt)

APPL-send : ∀ {c e v ptrcl j s r hcl hcnt} → i 6≡ j→ let (h’cnt, rptrcnt) = i ` hcnt I ((c, e), s, r) in

i ` (just (APPL ; c, e, val v :: val (clos (ptrcl, j)) :: s, r), hcl, hcnt)
send (APPL (ptrcl,j) v rptrcnt)−−−−−−−−−−−−−−−−−→ (nothing, hcl, h’cnt)

APPL-receive : ∀ {hcl hcnt ptrcl v rptrcnt c e} → hcl ! ptrcl ≡ just (c, e)→

i ` (nothing, hcl, hcnt)
receive (APPL (ptrcl,i) v rptrcnt)−−−−−−−−−−−−−−−−−−→ (just (c, v :: e, [], just rptrcnt), hcl, hcnt)

RET-send : ∀ {e v rptrcnt hcl hcnt} →

i ` (just (RET, e, val v :: [], just rptrcnt), hcl, hcnt)
send (RET rptrcnt v)
−−−−−−−−−−−−→ (nothing, hcl, hcnt)

RET-receive : ∀ {hcl hcnt ptrcnt v c e s r} → hcnt ! ptrcnt ≡ just ((c, e), s, r)→

i ` (nothing, hcl, hcnt)
receive (RET (ptrcnt,i) v)
−−−−−−−−−−−−−−→ (just (c, e, val v :: s, r), hcl, hcnt)

Figure 7. The definition of the transition relation of the DCESH machine (excerpt).

of bisimulation relations [2]. The additional rank parameter records
how many times pointers are allowed to be dereferenced.

The rank is used in defining the relation for closure pointers
Rrptrcl . If the rank is zero, the relation is trivially fulfilled. If the
rank is non-zero then three conditions must hold. First, the CESH
pointer must point to a closure in the CESH heap; second, the re-
mote pointer of the DCESH network must point to a closure in the
heap of the location that the pointer refers to; third, the two clo-
sures must be related. The relation for stack elements RStackElem is
almost as before, but now requires that the relation is true for any
natural number rank, i.e. for any finite number of pointer derefer-
encings. The relation for stacks RStack now takes into account that
the DCESH stacks may end in a pointer representing a remote
continuation, requiring that the pointer points to something in the
continuation heap of the location of the pointer, which is related
to the CESH stack element. Finally, a CESH configuration and a
DCESH thread are RThread-related if the thread is running and the
constituents are pointwise related. Then a CESH configuration is
related to a synchronous network RSync if the network has exactly
one running machine that is related to the configuration.

DCESH net heaps are ordered pointwise (called ⊆s since it is
the “plural” of ⊆). For any CESH closure heaps h and h’ such that
h ⊆ h’ and families of DCESH heaps hs and hs’ such that hs ⊆s hs’,
if REnv n h hs e1 e2 then REnv n h’ hs’ e1 e2 and if RStack h hs s1 s2
then RStack h’ hs’ s1 s2.12

Showing that RSync is a simulation relation13 proceeds by cases
on the CESH transition. In each case, the DCESH network can
make analogous transitions. The property above is then used to
show that RSync is preserved. It is quite immediate that the inverse
of RSync is a presimulation14 which leads to the main result that RSync

is a bisimulation.15

In particular, if RSync cfg nodes then cfg ↓CESH nat n↔ nodes ↓Sync

nat n and cfg ↑CESH ↔ nodes ↑Sync,16 and we also have that initial
configurations are in RSync.17 These final results complete the pic-
ture for the DCESH machine. We have established that we get the
same final result regardless of whether we choose to run a fragment
of code using the CES, the CESH, or the DCESH machine.

12 DCESH.Simulation-CESH.HeapUpdate.env, DCESH.Simulation-CESH.HeapUpdate.stack
13 DCESH.Simulation-CESH.simulation-sync
14 DCESH.Simulation-CESH.presimulation-sync
15 DCESH.Simulation-CESH.bisimulation-sync
16 DCESH.Simulation-CESH.termination-agrees-sync,
DCESH.Simulation-CESH.divergence-agrees-sync
17 DCESH.Simulation-CESH.initial-related-sync

4. Fault-tolerance via transactions
In this section we present a generic transaction-based method for
handling failure which is suitable for the DCESH. Node state is
“backed up” (commit) at certain points in the execution, and if an
exceptional condition arises, the backup is restored (roll-back).

This development is independent of the underlying transition
relation, but the proofs rely on sequentiality. We assume that we
have two arbitrary types Machine and Msg, as well as a transition
relation over them:

−−−−→
Machine

: Machine→ Tagged Msg→ Machine→ ?

Since we have no knowledge of exceptional states in Machine, since
it is a parameter, we define another relation, −−−→

Crash
, as a thin

layer on top of −−−−→
Machine

. The new definition is shown in Fig. 8
and adds the exceptional state nothing by extending the set of states
of the relation to Maybe Machine. The fallible machine can make
a normal-step transition from and to just ordinary Machine states,
or it can crash which leaves it in the exceptional state. This means
that we tolerate fail-stop faults as opposed to e.g. the more general
Byzantine failures.

The additional assumptions for sequentiality are that we have a
decidable predicate, active : Machine → ? on machines, and the
following functions:

inactive-receive-active : ∀ {m m’ msg} →
(m

receive msg−−−−−−→
Machine

m’)→ ¬ (active m) × active m’

active-silent-active : ∀ {m m’} →
(m τ−−−−→

Machine
m’)→ active m × active m’

active-send-inactive : ∀ {m m’ msg} →
(m

send msg−−−−−→
Machine

m’)→ active m × ¬ (active m’)

These functions express the property that if a machine is in-
voked, i.e. it receives a message, then it must go from an inactive
to an active state. If the machine then takes a silent step, it must
remain active, and when it sends a message it must go back to be-

normal-step : ∀ { tmsg m m’} →
(m

tmsg−−−−→
Machine

m’)→ (just m
tmsg−−−→

Crash
just m’)

crash : ∀ {m} →
(just m τ−−−→

Crash
nothing)

Figure 8. The definition of the transition relation of a machine that
may crash.

9 2014/9/8

silent-step : ∀ {m n m’} →
(just m τ−−−→

Crash
just m’) → ((m, n) τ−−−−→

Backup
(m’, n))

receive-step : ∀ {m n m’ msg} →

(just m
receive msg−−−−−−→

Crash
just m’)→ ((m, n)

receive msg−−−−−−→
Backup

(m’,m’))

send-step : ∀ {m n m’ msg} →

(just m
send msg−−−−−→

Crash
just m’) → ((m, n)

send msg−−−−−→
Backup

(m’,m’))

recover : ∀ {m n} →
(just m τ−−−→

Crash
nothing) → ((m, n) τ−−−−→

Backup
(n, n))

Figure 9. The definition of the transition relation for a crashing
machine with backup.

ing inactive. This gives us sequentiality; a machine cannot fork new
threads, and cannot be invoked several times in parallel.

As the focus here is on obvious correctness and simplicity, we
abstract from the method of detecting faults in a separate node, and
assume that it can be done (using e.g. a heartbeat network). Simi-
larly, we assume that we have a means of creating and restoring a
backup of a node in the system; how this is done depends largely
on the underlying system. We so define a machine with a backup as
Backup = Machine × Machine, where the second Machine denotes
the backup. Using this definition, we define a backup strategy, given
in Fig. 9. This strategy makes a backup just after sending and re-
ceiving messages. In the case of the underlying machine crashing,
it restores the backup. Note that this is only one of many possible
backup strategies. This one is particularly nice from a correctness
point-of-view, because it makes a backup after every observable
event, although it may not be the most performant.

We define binary relations for making transition with some
tagged message, as follows:

_ −−−−→
Machine

_ : Machine→ Machine→ ?

m1 −−−−→
Machine

m2 = ∃ λ tmsg→ (m1
tmsg−−−−→

Machine
m2)

_ −−−−→
Backup

_ : Backup→ Backup→ ?

b1 −−−−→
Backup

b2 = ∃ λ tmsg→ (b1
tmsg−−−−→

Backup
b2)

Using these relations we can define the observable trace of run
of a Machine (Backup), i.e. an element of the reflexive transitive
closure of the above relations. First we define IO, the subset of
tagged messages that we can observe, namely send and receive:

data IO (A : ?) : ? where
send receive : A→ IO A

The following function now gives us the observable trace, given
an element of −−−−→

Machine
∗ (which is defined using list-like notation)

by ignoring any silent steps.

J_KM : ∀ {m1 m2} → m1 −−−−→
Machine

∗ m2 → List (IO Msg)

J [] KM = []
J ((τ ,) :: steps) KM = J steps KM
J ((send msg,) :: steps) KM = send msg :: J steps KM
J ((receive msg,) :: steps) KM = receive msg :: J steps KM

J_KB is defined analogously. Given this definition, we can triv-
ially prove that if we have a run m1 −−−−→

Machine
∗ m2 then there exists

a run of the Backup machine that starts and ends in the same state
and has the same observational behaviour.18 This is proved by con-
structing a crash-free Backup run given the Machine run. Obviously,
the interesting question is whether we can take any crashing run
and get a corresponding Machine run.

18 Backup.soundness

The key to proving the result that we want, which more formally
is that, given (bs : (b1, b1) −−−−→

Backup
∗ (m2, b2)), there is a run

(ms : b1 −−−−→
Machine

∗ m2) with the same observational behaviour as

bs19, is the following lemma20:

fast-forward-to-crash : ∀ {m1 m2 b1 b2 n} →
(s : (m1, b1) −−−−→

Backup
∗ (m2, b2))→

thread-crashes s→ length s 6 n→
∃ λ (s’ : ((b1, b1) −−−−→

Backup
∗ (m2, b2)))→

(¬ thread-crashes s’) × (J s KB ≡ J s’ KB) × (length s’ 6 n)

Here thread-crashes is a decidable property on backup runs, that
ensures that, if m1 is active, then it crashes and does a recovery step
at some point before it performs an observable action. The proof of
fast-forward-to-crash is done by induction on the natural number n.

The above result can be enhanced further by observing that if the
probability of a machine crash is not 1 then the probability of the
machine eventually having a successful execution is 1. This means
that the probability for the number n above to exist is also 1.21

5. Related work
There is a multitude of programming languages and libraries for
distributed or client server computing. We focus mostly on those
with a functional flavour. For surveys, see [28, 42]. Broadly speak-
ing, we can divide them into those that use some form of explicit
message passing, and those that have more implicit mechanisms for
distribution and communication.

Explicit A prime example of a language for distributed comput-
ing that uses explicit message passing is Erlang [3]. Erlang is a
very successful language used prominently in the telecommunica-
tion industry. Conceptually similar solutions include MPI [21] and
Cloud Haskell [14]. The theoretically advanced projects Nomadic
Pict [44] and the distributed join calculus [16] both support a no-
tion of mobility for distributed agents, which enables more expres-
sivity for the distribution of a program than the fairly static net-
works (with only ubiquitous functions being mobile) that our work
uses. Session types have been used to extend a variety of languages,
including functional languages, with better communication primi-
tives [43]. Work on session types has been an inspiration also for us:
the way that we compile a single program to multiple nodes can be
likened to the projection operator in multiparty session types [24].
But in general, explicit languages are well-proven, but far away in
the language design-space from the seamless distributed comput-
ing that we envision could be done using native RPC, because they
place the significant burden of explicit communication on the pro-
grammer.

Implicit Our work generalises Remote Procedure Call (RPC) [7]
with full support for higher-order functions. In loc. cit. it is argued
that emulating a shared address space is infeasible since it requires
each pointer to also contain location information, and that it is
questionable whether acceptable efficiency can be achieved. These
arguments certainly apply to our work, where we do just this.
With the goal of expressivity in mind, however, we believe that we
should enable the programmer to write the potentially inefficient
programs that (internally) use remote pointers, because not all
programs are performance critical. Furthermore, using a tagged
pointer representation [30] for closure pointers means that we can
tag pointers that are remote, and pay a very low, if any, performance
penalty for local pointers.

19 Backup.completeness
20 Backup.fast-forward-to-crash
21 This argument has not been formalised in Agda.

10 2014/9/8

Remote Evaluation (REV) [40] is another generalisation of
RPC, siding with us on enabling the use of higher-order functions
across node boundaries. The main differences between REV and
our work is that REV relies on sending code, whereas we can do
both, and that it has a more elaborate distribution mechanism.

The well-researched project Eden [29] and the associated ab-
stract machine DREAM [8], which builds on HASKELL, is a semi-
implicit language. Eden allows expressing distributed algorithms
at a high level of abstraction, and is mostly implicit about com-
munication, but explicit about process creation. Eden is specified
operationally using a two-level semantics similar to ours, but in
the context of the call-by-need evaluation strategy. Kanor [23] is
a project that similarly aims to simplify the development of dis-
tributed programs by providing a declarative language for specify-
ing communication patterns inside an imperative host language.

Hop [38], Links [11], and ML5 [32] are examples of so called
tierless languages that allow writing (for instance) the client and
server code of web applications in unified languages with more or
less seamless interoperability between them. The Links language
shares our goal of unifying distributed programs into a single lan-
guage with seamless interoperability between the nodes, but its fo-
cus is on web programming with client, server, and database. For
that purpose it includes sub-languages for elegantly constructing
and manipulating XML documents and for doing database queries.
The behaviour of Links is specified using the client/server calcu-
lus [10], which is an operational semantics similar in purpose to
our abstract machines, but, as its name suggests, limited to two
nodes. The two nodes of the system are constructed with web-
programming in mind and are not equal peers. The server is state-
less to be able to handle a large number of clients and unexpected
disconnections. The semantics operates on a first-order language
and uses explicit substitutions. The client/server calculus also in-
spired work on the LSAM [33], that lifts the two-node limitation.
A similar, but earlier, machine is that of dML [35]. The dML and
LSAM machines are conceptually close to our machine, but de-
scribed on a level that is not as readily implementable as our work,
using explicit substitutions and synchronous message passing.

On the language side, our work draws inspiration from abstract
machines for game semantics [17, 18] where an exotic compila-
tion technique based on game semantics is used to implement a
language like ours, but for call-by-name and without algebraic data
types. Recent work shows a formalisation similar to ours, but based
on the Krivine machine and the significantly less popular call-by-
name evaluation strategy [19].

6. Conclusion
The main conceptual contribution of this work is a new abstract
machine, or abstract machine net rather, called the DCESH. Its
main feature is that function calls behave, from the point of view of
the programmer, in the same way whether they are local or remote.
Moreover, on a single node the behaviour of DCESH is that of a
conventional SECD-like abstract machine. All correctness proofs
have been formalised using Agda.

On this theoretical foundation it is natural to build a compiler
for a (very conventional) CBV language where terms are location-
aware. Compared to most of the literature on the topic, the thrust
of this work is not a general-purpose functional language for
location-aware computing but rather a location-aware compilation
technique for general-purpose functional languages. The perfor-
mance of the compiler, as suggested by the benchmarks, improves
dramatically on previous work in terms of single-node behaviour,
and the distribution overheads are not onerous.

RPC as a paradigm has been criticised for several reasons: its
execution model does not match the native call model, there is
no good way of dealing with failure, and it is inherently ineffi-

cient [41]. By taking an abstract machine model in which RPCs
behave exactly the same as local calls, by showing how a generic
transaction mechanism can handle failure, and by implementing a
reasonably performant compiler we address all these problem head-
on. We believe that we provide enough evidence for general native
RPCs to be reconsidered in a more positive light.

6.1 Further work
The DCESH has the internal machinery required for parallel exe-
cution, but we restrict ourselves to sequential execution. In moving
towards parallelism there are several language design (how to add
parallelism?) and theoretical (is compilation still correct?) chal-
lenges. The language design aspects are too broad to discuss here,
beyond emphasising that the thread-based mechanism of DCESH
is indeed quite flexible. The only ingredient lacking is a synchroni-
sation primitive, but that is not a serious difficulty. The theoretical
challenges are mainly stemming out of the failure of the equiva-
lence of synchronous and asynchronous networks in the presence
of multiple pending messages22. Whether we choose to stick to a
synchronous network model, which can however be rather unrealis-
tic, or we try to work directly in the more challenging environment
of asynchronous networks, remains to be seen.

The current implementation does not need distributed garbage
collection. The values which are the result of CBV evaluation are
always sent, along with any required closures, to the node where the
function using them as arguments is executed. With this approach
local garbage collection suffices. Note that this is similar to the ap-
proach that Links takes. If a large data structure needs to be held
on a particular node the programmer needs to be aware of this re-
quirement and indirect the access to it using functions. However, if
we wanted to automate this process as well, and prevent some data
from migrating when it’s too large, the current approach to garbage
collection could not cope, and distributed garbage collection would
be required. Mutable references or lazy evaluation would also re-
quire it. Whether this can be done efficiently is a separate topic of
research [36].

Whether code or data can or should be migrated to different
nodes is a question that can be answered from a safety or from an
efficiency point of view. The safety angle is very well covered by
type systems such as ML5’s, which prevent the unwanted exporta-
tion of local resources. The efficiency point of view can also be
dealt with in a type-theoretic way, as witnessed by recent work
in resource-sensitive type systems [9, 20]. The flexibility of the
DCESH in terms of localising or remoting the calls (statically or
even dynamically) together with a resource oriented system can
pave the way towards a highly-convenient automatic orchestration
system in which a program is automatically distributed among sev-
eral nodes to achieve certain performance objectives.

Finally, an Agda formalisation is given only for the abstract ma-
chine and its property, which are the new theoretical contributions
of the paper. However, a full formalisation of the compiler stack,
remains a long-term ambition.

References
[1] Floskel, proofs and compiler implementation. http://www.cs.

bham.ac.uk/~ohf162/floskel.tar.gz. Last accessed: 3 June
2014.

[2] A. J. Ahmed, M. Fluet, and G. Morrisett. A step-indexed model of
substructural state. In ICFP, pages 78–91, 2005.

[3] J. Armstrong, R. Virding, and M. Williams. Concurrent programming
in ERLANG. Prentice Hall, 1993. ISBN 978-0-13-285792-5.

[4] L. Augustsson. Compiling pattern matching. In FPCA, pages 368–
381, 1985.

22 DCESH.Properties.−→Async+-to-−→Sync+

11 2014/9/8

[5] G. Berry and G. Boudol. The Chemical Abstract Machine. In POPL,
pages 81–94, 1990.

[6] B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M. Levy.
Lightweight remote procedure call. ACM Trans. Comput. Syst., 8(1):
37–55, 1990.

[7] A. Birrell and B. J. Nelson. Implementing Remote Procedure Calls.
ACM Trans. Comput. Syst., 2(1):39–59, 1984.

[8] S. Breitinger, U. Klusik, R. Loogen, Y. Ortega-Mallén, and R. Pena.
Dream: The distributed eden abstract machine. In IFL, pages 250–269,
1997.

[9] A. Brunel, M. Gaboardi, D. Mazza, and S. Zdancewic. A core quan-
titative coeffect calculus. In Shao [39], pages 351–370. ISBN 978-3-
642-54832-1.

[10] E. Cooper and P. Wadler. The RPC calculus. In PPDP, pages 231–242,
2009.

[11] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: Web Program-
ming Without Tiers. In FMCO, pages 266–296, 2006.

[12] O. Danvy and K. Millikin. A rational deconstruction of Landin’s
SECD machine with the J operator. LMCS, 4(4), 2008.

[13] N. G. de Bruijn. Lambda calculus notation with nameless dummies,
a tool for automatic formula manipulation, with application to the
church-rosser theorem. Indagationes Mathematicae, pages 381–392,
1972. .

[14] J. Epstein, A. P. Black, and S. L. P. Jones. Towards Haskell in the
cloud. In Symposium on Haskell 2011, pages 118–129.

[15] M. Felleisen and D. P. Friedman. Control operators, the SECD-
machine, and the lambda-calculus. In IFIP TC 2/WG 2.2, Aug. 1986.

[16] C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and D. Rémy. A
calculus of mobile agents. In CONCUR, pages 406–421, 1996.

[17] O. Fredriksson and D. R. Ghica. Seamless Distributed Computing
from the Geometry of Interaction. In TGC, pages 34–48, 2012.

[18] O. Fredriksson and D. R. Ghica. Abstract Machines for Game Seman-
tics, Revisited. In LICS, pages 560–569, 2013.

[19] O. Fredriksson and D. R. Ghica. Krivine Nets: A semantic foundation
for distributed execution. In ICFP, 2014 (to appear).

[20] D. R. Ghica and A. I. Smith. Bounded linear types in a resource
semiring. In Shao [39], pages 331–350. ISBN 978-3-642-54832-1.

[21] W. D. Gropp, E. L. Lusk, and A. Skjellum. Using MPI: portable
parallel programming with the message-passing interface, volume 1.
MIT Press, 1999.

[22] P. Henderson. Functional programming - application and implemen-
tation. Prentice Hall International Series in Computer Science. 1980.
ISBN 978-0-13-331579-0.

[23] E. Holk, W. E. Byrd, J. Willcock, T. Hoefler, A. Chauhan, and
A. Lumsdaine. Kanor - a declarative language for explicit commu-
nication. In PADL, pages 190–204, 2011.

[24] K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous
session types. In POPL, pages 273–284, 2008.

[25] T. Johnsson. Lambda Lifting: Transforming Programs to Recursive
Equations. In FPCA, pages 190–203, 1985.

[26] P. J. Landin. The mechanical evaluation of expressions. Computer
Journal, 6(4):308–320, Jan. 1964.

[27] X. Leroy. MPRI course 2-4-2, part II: abstract machines. 2013-2014.
URL http://gallium.inria.fr/~xleroy/mpri/progfunc/.

[28] H.-W. Loidl, F. Rubio, N. Scaife, K. Hammond, S. Horiguchi,
U. Klusik, R. Loogen, G. Michaelson, R. Pena, S. Priebe, Á. J. R. Por-
tillo, and P. W. Trinder. Comparing Parallel Functional Languages:
Programming and Performance. HOSC, 16(3):203–251, 2003.

[29] R. Loogen, Y. Ortega-Mallén, and R. Peña-Marí. Parallel functional
programming in Eden. JFP, 15(3):431–475, 2005.

[30] S. Marlow, A. R. Yakushev, and S. L. P. Jones. Faster laziness using
dynamic pointer tagging. In ICFP, pages 277–288, 2007.

[31] Y. Minamide, J. G. Morrisett, and R. Harper. Typed closure conver-
sion. In POPL, pages 271–283, 1996.

[32] T. Murphy VII, K. Crary, and R. Harper. Type-Safe Distributed
Programming with ML5. In TGC 2007, pages 108–123.

[33] K. Narita and S.-y. Nishizaki. A parallel abstract machine for the RPC
calculus. In Informatics Engineering and Information Science, pages
320–332. Springer, 2011.

[34] U. Norell. Towards a practical programming language based on
dependent type theory. PhD thesis, Chalmers Uni. of Tech., 2007.

[35] A. Ohori and K. Kato. Semantics for communication primitives in an
polymorphic language. In POPL, pages 99–112, 1993.

[36] D. Plainfossé and M. Shapiro. A Survey of Distributed Garbage
Collection Techniques. In IWMM, pages 211–249, 1995.

[37] G. D. Plotkin. LCF Considered as a Programming Language. Theor.
Comput. Sci., 5(3):223–255, 1977.

[38] M. Serrano, E. Gallesio, and F. Loitsch. Hop: a language for program-
ming the web 2.0. In OOPSLA, pages 975–985, 2006.

[39] Z. Shao, editor. Programming Languages and Systems - 23rd Euro-
pean Symposium on Programming, ESOP 2014, Grenoble, France,
April 5-13, 2014, Proceedings, volume 8410 of Lecture Notes in Com-
puter Science, 2014. Springer. ISBN 978-3-642-54832-1.

[40] J. W. Stamos and D. K. Gifford. Remote evaluation. TOPLAS, 12(4):
537–565, 1990.

[41] A. S. Tanenbaum and R. van Renesse. A critique of the remote
procedure call paradigm. Vrije Universiteit, Subfaculteit Wiskunde
en Informatica, 1987.

[42] P. W. Trinder, H.-W. Loidl, and R. F. Pointon. Parallel and Distributed
Haskells. JFP, 12(4&5):469–510, 2002.

[43] V. T. Vasconcelos, S. J. Gay, and A. Ravara. Type checking a multi-
threaded functional language with session types. Theor. Comput. Sci.,
368(1-2):64–87, 2006.

[44] P. T. Wojciechowski and P. Sewell. Nomadic pict: language and
infrastructure design for mobile agents. IEEE Concurrency, 8(2):42–
52, 2000.

12 2014/9/8

Towards Tool Support for History
Annotations in Similarity Management

Extended Abstract

Thomas Schmorleiz and Ralf Lämmel
Software Languages Team, Department of Computer Science, University of Koblenz-Landau, Germany

Abstract
When a system is needed in different variants to meet different re-
quirements, then some form of product line engineering may need
to be used. In practice, it is often preferred to develop the variants in
a loosely coupled fashion as opposed to the regime of a proper (‘ex-
plicit’) product line from which to derive variants by some genera-
tive mechanism. For instance, the 101haskell chrestomathy (a sub-
chrestomathy of 101) contains many similar, small, Haskell-based
systems that are indeed maintained in loosely coupled fashion. In
previous work, we and collaborators have proposed an approach
to manage such loosely coupled variants by using a virtual plat-
form and cloning-related operators. In this extended abstract, we
sketch a concrete method with a supporting tool, Ann, for explor-
ing the similarity of variants and annotating them with metadata
accordingly. As a direct result, a propagate operator is enabled to
automatically propagate changes across variants and to synthesize
a to-do list for remaining manual actions. We sketch the method
and the tool’s application in an ongoing case study for capturing
and improving the similarity of the Haskell-based variants of the
101haskell chrestomathy.

Categories and Subject Descriptors D.3.3 [PROGRAMMING
LANGUAGES]: Language Constructs and Features; D.2.7 [SOFT-
WARE ENGINEERING]: Distribution, Maintenance, and Enhance-
ment; F.3.2 [LOGICS AND MEANINGS OF PROGRAMS]: Se-
mantics of Programming Languages

Keywords Haskell. Software Product Line Engineering. Variabil-
ity Management. Virtual Platform. Ann.

Acknowledgement
The presented work continues previous joint work [1] with Michal
Antkiewicz, Wenbin Ji, Thorsten Berger, Krzysztof Czarnecki, Ste-
fan Stanciulescu, Andrzej Wasowski, and Ina Schaefer. The work
is also inspired by Julia Rubin’s framework for clone manage-
ment [6].

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Motivation and background
The corpus of the 101companies project [2] (or just ‘101’) holds
a set of variants (‘contributions’), all implementing a common fea-
ture model. Many of these variants share implementations of some
features because their conceptual contribution focuses on the im-
plementation of other features. Thus, cloning of feature implemen-
tations is often performed to start the implementation of new vari-
ants. While this practice is reasonable in itself, it makes it too hard
to understand the similarities of the variants; it also makes it too
easy for variants to diverge from each other over time unintention-
ally. Thus, a form of similarity management is needed. This prob-
lem was set up as a challenge for software chrestomathies in [3] and
it is, in fact, a challenge in software product line engineering [1].

We have developed a method with a supporting tool, Ann,
for exploring the similarity of variants and annotating them with
metadata accordingly. This work is directly based on the idea of
virtual platform for software product line engineering, as presented
in [1]. Our objective is not just to provide the user with information
about similarities in a corpus of variants, but also to enable the
automatic propagation of changes across variants, and, finally also
to reduce overall complexity and unintentional divergence within
the corpus. We sketch the method and tool’s application in an
ongoing case study for capturing and improving the similarity of
101’s Haskell segment, i.e., 101haskell [4].

2. A method for variability management
We describe the method by a series of key notions.

2.1 Fragment
We examine similarity of variants and their source-code units (files)
at a fragment level. Here is one possible (informal) definition of the
fragment notion. That is, a fragment is a range of consecutive lines
of source code that correspond to a ‘major’ node in the associated
abstract syntax tree (AST). We assume that syntactic categories
for forms of (named) abstractions are favored. Each fragment is
identified by a classifier and a name. Classifiers correspond to the
syntactic category at hand. For instance, in the case of Haskell,
classifiers are ‘data’, ‘type’, or ‘function’; names are those of data
types, type synonyms, or functions.

2.2 Similarity
We compare fragments by adopting an existing approach for detect-
ing near-miss intentional clones [5]. In particular, we pretty-print
the source code in a regular manner to lay out compound constructs
over several lines so that a simple text-based measure, the diff ra-
tio, can be used for comparison. A similarity measure of ‘1’ means
equality. We lift similarity from the fragment level to the levels of

1 2014/9/9

Figure 1. Visualization of similarity across the variants of
101haskell

files, folders, and variants by averaging similarities in a straight-
forward manner. Similarities are stored as triples of two fragment
identifiers with the computed diff ratio.

For illustration, consider Figure 1, which shows the Haskell-
based variants of the chrestomathy 101 (i.e., 101haskell [4]). The
edges indicate similarity of variants above a certain threshold. The
view is computed by the Ann tool.

2.3 Similarity evolution
We track the evolution of similarities between fragments through-
out the commit history. To this end, we also need to track the frag-
ments themselves—with regard to variant, file, and fragment re-
naming. We are specifically interested in two points on the time-
line: the point at which a similarity was detected and the current
state. Each similarity evolution can be classified according to these
types of evolution:

Always equal The similarity was always 1.

Eventually equal The similarity was initially below 1, but it is 1
eventually.

Eventually unequal The similarity was initially 1, but it is below
1 eventually.

Always unequal The similarity was always below 1.

2.4 Annotation
Each similarity can be annotated to express the intended treatment
of the similarity along evolution. That is, an annotation states how
a similarity should be maintained through automated or manual ac-
tions. The annotations themselves are to be attached manually, even
though defaults may be reasonably assigned in certain cases. The
idea is that the user sees the similarities in the order of decreasing
similarity (diff ratio), thereby prioritizing annotation of the most
similar fragments. There are these types of annotations:

Maintain equality An equality at hand should be maintained. This
can be done by merging any changes from one fragment to the
other, by automated three-way-merge, or possibly by manual
conflict resolution.

Maintain similarity A similarity, which is not an equality, should
be maintained. A manual action is required, when the similarity
(the diff ratio) decreases.

Restore equality A similarity, which is not an equality, should be
turned into an equality. In a simple case, either of two fragments
may be selected to override the other. It may also be necessary
though to change both fragments towards an equal fragment
through a manual action.

Increase similarity A similarity, which is not an equality, should
be increased, based on the insight that equality is not feasible,
while increased similarity is feasible. A manual action is re-
quired here.

Ignore similarity The similarity is to be ignored in that it is not
reported anymore, when following the diff ratio order.

Whether or not a certain annotation is applicable to a similarity
also depends on the type of evolution. For instance, the evolution
type ‘eventually unequal’ cannot be combined with the annotation
type ‘maintain equality’, but it can only be combined with ‘restore
equality’ or all the other types.

2.5 Propagation
Given a repository in a new state with some previously attached
similarity annotations, we can determine any sort of similarities that
have arrived, increased, decreased, or vanished (assuming some
threshold) and whether they have to be restored or increased. Some
of these case of similarity evolution may be addressed automati-
cally; others give rise to a to-do list to be addressed by the devel-
oper. This semantics is captured as a ‘propagate’ operator of our
method, as adopted from the general approach described in [1].

We are currently working on the propagate operator and its
integration into the workflow of the underlying version control
system, which is git in the case of 101haskell. Overall, the idea
is that git commands such as commit, pull, and push are enriched
by the propagation semantics.

3. The Ann tool
Ann is an interactive tool supporting the exploration of the version
history and the set of variants down to the level of folders, files, and
fragments. The tool assumes that the variants are maintained by a
version control system. In the case of 101, we use git.

Figure 2 shows the annotation view of Ann: we are in the con-
text of a specific similarity, namely a fragment shared by two vari-
ants. We have decided to annotate the similarity with ‘maintain
equality’ so that automatic propagation of changes would be en-
abled.

Figure 3 shows all variants of 101haskell on the timeline of the
version history. One can study the commits to get quick access to
affected variants and files as well as the associated similarities.

Figure 4 gives an impression of the variant-centric dimension of
exploration. A variant is picked in the beginning (haskellEngineer
in the figure). The most similar variants are shown. One can dive
into the picked variant to select specific folders or files. One can
then further dive into files to eventually annotate similarities at the
fragment level.

4. State of research
We have developed all extraction tools that Ann depends on. We
have further implemented all essential views, as also illustrated
in this extended abstract including two dimensions of annotation:
variant-centric versus commit-centric. We have refined the user in-
terface in several iterations since the amount of data to be processed

2 2014/9/9

Figure 2. Annotation of a similarity

Figure 3. Variations of 101haskell

by the user was initially too large. The iterations applied good user
experience (UX) principles to the design of Ann.

The tool already helped us to identify a set of variants that are
conceptually or technologically outdated or unnecessarily discon-
nected (in terms of similarity) to other variants. The next step is to
integrate the propagation operator into a git workflow by extending
existing git commands and implementing new commands. After
that we will aim at improving the similarity across 101haskell by
bringing up, for example, the degree of equal fragments in response
to the erosion (divergence) that has happened over time, when we
had no tool support like Ann.

References
[1] M. Antkiewicz, W. Ji, T. Berger, K. Czarnecki, T. Schmorleiz,

R. Lämmel, S. Stanciulescu, A. Wasowski, and I. Schaefer. Flexible
product line engineering with a virtual platform. In Proc. of ICSE 2014,
pages 532–535. ACM, 2014.

[2] J.-M. Favre, R. Lämmel, T. Schmorleiz, and A. Varanovich. 101com-
panies: A Community Project on Software Technologies and Software
Languages. In Proc. of TOOLS 2012, volume 7304 of LNCS, pages
58–74. Springer, 2012.

[3] R. Lämmel. Software chrestomathies. Sci. Comput. Program., 2013. In
press.

[4] R. Lämmel, T. Schmorleiz, and A. Varanovich. The 101haskell
Chrestomathy—A Whole Bunch of Learnable Lambdas. In Postpro-
ceedings of IFL 2013, 2014. 12 pages. To appear in ACM DL. Available
online http://softlang.uni-koblenz.de/101haskell/.

[5] C. K. Roy and J. R. Cordy. NICAD: Accurate detection of near-miss
intentional clones using flexible pretty-printing and code normalization.
In Proc. of ICPC 2008, pages 172–181. IEEE, 2008.

[6] J. Rubin and M. Chechik. A framework for managing cloned product
variants. In Proc. ICSE 2013, pages 1233–1236. IEEE / ACM, 2013.

3 2014/9/9

http://softlang.uni-koblenz.de/101haskell/

Variant level

File level

Function level

Figure 4. Levels of similarity exploration

4 2014/9/9

Preprint, Incomplete Draft

Monoids model extensibility
or, Moxy: a language with extensibly extensible syntax

Michael Arntzenius
Carnegie Mellon University

daekharel@gmail.com

Abstract
Many languages, libraries, or systems advertise themselves as ex-
tensible, but these claims are usually informal. We observe that
monoids formally characterize much of the essence of extensibility.
We present extensibility monoids for several pre-existing systems,
including grammars, macros, and monad transformers. To show the
utility of this approach, we present Moxy, a syntactically extensi-
ble programming language. Moxy’s implementation is surprisingly
simple for the power it offers. We hope the use of monoids as an or-
ganizing principle of extensibility will offer similar utility in other
domains.

Keywords Extensibility, extensible languages, macros, monoids,
parser-combinators, parsing, syntax.

1. Introduction
The concept of extensibility recurs frequently in programming lan-
guages research, but lacks a concrete definition. The most one can
say is “you know it when you see it”. This paper observes that
monoids capture some of the essential properties of extensibility.
In Section 2, several common examples of extensibility are fruit-
fully analysed in terms of their monoids.

To show this approach’s utility on a larger scale, in Section 3 we
present Moxy, a language designed to be syntactically extensible —
to permit the programmar to add syntax for new data types, opera-
tions, embedded DSLs, and so on — by using monoids to abstract
extensibility. Moxy’s design has several interesting qualities:

1. Moxy is not a Lisp or Scheme; extensibility is not achieved by
the sacrifice of syntactic conveniences such as infix operators.1

2. Moxy is self-extensible: extensions are written in Moxy itself.

3. Moxy extensions are modular, that is to say, they are imported
just like ordinary library definitions.

4. Moxy extensions are scoped; an extension can be imported
within a whole file, within a module, or just within a single
let-expression.

1 Opinions on the desirability of this property may differ.

[Copyright notice will appear here once ’preprint’ option is removed.]

5. Moxy extensions are not limited to adding new forms of ex-
pression. They can also add new forms of pattern for use in
pattern-matching, for example.

6. Moxy is meta-extensible: extensions can themselves be ex-
tended. For example, a Moxy programmer could create an em-
bedded DSL as an extension library, and leave that DSL open
to further extension by future programmers.

7. Moxy is homogenously extensible: All forms of extension —
new expressions, new patterns, extensions to some library-
defined extensible extension, and so forth — are accomplished
by the same mechanism; no special privilege is given to built-in
forms of extension, or to expressions over patterns.

8. Finally, Moxy itself is simple: about 2,000 lines of Racket code.

2. Monoids as a framework for extensibility
A monoid 〈A, ·, ε〉 consists of a set A, an operation (·) : A×A→
A, and an element ε : A satisfying:

a · (b · c) = (a · b) · c associativity
a · ε = a right-identity
ε · a = a left-identity

A notion of extensibility may be defined by giving a monoid
where A is the set off all possible extensions, (·) is an operator
that combines or composes two extensions, and ε is the “null exten-
sion”, representing the lack of any additional behavior.

We show that monoids are a good model for extensibility by
analysing five distinct forms of extensibility into their respective
monoids: composition of context-free grammars, lisp-style macros,
open recursion, middleware in a web framework, and monad trans-
formers.

2.1 Composition of context-free grammars
Consider the following grammar for a λ-calculus:

expressions e ::= x | λx. e | e e
variables x ::= ... (omitted) ...

It is easy enough to add infix arithmetic to this language:

expressions e ::= x | λx. e | e e
| n | e⊗ e

numerals n ::= d | dn
digits d ::= 0 | 1 | ... | 9
operators ⊗ ::= + | − | × | /

It is similarly easy to add lists:

expressions e ::= x | λx. e | e e
| [] | [es]

expression lists es ::= e | e, es

Monoids model extensibility 1 2014/9/25

Formally, each of these three grammars is a separate, complete
object. But there is a clear sense in which the two latter languages
are composed out of parts: “λ-calculus plus infix arithmetic”, “λ-
calculus plus lists”. And, without even writing its grammar, it is
obvious there exists a fourth language: “λ-calculus plus infix arith-
metic plus lists”. Can we formalize this colloquial “plus” operator?
We can; and it is even a monoid!

Context-free grammars. A context-free grammar (CFG) is a
tuple 〈Σ, N, P, e〉, where Σ is a finite set of terminal symbols, N
is a set (disjoint from Σ) of nonterminal symbols, P is a finite
set of production rules, and e ∈ N is an initial non-terminal.
Production rules p ∈ P have the form N ↪→ (Σ ∪ N)∗; that is,
P ⊆ N × (Σ ∪N)∗.

Fix a terminal set Σ, a (possibly infinite) nonterminal set N ,
and an initial nonterminal e. That is, consider grammars over a
known alphabet (e.g. Unicode characters). The non-terminal set is
also fixed, but this is no great limitation, since it is permitted to
be infinite; we will consider nonterminals to come from an inex-
haustible set of abstract names. And we fix an initial nonterminal
e, intended to represent well-formed expressions in some language.

Having fixed all this, a grammar is fully specified by a finite set
of production rules P . Our original λ-calculus is represented by:

Pλ = {e ↪→ x,
e ↪→ λx.e,
e ↪→ e e,
... (omitted rules for x) ...}

Composing CFGs. To compose two grammars represented as
production-rule-sets, simply take their union. For example, con-
sider the sets of rules added when extending our language with
infix arithmetic and lists respectively:

P⊗ = {e ↪→ n, e ↪→ e⊗ e,
n ↪→ d, n ↪→ dn,
d ↪→ 0, ..., d ↪→ 9,
⊗ ↪→ +, ⊗ ↪→ −, ⊗ ↪→ ×, ⊗ ↪→ /}

P[] = {e ↪→ [], e ↪→ [es],
es ↪→ e, es ↪→ e, es}

If we take Pλ ∪ P⊗, it gives us precisely the grammar of our
second language, “λ-calculus plus infix arithmetic”. Pλ ∪ P[] is
our third language, “λ-calculus plus lists”. And Pλ ∪ P⊗ ∪ P[] is
the hypothesized fourth language, “λ-calculus plus infix arithmetic
plus lists”.

We have thus successfully separated our languages into parts
— one which represents λ-calculus, one which represents infix
arithmetic, one which represents lists — and found an operator that
can combine them again. Finally, note that this operator (union of
production-rule-sets) is a (commutative, idempotent) monoid, with
∅ as identity.

Limitations. While a CFG specifies a syntax, it does not supply
an algorithm for parsing. Moreover, it specifies only syntax; a
programming language also needs semantics. Section 3.3 covers
one approach to parsing a monoidally-extensible syntax. Section
3.4 describes how Moxy permits extensible semantics.

2.2 Macro-expansion
Consider a simple lisp-like syntax:

s-expressions e ::= a | (es)
s-expression lists es ::= | e es
atoms a ::= s | n
numerals n ::= 0 | 1 | ...
symbols s ::= ...

We formalize a simplistic version of macro-expansion by defin-
ing expand(env, e), which takes an environment env mapping
symbols to their definitions, an s-expression e to expand, and re-
turns ep with all macro invocations recursively replaced by their
expansions. In pseudocode:

expand(env, (s es)) if s in env = expand(env[s](es))
expand(env, (es)) = map(expand(env,), (es))
expand(env, a) = a

(We write env[s] for the macro-definition of s in env, which
we take to be a function from an argument-list es to its immediate
expansion under that macro.)

Where’s the monoid? If macros yield a form of extensibility, how
do they fit into our monoidal framework? First, we must find the set
of possible extensions. Intuitively, macros are the extensions we are
concerned with. Perhaps the set of all macro-definitions? However,
there is no obvious operator to “merge” two macro-definitions.

This suggests that our notion of extension is not powerful
enough. So instead of single macros, we take our extensions to
be environments mapping macro-names to their definitions, like
the env argument to expand. Our binary operator (·) merges two
environments, so that:

s in (env1 · env2) iff (s in env1) ∨ (s in env2)

(env1 · env2)[s] =

{
env1[s] if s in env1

env2[s] otherwise

By convention, (·) is left-biased: if the same symbol is defined
in both arguments, it uses the left one.

Finally, note that (·) is associative, and forms an identity with
the empty environment; that is, (·) is a monoid.

Monoid-parameterized functions. Observe that expand is a func-
tion parameterized by a value of the monoid representing exten-
sions. It demonstrates one way of giving semantics to a notion of
extensibility: interpret extensions into functions. This is a pattern
we will see again in Moxy’s parse and compile phases.

2.3 Open recursion and mixins
Open recursion is the problem of, first, defining a set of mutually-
recursive functions by parts; that is, permitting the programmer
to define only some of the functions, and complete the set by
defining the rest later; and, second, of allowing the behavior of
these functions to be overridden or extended.

For example, consider the functions even(n) and odd(n), of
type N→ Bool, defined by:

even(0) = true
even(n) = odd(n− 1)
odd(0) = false
odd(n) = even(n− 1)

Definition by parts means that we could define even and odd
separately, as mixins, and later combine them into an instance that
implements both:

mixin EvenMixin where
inherit odd
even(0) = true
even(n) = self.odd(n− 1)

end
mixin OddMixin where

inherit even
odd(0) = false
odd(n) = self.even(n− 1)

end

Monoids model extensibility 2 2014/9/25

instance EvenOdd where
use EvenMixin
use OddMixin

end
EvenOdd.even(10) — returns true

Overriding means that a mixin can extend the behavior of a
function in a fashion similar to traditional object-oriented sub-
classing:

mixin EvenSpyMixin where
inherit odd
even(n) =

print(n);
super.even(n)

end
instance EvenOddDebug where

use EvenMixin
use OddMixin
use EvenSpyMixin

end
— prints 2, then prints 0, then returns true
EvenOddDebug.even(2)

2.3.1 Semantics of mutual recursion.
Setting aside for a moment the problem of open recursion, consider
ordinary, “closed”, mutual recursion. Suppose we wish to imple-
ment some signature Σ = 〈N, τ〉 of mutually recursive functions,
where N is a set of names and the function τ : N → type assigns
each name a type. An implementation of Σ is a function giving to
each name n a value of type τ(n). We write ImplΣ for the type of
implementations of the signature Σ:

Impl〈N,τ〉 = Π(n : N). τ(n)

We represent a group of mutually-recursive function definitions
as a function from implementations to implementations: we take a
self object, and to recursively call the function n, we call self(n).
In this manner we make self-reference explicit. We write DefnΣ for
the type of mutually-recursive function definitions represented this
way:

DefnΣ = ImplΣ → ImplΣ
For example, our original mutually-recursive definition of even

and odd is represented by:

Σ = 〈N, τ〉
N = {even, odd}
τ(even) = N→ Bool
τ(odd) = N→ Bool
EvenOdd : DefnΣ

EvenOdd(self)(even)(0) = true
EvenOdd(self)(even)(n) = self(odd)(n− 1)
EvenOdd(self)(odd)(0) = false
EvenOdd(self)(odd)(n) = self(even)(n− 1)

To obtain the desired implementations of even and odd, we take
the least-fixed-point of the EvenOdd function:

even = fix(EvenOdd)(even)
odd = fix(EvenOdd)(odd)

For some function fix : (α → α) → α satisfying fix(f) =
f(fix(f)) for appropriate α (here, α = ImplΣ).

2.3.2 Mixins as a monoid
Let’s apply our monoid methodology to the problem of semantics
for open recursion. We’ll tackle definition by parts first, and later
expand our semantics to cover overriding as well.

First, we must determine our set of extensions. The extensions
we are concerned with are “mixins”: partial definitions of a set of
mutually recursive functions. The definitions in a mixin have access
to a self object, allowing mutual- or self-recursion.

At first glance, this seems very similar to the way we formalized
closed sets of mutually-recursive definitions. The only difference is
that mixins are permitted to be partial, and omit a definition for a
particular function in the signature.

However, we can use the same type DefnΣ to represent mixins
if for names n which the mixin M does not define, we simply let
M(self)(n) = self(n), passing the undefined method through
unchanged. Thus a mixin is represented by a function from imple-
mentations to implementations: it takes a self object, and returns
that object updated with each of the functions the mixin imple-
ments.

For example, EvenMixin and OddMixin are represented by the
following functions:

EvenMixin(self)(even)(0) = true
EvenMixin(self)(even)(n) = self(odd)(n− 1)
EvenMixin(self)(odd) = self(odd)

OddMixin(self)(odd)(0) = false
OddMixin(self)(odd)(n) = self(even)(n− 1)
OddMixin(self)(even) = self(even)

At first, this representation seems pointless, like trying to fit a
square peg (mixins) into a round hole (DefnΣ). After all, if we take
fix(OddMixin)(odd), the resulting function diverges for all non-
zero inputs!

However, observe that

(EvenMixin ◦ OddMixin) = EvenOdd

(as can be verified by some tedious calculations)!
That is, that we can “combine” mixins by composing them as

functions; our monoidal operator is ◦. Our identity is just the iden-
tity function at type ImplΣ. Function composition is associative, so
we are done.

2.3.3 Mixins with overriding

MixinΣ = ImplΣ → ImplΣ → ImplΣ
ε(self)(super) = super

(f · g)(self)(super) = f(self)(g(self)(super))

EvenMixin(self)(super)(even)(0) = true
EvenMixin(self)(super)(even)(n) = self(odd)(n− 1)
EvenMixin(self)(super)(odd) = super(odd)
OddMixin(self)(super)(odd)(0) = false
OddMixin(self)(super)(odd)(n) = self(even)(n− 1)
OddMixin(self)(super)(even) = super(even)

EvenSpyMixin(self)(super)(odd) = super(odd)
EvenSpyMixin(self)(super)(even)(n) = print(n);

super(even(n))

To actually produce an implementation:

impl : MixinΣ → ImplΣ
impl(f) = fix(λs.f(s)(⊥))

2.4 Web framework middleware
We observe that middleware in many web frameworks (for exam-
ple, Django) is essentially a stack of pairs of functions, (Request→
Request) × (Response → Response), which are composed to-
gether via the monoid:

ε = 〈idRequest, idResponse〉
〈freq, fresp〉 · 〈greq, gresp〉 = 〈freq ◦ greq, gresp ◦ fresp〉

Monoids model extensibility 3 2014/9/25

top-level t ::= d | module N {t∗}
expressions e ::= Pn | PN | l | (e) | e⊕ e

| \(p, ...) e | e(e, ...)
| let d∗ in e
| case e [| p -> e]∗

declarations d ::= val p = e
| fun n(p, ...) = e [| n(p, ...) = e]∗

| tag N [(n, ...)]
| rec d [and d]∗

| open PX
patterns p ::= x | l | PX[(p, ...)]
operators ⊕ ::= + | - | * | / | == | <= | >= | < | > | ;

| ...
module paths P ::= [N.]∗

capital names N
names n
literals l

Figure 1. Grammar of Moxy, sans extensions

And then composed onto a base handler function h : Request→
Response:

withMiddleware(〈min,mout〉, h) = mout ◦ h ◦min

Middleware “in the wild” is more complicated, having to deal
with details such as error-handling, the possibility of early exit, and
so forth, but still forms a monoid. The fact that it forms a monoid
can even be observed by the way one specifies what middleware to
use: via a list, i.e. an element of the free monoid.

2.5 Monad transformers
Broadly speaking, monads as they appear in Haskell represent
effects which a computation has access to: for example, Maybe
represents the possibility of failure; State s represents access to
a single mutable location of type s; List represents backtracking
nondeterminism.

It is often useful to have multiple kinds of effect; for exam-
ple, failure and state. For this Haskell uses monad transformers,
type-level functions from monads to monads. Letting Hask be
the category of Haskell types, a monad such as State s has kind
Hask → Hask; a monad transformer such as StateT s has kind
(Hask→ Hask)→ (Hask→ Hask).

To combine multiple effects, one creates a stack of monad trans-
formers, terminating it with the identity monad Identity. To com-
bine failure (Maybe) with binary state (State Bool) and logging
(Writer [String]), we write:

WriterT [String] (StateT Bool (MaybeT Identity))

Clearly monad transformers represent a notion of extensibility,
namely “adding effects” to a pure base language. Unsurprisingly,
they form a monoid; the operator is simply composition, and the
identity is the monad transformer IdentityT. The above can be
rewritten (assuming a type-level composition operator ◦) as:

(WriterT [String] ◦ StateT Bool ◦MaybeT) Identity

3. Moxy
3.1 A brief introduction to Moxy, sans extensions
Moxy exists to test the hypothesis that monoids are a good way of
structuring extensibility. In other respects it is a banal, humdrum
language.

The basic grammar of Moxy is given in figure 1. “e, ...” indi-
cates a comma-separated list of expressions e; similarly for pat-
terns, “p, ...”.

Syntactically, Moxy is moderately MLish; semantically, Moxy
is somewhat Schemelike. Evaluation is eager; functions take mul-
tiple arguments and return one value; recursion is the only loop-
ing construct; pattern-matching is the only conditional construct
(if is implemented as a syntax extension). Moxy has a simple
module system that only handles namespacing (no ML-style func-
tors). Strings and numbers are built-in; booleans are defined in the
implicitly-imported prelude.

As an example, here is a naı̈ve recursive implementation of the
fibonacci function in Moxy:

fun fib(0) = 1
| fib(1) = 1
| fib(n) = fib(n-1) + fib(n-2)

Case is syntactically significant in Moxy: capitalized names
are used for modules, tags, and extension points, uncapitalized for
everything else.

3.2 Moxy’s approach to extensibility: Extension points
Moxy aims to be meta-extensible: to permit extensions (for exam-
ple, a DSL for parsers) that are themselves extensible (for example,
defining a+ as an abbreviation for aa∗). It therefore seems dif-
ficult to specify in advance what the monoid representing Moxy
extensions should be.

Moxy’s solution is to let the programmer define their own exten-
sion monoids, which Moxy calls extension points. To define an ex-
tension point, the programmer gives it a name (a Moxy identifier), a
value representing the identity element, and a function representing
the monoid operator. For example:

extension ExtCounts(0, \(x,y) x+y)

This defines an extension point named ExtCounts with the monoid
〈N,+, 0〉. As Moxy is dynamically typed, the fact that the intended
domain of ExtCounts is N exists only in the programmer’s mind.2

Having defined an extension point, we can extend it with an
extend declaration:

extend ExtCounts with 2 + 2

Within the scope of this declaration, ExtCounts will have a
value 4 higher than it otherwise would. Of course, this is quite
useless without some way to observe the value of an extension point
and use it in parsing.

For this purpose, Moxy comes with built-in extension points
which allow extending Moxy’s built-in syntax classes: expressions,
declarations, and patterns. For example, the InfixExprs extension
point permits adding new infix operators to the expression lan-
guage:

extend InfixExprs with
{ TSYM("."): { precedence = 10,

parse = [...omitted...] } }

3.3 Parsing Moxy
Moxy uses monadic parser-combinators after the style of Parsec to
implement a Pratt-style recursive descent parser. In practice what
the latter means is that infix operators are handled by means of a
table mapping the token for a given operator (say, + for addition) to
its precedence, paired with a parser for its right-hand-side. When
parsing an expression we keep track of the precedence we are
currently parsing at, and if we encounter an operator of looser

2 Indeed, there is nothing to say that the intended domain is not Z instead.

Monoids model extensibility 4 2014/9/25

precedence we stop parsing and return. Otherwise we recursively
invoke the parser for the operator we found, with the expression
we’ve parsed so far as an additional argument.

This permits arbitrary infix, suffix, and mixfix operators. How-
ever, it requires that each infix operator have a unique token identi-
fying it; no overloading is possible (at least, not in the parser).

Moxy currently has a separate tokenization phase, which unfor-
tunately limits the expressiveness of parse extensions. We believe
this can be eliminated in future by means of a scannerless-parsing
technique, such as that used by Parsec’s Text.Parsec.Token mod-
ule.

The monad which Moxy uses for parsing, in addition to behav-
ing like Parsec, also acts as a Reader ParseEnv, where ParseEnv
is a datastructure representing all extensions to all extension points
currently in scope. A ParseEnv is effectively a mapping from ex-
tension points to their values. It is the parameterization of the
parser by this value that lets extensions affect parsing (just as the
parameterization of expand by a macro-environment lets macro-
definitions affect macro-expansion).

For example, when the parser tries to parse the start of an ex-
pression, it first examines the current value of the Exprs extension
point. Exprs’ domain is dictionaries mapping tokens to parsers; its
monoid operation is right-biased merge and its identity is the empty
dictionary. If the next token is present in the value of Exprs, then
we invoke the parser it is bound to. Otherwise we try built-in parse
productions such as literals, variables, and function application.

Similar techniques are used for extending declarations and pat-
terns.

3.4 Compiling Moxy
Nodes in Moxy’s AST are instances of abstract interfaces. For
example, an expression is merely something which knows how to
compile itself. That is, expressions are “records”3 with a functional
compile field. This compile function, when supplied with a resolve
environment, returns the intermediate-representation4 compilation
of the expression in question.

The resolve environment is effectively merely the lexical envi-
ronment of the expression, a dictionary which tells the compiler
which variable names are in scope and how references to them are
to be compiled.

4. Prior work
Lisp and Scheme are obvious predecessors in the search for exten-
sible forms of programming. Moxy is in large part an attempt to
replicate the ease and power of Lisp-family macros in a non-Lisp
setting.

SugarJ does almost everything Moxy does and more [1]. How-
ever, it weighs in at 26k LOC, while Moxy is a mere 2k LOC. Moxy
can use extensions per-scope, not just per-file. Moxy has a REPL,
but SugarJ’s approach is probably compatible with a REPL as well.
Moxy allows for non-syntactic notions of scoped extensibility (but
I have no motivating examples). The Moxy approach currently has
no story for integrating with existing languages (but it probably
could be done).

Moxy’s use of a Pratt-style parser to aid extensibility is similar
to that of Magpie. [4]

Other previous syntactically extensible systems include OMeta
[3], Sweet.js, Seed7, and Omar et al’s Type-Specific Languages [2].

3 In this case, represented as hash-tables.
4 In this case, s-expressions representing Racket code.

References
[1] SugarJ: Library-based Syntactic Language Extensibility. Sebastian

Erdweg, Tillman Rendel, Christian Kästner and Klaus Ostermann. In
Proceedings of Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 391-406. ACM, 2011.

[2] Safely Composable Type-Specific Languages. C. Omar, D. Kurilova,
L. Nistor, B. Chung, A. Potanin and J. Aldrich. European Conference on
Object-Oriented Programming (ECOOP 2014) Uppsala, Sweden, July
28 – August 1, 2014.

[3] Experimenting with Programming Languages. Alessandro Warth.
Technical Report TR-2008-003, Viewpoints Research Institute, 2009.

[4] Extending Syntax from Within a Language. Bob Nys-
trom. http://journal.stuffwithstuff.com/2011/02/13/
extending-syntax-from-within-a-language/, 2011-02-13, ac-
cessed 2014-09-25.

[5] Parsec: Direct Style Monadic Parser Combinators For The Real
World. Daan Leijen and Erik Meijer. Technical Report UU-CS-2001-27,
Department of Computer Science, Universiteit Utrecht, 2001.

Monoids model extensibility 5 2014/9/25

Towards efficient implementations of effect handlers
– Extended Abstract –

Steven Keuchel
Universiteit Gent

steven.keuchel@ugent.be

Tom Schrijvers
Universiteit Gent

tom.schrijvers@ugent.be

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Functional Programming

General Terms Languages

Keywords effect handlers, modularity, delimited control, monads

1. Introduction
In recent years algebraic effects and effect handlers emerged as a
compelling alternative to monads as a basis for effectful program-
ming in functional programming languages. This approach pro-
vides language primitives for defining new abstract effectful oper-
ations, which the programmer uses to write his own programs, and
effect handlers that instantiate the abstract operations with concrete
implementations.

Abstract operations are composable and each effect handler
instantiates a specific subset of the operations of a computation.
Thus this approach yields modular abstraction and modular instan-
tiation of effects similar to monad transformers and monad type
classes. Transporting monads and monad transformers to different
languages is possible but difficult or awkward. Some monads, like
for example monadic parser combinators, crucially rely on infinite
recursion and lazy evaluation. Modular abstraction with monads is
achieved by means of type classes for each kind of effect and mod-
ular instantiation is achieved by type class instances that lift monad
type classes over monad transformers. This crucially relies on au-
tomatic type class resolution.

Effect handlers are one possible alternative to monads and
monad transformers for getting modularity in the handling of
effects into a variety of functional programming languages, es-
pecially those that use strict evaluation and do not provide type
classes.

2. Effect handlers
We present the general use of effect handlers using pseudo-syntax
that is similar to the Frank language by Lindley and McBride [9].
The first step is to declare the signature of the abstract operations of
an effect. The state effect for instance has two abstract operations:
1. get that retrieves the current state and 2. put that updates the
state.

[Copyright notice will appear here once ’preprint’ option is removed.]

sig State S
= get : [] S
| put : S → [] Unit

This declares get to be an effectful operation that results in
a value of type S . put is an effectful operation that takes an a
and returns a unit value. We use the notation [] X to denote
computations that upon execution return a value of type X .

We can write computations using these abstract operations. The
next computation performs state effects to increment a natural
number. The first line is the type signature of next which states
that next results in a value of type Nat and can perform State Nat
effects. The second line is the implementation of next in terms of
the abstract operations.

next : [State Nat] Nat
next = get → n; put (suc n);n

The second step is to define a handler state that implements
the operations of the State S effect. The handler state takes as
parameters an initial state s and a suspended computation on which
it ‘pattern matches‘. The first two lines of the implementation
handle the cases of the abstract operations get and put . The third
line handles the case of a finished computation that resulted in a
value v where we allow the handler to transform the result value.

state : S → [State S ?X] → [] X
state s [get ? k] = state s ? k s
state [put s ? k] = state s ? k ()
state [v] = v

3. Problem statement
If effect handlers are to be used as the principal paradigm of a
language to model side-effects, their efficient implementation be-
comes an important point. The focus of existing work on languages
[1, 9] and embedded domain-specific languages [3, 8] for program-
ming with effect handlers is still to explore the expressivity of
this alternative approach to effects. It should come as no surprise
that benchmarking existing implementations shows that the perfor-
mance of these systems is not yet competitive to monad transform-
ers.

One of the main reasons for this is that these systems implement
effect handlers indirectly, either by reducing them to a free-monad
implementation in lazy languages or to (delimited) continuations in
strict languages. This leaves a lot of room for improvement.

It is easier for a direct implementation to avoid technical pitfalls
that impact performance and to leverage the structure of effect
handlers to perform optimizations. More specifically the following
concerns can be addressed in a better way.

1 2014/9/9

1. The shift/reset operators are the most popular way to describe
delimited continuations and are also the most commonly pro-
vided primitives by languages that implement delimited contin-
uations. However, there is an impedance mismatch between ef-
fect handlers and delimited continuations using the shift/reset
operators. In exception and effect handlers the delimiter de-
scribes the handling of the effectful operation in contrast to
shift/reset where shift determines the handler. This also means
for each reset delimiter there can be different handlers provided
to different invocations of shift. As a consequence an indirect
implementation might lose the opportunity to optimize using
the fact that there is a constant handler for each effect han-
dler. A conceptually better fit are delimited continuations using
run/fcontrol [11].

2. State is an important concept that arises very often in the im-
plementation of handlers of a variety of effects. Each handler
invocation can potentially alter the state of the handler and the
state needs to be threaded properly between invocations.
Brady [3] treats the state of handlers explicitly by keeping track
of a list of resources for a given handler stack. Kammar et al. [6]
allow handlers to be parameterized and alter the parameters for
handling the operations of the continuation.
In the reduction of effect handlers to delimited control opera-
tors, the state of handlers is captured inside a closure that im-
plements the handlers. A direct implementation of effect han-
dlers should keep track of state explicitly to make state passing
more efficient. Ideally, passing the state should be as efficient
as passing an argument to a function.

3. Direct implementations of delimited continuations for call-by-
value languages [7, 10] capture the continuation by copying
the part of the stack up to the delimiter to the heap. When
the continuation is invoked, this copy is pushed back onto the
control stack. A direct implementation of effect handlers will
necessarily perform comparable operations.
However, if the implementation of a handler uses the continu-
ation in a restricted way several optimizations are possible. If
a continuation is only used in tail positions, the copying of the
stack segment is unnecessary[7]; if the handler does not use
the continuation at all, e.g. traditional exceptions, we can un-
wind the stack immediately before passing control to the han-
dler function and thus free resources early.
As it turns out, in practice a lot of effects fall into this these
restricted categories [2]. It is therefore important to perform an
analysis and optimize accordingly.

4. Towards efficient handlers
We want to address the performance concerns of effect handlers to
help their adoption. Specifically we want to address the implemen-
tation and optimization of common cases that do not use the full
power of effect handlers.

To this end, we are developing a definitional machine for effect
handlers based on a definitional machine for delimited continua-
tions [4, 7] that provides generic low-level primitives for the imple-
mentation of effect-handlers and a small call-by-value λ-calculus
with effect handlers. In our development we address the following
performance concerns:

4.1 Handler resolution
At the invocation point of an abstraction operation control is passed
to handler for the effect. For this the concrete handler needs to
be looked up. One of the problems appearing is how to do this
efficiently.

In the implementation of exception handlers, the delimiter try
is either pushing exception-handler marks explicitly on the control
stack or is creating a table that maps code return addresses to
exception handling code [5]. The throwing of an exception will
unwind the control stack – executing cleanup code along the way
– and use runtime-type information about the thrown value and the
type of exception handlers to find the matching handler.

Obviously this dynamic lookup of effect handlers and the use
of type-information is utterly slow. Using effect typing we can
explicitly resolve the possible handlers statically and keep track
of stack marks, handler functions and handler state explicitly and
efficiently.

4.2 Fast linear code
We perform an analyses to detect handlers that invoke the continua-
tions only tail position and handlers that discard the continuations.
In these two cases we can avoid unnecessary work for capturing
the continuation and also avoid duplicating state which would be
necessary for potentially different continuations.

In this restricted setting the specialization of code for a specific
set of handlers also becomes easier. We envision the inlining of
known handlers to remove any overhead introduced by abstractions
as much as possible.

References
[1] A. Bauer and M. Pretnar. Programming with algebraic effects and

handlers. Journal of Logical and Algebraic Methods in Programming,
2014.

[2] J. Berdine, P. O’hearn, U. Reddy, and H. Thielecke. Linear
continuation-passing. Higher-Order and Symbolic Computation, 15
(2-3):181–208, 2002.

[3] E. Brady. Programming and reasoning with algebraic effects and de-
pendent types. In Proceedings of the 18th ACM SIGPLAN interna-
tional conference on Functional programming, pages 133–144. ACM,
2013.

[4] R. Dyvbig, S. P. Jones, and A. Sabry. A monadic framework for
delimited continuations. Journal of Functional Programming, 17(06):
687–730, 2007.

[5] L. Goldthwaite. Technical report on c++ performance. ISO/IEC
PDTR, 18015, 2006.

[6] O. Kammar, S. Lindley, and N. Oury. Handlers in action. In Proceed-
ings of the 18th ACM SIGPLAN international conference on Func-
tional programming, pages 145–158. ACM, 2013.

[7] O. Kiselyov. Delimited control in Ocaml, abstractly and concretely.
Theoretical Computer Science, 2012.

[8] O. Kiselyov, A. Sabry, and C. Swords. Extensible effects: an alterna-
tive to monad transformers. In Proceedings of the 2013 ACM SIG-
PLAN symposium on Haskell, pages 59–70. ACM, 2013.

[9] S. Lindley and M. Conor. Do Be Do Be Do. draft, 2014.
[10] M. Masuko and K. Asai. Direct implementation of shift and reset in

the mincaml compiler. In Proceedings of the 2009 ACM SIGPLAN
workshop on ML, pages 49–60. ACM, 2009.

[11] D. Sitaram. Handling control. In Proceedings of the
ACM SIGPLAN 1993 Conference on Programming Language De-
sign and Implementation, PLDI ’93, pages 147–155, New York,
NY, USA, 1993. ACM. ISBN 0-89791-598-4. . URL
http://doi.acm.org/10.1145/155090.155104.

2 2014/9/9

