
Submission for IFL 2014 pre-proceedings

Type-Directed Elaboration of Quasiquotations
A High-Level Syntax for Low-Level Reflection

David Raymond Christiansen
IT University of Copenhagen

drc@itu.dk

Abstract
Idris’s reflection features allow Idris metaprograms to manipulate
a representation of Idris’s core language as a datatype, but these
reflected terms were designed for ease of type checking and are
therefore exceedingly verbose and tedious to work with. A sim-
pler notation would make these programs both easier to read and
easier to write. We describe a variation of quasiquotation that uses
the language’s compiler to translate high-level programs with holes
into their corresponding reflected representation, both in pattern-
matching and expression contexts. This provides a notation for re-
flected language that matches the notation used to write programs,
allowing readable metaprograms.

Categories and Subject Descriptors CR-number [subcategory]:
third-level

Keywords quasiquotation; proof automation; metaprogramming

1. Introduction
Idris [3] is a programming language with dependent types in the tra-
dition of Agda [16] and Cayenne [1]. An important design goal for
the Idris team is to enable the construction of embedded languages
that can make strong guarantees about the safety of the programs
written in them, rather than requiring users of these embedded lan-
guages to write proofs themselves. If this goal is to succeed, Idris
will require good tools that library authors can use to automate the
construction of proofs.

One such tool is reflection, in which an Idris program can
construct a proof object by inspecting the AST of a the goal type
and generating an AST for the proof term. This allows developers
of proof automation to write functions that might otherwise be
difficult, because eliminating types through pattern matching is
unsound.

Idris has a well-defined core language, called TT, and all con-
structions in the high-level Idris language are given their semantics
by defining their translation to TT. This translation process is re-
ferred to as elaboration. Terms in TT are exceedingly verbose: ev-
ery binder has a fully explicit type annotation, every name is fully-
qualified, and there are no implicit arguments. This verbosity dras-
tically simplifies type checking. The intention is that one need only

[Copyright notice will appear here once ’preprint’ option is removed.]

trust this simple type checker to be able to trust the rest of the sys-
tem.

Because Idris reflection works directly with TT terms, it can
quickly become overwhelming. Furthermore, the correspondence
between high-level Idris terms and their corresponding TT terms
are not always obvious to non-expert users of the language. What
appears to be a simple function application at the level of Idris code
might turn out to have very complicated type-level structure or non-
trivial implicit arguments. In the normal course of programming, it
is good to hide this complexity and allow the user to focus on her
or his programming task, rather than being overwhelmed by minu-
tiae. However, when writing metaprograms using reflection, this
becomes an unfortunate trade-off, because the core language can
be difficult to connect to user-visible terms. This difficulty is espe-
cially unpleasant when using Idris’s error reflection [5], in which
Idris code can be used to rewrite the compiler’s error messages be-
fore they are presented to the user. In fact, it was practical experi-
ence with error reflection that motivated the work described in this
paper.

We augment the high-level Idris language with quasiquotations,
in which the Idris elaborator is invoked to transform high-level
Idris into reflected TT terms using the same translation that pro-
duces TT terms for the type checker. Within quasiquoted terms,
antiquotations allow other reflected terms to be spliced into the
quotation. In a pattern context, antiquotations become patterns to be
matched by the reflected term at the corresponding position. These
quasiquotations allow the best of both worlds: high-level syntax for
the uninteresting parts, with details filled in by type-directed elab-
oration, along with control over the details of term construction
when and if it matters.

Contribution
The contributions of this paper are:

• a novel adaptation of quasiquotations to the context of dependently-
typed programming with reflection that allows the use of high-
level language syntax to construct and manipulate the corre-
sponding terms in a core language;

• a description of an implementation technique for these quasiquo-
tations in Idris, as an extension of the type-driven elaboration
described in Brady’s 2013 paper [3]; and

• demonstrations of the utility of these quasiquotations for proof
automation and error message rewriting.

Furthermore, this paper can serve as a demonstration of how to ex-
tend a tactic-based elaborator to support a new high-level language
feature.

1 2014/9/24

2. Related Work
2.1 A Brief History of Quasiquotation
The notion of quasiquotation was invented by Quine in his 1940
book Mathematical Logic [12, pp. 33–37]. While ordinary quota-
tions allow one to mention a phrase rather than using it, quasiquota-
tions allow these quoted expressions to contain variables that stand
for other expressions, just as mathematical expressions can contain
variables that stand for values. In other words, a specific class of
subexpression is treated as a use within a context that is mentioned.
Quine used Greek letters to represent variables in quasiquotations.

The paradigmatic instance of quasiquotation in programming
languages is that found in the Lisp family. Bawden’s 1999 pa-
per [2] summarizes the history and semantics of the quasiquota-
tion mechanism found in both the Scheme family of languages and
in Common Lisp. In the Lisp family, program code is represented
in a uniform manner, using lists that contain either atomic data,
such as symbols, strings, and numbers, or further lists. In Lisp par-
lance, these structures are referred to as “S-expressions”. Because
S-expressions are simply ordinary data, it makes sense to quote
them, yielding a structure that can easily be manipulated. Addition-
ally, most Lisps have a quasiquotation system, in which specially
marked subexpressions of a quotation are evaluated, with the result
substituted into the quotation. Unlike Quine’s quasiquotation, the
Lisp family of languages allow arbitrary expressions to be inserted
into quasiquotations.

Languages outside of the Lisp family have also used quasiquo-
tation to implement language extension. Because these languages’
syntaxes do not have the regular format of Lisp S-expressions.
The Camlp4 system [6] provides quasiquotation for the OCaml lan-
guage, among other extensions. In Camlp4, quasiquotations consist
of arbitrary strings that are transformed by a quotation expander
to either a string representing valid concrete syntax or to an ab-
stract syntax tree. These quotations support antiquotation, which
invokes the parser to read an OCaml expression or pattern inside of
the quotation. Template Haskell’s quasiquotations [9] work on sim-
ilar principles. Both systems fully expand all quotations at compile
time, and both check that the generated code is well-typed.

The MetaML family of metaprogramming facilities [15], in-
cluding MetaOCaml[17] and F# [14], implement a style of quota-
tion in which the type of quoted expressions is parameterized over
the type that would be inhabited by the the quoted expression if it
were reified. These features are intended for use in staged computa-
tion. In addition to representing the types of the quoted expressions,
these staging annotations feature static scope, so a quotation that
contains a name contains the version of that name from the scope
in which the quotation was generated.

Scala quasiquotations [13] are very much like Lisp quasiquota-
tions. While their syntax resembles that of strings, this is a con-
sequence of their implementation using Scala’s string interpola-
tors and they are in fact expanded to ASTs at compile time. The
quasiquotations were initially intended to serve as an implementa-
tion technique for Scala macros [4], but they are also useful for both
runtime code generation as well as generating program text. Scala
macros closely resemble Lisp macros, in that they do not intend
to allow arbitrary strings to be used as syntax, but instead imple-
ment transformations from one valid parse tree to another. Unlike
Lisp, Scala programs that contain macros are type checked after
macro expansion, and they are represented by a conventional AST
that macros manipulate. Quasiquotations are a means of construct-
ing and destructuring these trees using the syntax of the high-level
Scala language.

Like Scala, C# is an object-oriented language with a notion of
quotation [11]. In C#, quotation can be applied to an anonymous
function by annotating it with the Expression type, which causes

a datatype representing the function’s AST to be generated instead
of the function itself. However, this feature cannot properly be con-
sidered quasiquotation, as there is no mechanism for escaping the
quotation and inserting a sub-tree that has been generated else-
where.

2.2 Reflection, Proof Automation, and Tactic Languages
The ML language was originally developed as a metalanguage for
the Edinburgh LCF proof assistant [8]. In fact, this is where the
name ML is derived from. An abstract datatype was used to repre-
sent rules of inference in the underlying logic, and ML functions
could then be used to construct these proofs. Higher-order func-
tions could then be used to represent strategies for combining these
functions. ML served as an expressive language for automating the
construction of proofs.

Agda [16] has a notion of reflection, described by van der Walt
and Swierstra. Agda reflection is a form a compile-time metapro-
gramming, where quoted terms are used to construct proof terms
that are then reified and type checked at compile time. These terms
are constructed through direct manipulation of the term AST, which
is a simple untyped lambda calculus. Agda metaprograms can get
access to reflected representations of the type that is expected at
a particular source location as well as its lexical environment, and
they can then use this information to construct a term matching the
expected type. However, users of reflection in Agda must program
with a notation matching the reflected term datatype, rather than
with ordinary Agda syntax.

Coq is perhaps the best-known system that is designed to facil-
itate automating the construction of proofs. Early versions of Coq
required that users extend the built-in collection of tactics using
OCaml. LTac [7] is a domain-specific language for writing new tac-
tics that works at a higher level of abstraction that OCaml. It pro-
vides facilities for pattern matching the syntax of arbitrary terms
from Coq’s term language Gallina, without these terms having been
reduced to applications of constructors. Likewise, it can instantiate
lower-level tactics and tacticals, which may contain Gallina terms,
using portions of syntax extracted from the matched goals. Thus,
LTac pattern matching can be considered a form of quasiquotation.

More recently, Ziliani et al. developed the MTac tactic lan-
guage [19]. Like Agda’s reflection mechanism and unlike LTac,
MTac is implemented in Coq’s term language, rather than being an
external language. However, unlike Agda’s reflection, MTac tactics
use Coq’s type system to classify the terms produced by tactics,
and the type system can therefore catch errors in tactics. Due to
the elimination restrictions and impredicativity of the Prop uni-
verse, one can pattern match over the structure of arbitrary terms in
MTac, rather than just terms in canonical form. MTac required only
minimal extensions to Coq, namely a primitive to run MTac tactics.

3. Reflection in Idris
Idris’s reflection system is very similar to that of Agda. Elements of
a datatype representing terms in a lambda calculus can be generated
from the compiler’s internal representation of TT, after which Idris
programs can manipulate them or use them as input to procedures
that generate new reflected terms. In addition to generating new
terms, Idris allows the generation of tactic scripts through reflec-
tion, by providing a collection of base tactics as a datatype along
with a primitive tactic that allows functions from an environment
and a goal to a reflected tactic to be used as tactics themselves.
Naturally, the tactic that applies an Idris function as a tactic is itself
reflected.

Unlike Agda, the terms that are available through Idris’s re-
flection mechanism are fully annotated with their types. Addition-
ally, they include features of a development calculus in the style
of McBride’s OLEG [10], including special binding forms for holes

2 2014/9/24

and guesses. This representation is more complicated and more ac-
curate than Agda’s, as it maintains typing information.

4. Idris Quasiquotations
TT is a minimalist dependently-typed λ-calculus with inductive-
recursive families of types and operators defined by pattern match-
ing. The full details of TT are available in Brady’s 2013 article [3].

Our quasiquotations extend the Idris− language, which is a
version of Idris in which purely syntactic transformations such as
the translation of do-notation and idiom brackets to their underlying
functions have been performed and user-defined syntax extensions
have been expanded. We extend the expression language with three
new productions:
e, t ::= . . .

| ‘(e) (quasiquotation of e)
| ‘(e : t) (quasiquotation of e with type t)
| ~ e (antiquotation of e)

The parts of a term between a quotation but not within an
antiquotation are said to be quoted. Antiquotations that are not
quoted, and quoted quasiquotations, are static errors. The quoted
regions of a term are elaborated in the same way as any other Idris
expression. However, instead of being used directly, the elaborated
TT terms are first reflected. Non-quoted regions are elaborated
directly into reflected terms, which are inserted as usual.

Names occurring in the quoted portion of a term do not obey
the typical lexical scoping rules of names in Idris. This is because
quoted terms are intended to be used in places other than where
they are constructed, and their reification site may have completely
different bindings for the same names. Therefore, all names in
the quoted portion are taken to refer to the global scope. Because
antiquotations are ordinary terms, they obey the ordinary scoping
rules of the language.

Idris supports type-driven disambiguation of overloaded names.
This feature is used for everything from literal syntax for number-
and list-like structures to providing consistent naming across re-
lated libraries. This is also used to allow “punning” between some
types and their constructors. For instance, () represents both the
unit type and its constructor in Idris, and (Int, String) can rep-
resent either a pair type or a pair of types. In ordinary Idris pro-
grams, all top-level definitions are required to have type annota-
tions, so type information is available to aid in disambiguation. In
quasiquoted terms, however, this information is not available. Thus,
the second variant of quasiquotation above allows a goal type to be
provided. Like quoted terms, it is elaborated in the global environ-
ment. Because the goal type does not occur in the final reflected
term and simply exists as a shorthand to avoid explicitly annotating
names, goal types may not contain antiquotations.

A particularly instructive example that demonstrates the need
for goal types is the unit and product types. Following Haskell,
Idris uses a “pun” on its notation for products. Both the unit
type and its constructor are written (), and (2, "two") is an
inhabitant of (Int, String). Additionally, because a pair of
types is a perfectly valid construct in a dependently-typed system,
(Int, String) could represent either a pair of types or a pair type
— respectively, a member of (Type, Type) or member of Type.
In the context of a quasiquotation, defaulting rules would need to
be used to disambiguate () and (Int, String), and whichever
version was not the default would become very difficult to use. The
distinction between ‘(() : ()) and ‘(() : Type), however, is
easy to see and easy to remember.

5. Elaboration
The Idris elaborator, described in detail in Brady’s 2013 paper [3],
uses proof tactics to translate desugared Idris to the core type theory

TT. A full presentation of this process is far outside the scope
of this paper; however, enough details are repeated to make the
elaboration of quasiquotes understandable.

5.1 The Elaboration Monad
The Idris elaborator is built on top of a library for manipulating
terms in type theory. The elaborator is defined inside of a monad
with state that consists of a hole queue, a focused hole or guess,
and a collection of unsolved unification problems. The hole queue
contains goals that are yet to be solved - at the beginning of elabora-
tion, it will contain a single hole, but later operations can introduce
new holes. The focused hole represents the current goal. Addition-
ally, the elaboration monad contains errors and error handling.

A number of meta-operations, or tactics, are defined in the
elaboration monad. These tactics resemble the built-in proof tactics
of a system like Coq. In this paper, we use the following subset of
Brady’s [3] meta-operations:

• CHECK, which type checks a complete term;
• CLAIM, which introduces a new hole with a particular type,

placing it at the rear of the hole queue;
• GET, which binds the proof state to a variable;
• FILL, which adds a guess for the focused hole, solving the

imposed unification constraints;
• NEWPROOF, which obliterates the proof state and establishes a

new goal;
• PUT, which replaces the proof state with a new one;
• SOLVE, which causes a guess to be substituted for its hole;
• TERM, which returns the current term;
• UNFOCUS, which moves the focused hole to the end of the hole

queue;

As a notational convention, we follow Brady [3] in letting the
notation for names in the meta-language and names in the object
language coincide, deferring to the reader to see which is being
used. Names that occur in both contexts are metalanguage names
referring to coinciding object language names. Additionally, un-
bound variables are taken to be fresh. When operations and their
arguments occur under an arrow (e.g. ~CLAIM ~a), it means that the
operation is repeated on all the arguments in the sequence. This is
similar to mapM in Haskell.

The meta-operations EJ·K and PJ·K, which run relative to a
proof state, respectively elaborate expressions and patterns. These
operations usually coincide; however, they treat unresolved free
variables differently. Following EJ·K, unresolved holes or variables
trigger an error, while unresolved names in patterns (that is, follow-
ing PJ·K) are bound to pattern variables. Otherwise, constructors
with implicit arguments (such as the length argument to the (::)
case of Vect) would not be able to be pattern-matched.

Elaboration is type-directed, in the sense that the elaborator
always has a goal type available and can make decisions based on
this fact. However, sometimes the type will be either unknown or
partially known. In these cases, unification constraints imposed by
the elaboration of the term can cause the type to be solved.

In addition to the meta-operations described by Brady [3], we
define four additional operations:

• ANYTHING, which introduces a hole whose type must be in-
ferred;

• EXTRACTANTIQUOTES, which replaces antiquotations in a
quasiquoted Idris− term with references to fresh names, re-
turning the modified term and the mapping from these fresh
names to their corresponding antiquotation terms;

3 2014/9/24

• REFLECT, which returns a term corresponding to the reflection
of its argument; and

• REFLECTP, which returns a pattern corresponding to the reflec-
tion of its argument.

The operation ANYTHING n can be defined as follows:

ANYTHING n = do CLAIM (n ′ : Type)
CLAIM (n : n ′)

This represents type inference because it hides the fresh name
n ′ that is introduced for the type of n . Thus, the type must
be later solved through unification with other elaborated terms.
EXTRACTANTIQUOTES is a straightforward traversal of an Idris−

term, replacing antiquotations with variables and accumulating a
mapping from these fresh variables to the corresponding replaced
subterms. The names alone are accessed by the operation names .
REFLECT and REFLECTP each take a term and a collection of
names of antiquotations (see Section 5.2) and return a quoted ver-
sion of the term. Antiquotation names, however, are not quoted.
Additionally, REFLECTP inserts universal patterns in certain cases
— see Section 5.4

5.2 Elaborating Quasiquotations
We implement quasiquotations by extending the elaboration pro-
cedures for expressions and patterns, respectively EJ·K and PJ·K.
Elaborating the quoted term proceeds through five steps, each of
which is described in detail below:

1. Replace all antiquotations by fresh variables, keeping track of
the antiquoted terms and their assigned names

2. Elaborate the resulting term in a fresh proof state, to avoid
variable capture

3. If RHS, quote the term, leaving antiquotation variables free

4. If LHS, quote with strategically placed universal patterns for
things like unused names

5. Restore local environment and elaborate antiquotations

Replace antiquotations We replace antiquotations with fresh
variables because they will need to be treated differently than the
rest of the term. Additionally, the expected types of the antiquota-
tions must be inferable from the context in which they are found,
because the quotations that will fill them provide no type informa-
tion. We remember the association between the antiquoted terms
and the names that they were replaced by so that the result of elab-
orating them can later be inserted.

Elaborate in a fresh proof state Quotations can occur in any Idris
expression. However, names that are defined in quotations are re-
solved in the global scope, for reasons discussed in Section 4. Be-
cause the scopes of local variables are propagated using hole con-
texts in the proof state, it is sufficient to elaborate the quoted term
in a fresh state. The replacement of antiquotations with references
to fresh names means that there is no risk of elaborating the con-
tents of the antiquotations too early. However, when the elaborator
reaches these names, it will fail, because they are unknown. To fix
this problem, we first use the ANYTHING meta-operation that was
defined above to introduce holes for both these names and their
types. Because this stage of elaboration occurs in term mode, rather
than pattern mode, the elaboration will fail if the holes containing
types don’t get solved through unification.

Quote the term Quotation is the first step that differs between
terms and patterns. In both cases, the term resulting from elabora-
tion is quoted, with the names that were assigned to antiquotations
left unquoted. However, if the term being elaborated is a pattern,

EJ‘(e)K = do (e ′, ~a) ← EXTRACTANTIQUOTES e (1)

st ← GET (2)
NEWPROOF T
CLAIM (T : Type)

~ANYTHING (names ~a)
EJe ′K
qt ← TERM
CHECK qt
PUT st

~CLAIM (names ~a : ~Term) (3)
r ← REFLECT qt ~a
FILL r
SOLVE

~ELABANTIQUOTE ~a (5)

Figure 1. Elaboration of quasiquotations

then some aspects of the term are not quoted faithfully. See Sec-
tion 5.4 for more information.

Elaborate the antiquotations The quoted term from the previous
step is ready to be spliced into the original hole. What remains is
to solve the variables introduced for antiquotations in the previous
step. This is done by first introducing each name as a hole expecting
a quoted term, and then elaborating them straightforwardly into
their respective holes.

Figure 1 describes this elaboration procedure in Brady’s nota-
tion. The individual tactics that correspond to each of the steps
1–5 above are numbered. Antiquotations are replaced in the first
line of the tactic script, using the previously-described operation
EXTRACTANTIQUOTES (1). Then, the ordinary state monad oper-
ations GET and PUT are used to save and restore the original proof
state. The region (2) bracketed by these operations corresponds
to step 2 above — namely, elaboration of the quoted term in the
global context, which is achieved using a fresh proof state intro-
duced by NEWPROOF. Initially, the goal of the new proof is an un-
bound variable, but this variable is then bound as a hole expecting a
type using the CLAIM meta-operation. The quoted term is provided
with hole bindings for each of the fresh antiquotation names by the
ANYTHING meta-operation. Then, the quoted term is elaborated
into the main hole. If this process is successful, it will result in the
hole T being filled out with a concrete type as well. The result of
elaboration is saved in the variable qt , and then type checked one
final time with CHECK to ensure that no errors occurred.

After the original proof state is restored with PUT, the actual
quoting must be performed and the antiquotations must be spliced
into the result (3). Each antiquotation name is now established as
a hole of type Term, the datatype representing reflected terms, be-
cause the elaborated form must be a quotation. Now that the holes
for the antiquotations are established, it is possible to insert the
reflected term into the initial hole. The operation REFLECT is in-
voked, which quotes the term, leaving references to the antiquota-
tion variables intact as references to the just-introduce holes. This
quoted term is then filled in as a guess, and SOLVE is used to dis-
patch the proof obligation.

Finally, the antiquotations can be elaborated (5). This is done
by focusing on their holes and elaborating the corresponding term
into that hole. In the above script, this is represented by the tactic
ELABANTIQUOTE, which can be defined as follows:

ELABANTIQUOTE (n, t) = do FOCUS n
EJtK

4 2014/9/24

EJ‘(e : t)K = do
...

CLAIM (T : Type)
FOCUS T
EJtK

~ANYTHING (names ~a)
...

Figure 2. Elaborating quasiquotations with goal types

A specific elaboration procedure for antiquotations is not necessary,
because programs with antiquotations outside of quasiquotations
are rejected prior to elaboration.

5.3 Elaborating Goal Types
Elaborating a quasiquotation with an explicit goal type is a straight-
forward extension of the procedure in the previous section. After
introducing a hole for the type of the term that will be elaborated
prior to the actual quotation, the goal type is elaborated into this
hole. Because this is occurring immediately after the establishment
of a fresh proof state, names in the goal type will be resolved in the
global scope, as intended.

The formal procedure is largely identical, with only the small
addition shown in Figure 2. Thus, the lines immediately before and
immediately after are included to show where the additions have
occurred. This seemingly-simple change has far-reaching effects,
because type information is now available to the subsequent elabo-
ration of e ′. This type information can, for instance, enable implicit
arguments to be solved due to unification constraints induced by the
elaboration of t .

5.4 Elaborating Quasiquotation Patterns
Quasiquotations can also be used as patterns. Recall that the oper-
ation PJ·K is a variation of EJ·K that is used on the left-hand side of
definitions in order to elaborate patterns. The primary difference is
that PJ·K does not fail when the elaborated term contains unknown
variables. Instead, it inserts pattern variable bindings for these.

It is tempting, then, to simply use the pattern elaborator in the
recursive elaboration clauses of the quasiquote elaboration pro-
cedures. However, this would not work. REFLECT would simply
quote these new pattern variables, leading to terms that contain ex-
plicitly quoted fresh pattern variables. Pattern elaboration must in-
stead invoke ordinary expression elaboration when generating the
term to be quoted, but then use pattern elaboration for the antiquo-
tations.

For practical reasons, pattern elaboration must use a specialized
reflection procedure REFLECTP that introduces some universal
patterns in strategic places. For example, ordinary non-dependent
function types are represented in TT as dependent functions in
which the bound name is not free in the type on the right hand side.
These names are chosen by the compiler, and they are difficult to
predict. Therefore, they are represented as universal patterns (_)
rather than their names. Additionally, universe level variables and
internal type and constructor tag values are replaced with universal
patterns. There is no solid theoretical basis for the current selec-
tion of universal pattern addition heuristics. Rather, it is a result of
experimentation with the system and writing practical programs.

Figure 3 demonstrates the formal procedure for elaboration
of quasiquotation patterns. This procedure uses two variations on
previously-seen meta-operations: REFLECTP, like REFLECT, is a
traversal of the resulting tree structure that implements step 4 ab-
vove, and ELABANTIQUOTEP is defined as follows:

PJ‘(e)K = do (e ′, ~a) ← EXTRACTANTIQUOTES e (1)

st ← GET (2)
NEWPROOF T
CLAIM (T : Type)

~ANYTHING (names ~a)
EJe ′K
qt ← TERM
CHECK qt
PUT st

~CLAIM (names ~a : ~Term) (4)
r ← REFLECTP qt ~a
FILL r
SOLVE

~ELABANTIQUOTEP ~a (5)

Figure 3. Elaborating quasiquote patterns

ELABANTIQUOTEP (n, t) = do FOCUS n
PJtK

The modifications necessary to elaborate a quasiquotation pattern
with a goal type are identical to the non-pattern case. In the real
implementation, of course, quasiquote elaboration with or without
goal types and in pattern mode or expression mode is handled by
one code path, with conditionals expressing the four possibilities.
They are presented as four separate procedures here for reasons of
clarity.

6. Examples
This section demonstrates the usefulness of quasiquotations through
a number of examples, showing how the high-level notation of Idris
quasiquotation simplifies their expression and reduces the need for
the user to comprehend all of the details of elaboration.

6.1 Custom Tactics
In Idris, a custom tactic is a function from a proof context and goal
to a reflected tactic expression. Reflected tactics are represented
by the Tactic datatype, which has constructors such as Exact
for solving the goal with some proof term, Refine for applying a
name to solve the goal, leaving holes for the remaining arguments,
and Skip which does nothing, along with tactics such as Seq for
sequential composition and Try to provide a fallback in case of
errors. These tactics correspond to the elaborator tactics described
in Section 5.

The native tactic applyTactic runs a custom tactic in the scope
of the current proof. In other words, its argument should be an
expression of type:

List (TTName, Binder TT) -> TT -> Tactic

This construction allows Idris to be its own metalanguage for pur-
poses of proof automation.

6.1.1 Trivial Goals
When writing proofs, it may be the case that a particular goal is
completely trivial. Either the goal type is one such as () or the
equality type that have only a single constructor, or we have a
premise available with precisely the type that we desire. Idris al-
ready has a built-in tactic to solve these kinds of goals, called
trivial. However, this built-in tactic is not extensible with sup-
port for new trivial types.

Figure 4 demonstrates an implementation of a trivial tactic that
uses our newly-introduced quasiquotations. The first case checks

5 2014/9/24

triv : List (TTName, Binder TT) -> TT -> Tactic
triv ctxt ‘(() : Type) =

Exact ‘(() : ())
triv ctxt ‘((=) {A=~A} {B=~B} ~x ~y) =

Exact ‘(the ((=) {A=~A} {B=~B} ~x ~y) refl)
triv ((n, b)::ctxt) goal =

if binderTy b == goal
then Exact (P Bound n Erased)
else triv ctxt goal

triv [] _ =
Fail [TextPart "Decidedly nontrivial!"]

Figure 4. A tactic for trivial goals

rewrite_plusSuccRightSucc : TT -> Maybe Tactic
rewrite_plusSuccRightSucc ‘(plus ~n (S ~m)) =

Just (Rewrite ‘(plusSuccRightSucc ~n ~m))
rewrite_plusSuccRightSucc _ = Nothing

rewrite_plusZeroRightNeutral : TT -> Maybe Tactic
rewrite_plusZeroRightNeutral ‘(plus ~n Z) =

Just (Rewrite ‘(sym (plusZeroRightNeutral ~n)))
rewrite_plusZeroRightNeutral _ = Nothing

Figure 5. Rewriters for addition

whether the goal is the unit type. The goal annotation is necessary
because of Idris’s defaulting rules, which prioritize the unit con-
structor during disambiguation. The second case checks whether
the goal is an identity type. The explicit provision of both A and
B is necessary because Idris uses heterogeneous equality, and the
elaborator is unable to guess what these types are. The third case
provides for a traversal of the context, checking whether a proof
is already available. Finally, the fourth case causes an error to be
thrown if the proof was not trivial.

6.1.2 Simplifying Arithmetic Expressions
The function plus that implements natural number addition is
defined by recursion on its first argument. This means that cer-
tain equalities that users may consider to be trivial, such as n +
Succ(m) = Succ(n+m), exist as lemmas in the library that must
be explicitly applied. This process is entirely tedious and can be
automated. However, a general-purpose search mechanism that at-
tempted to use the entire standard library to rewrite equalities to
something easily provable would very likely be too slow and frag-
ile to use. This is an excellent use for a custom tactic.

Indeed, a family of such tactics can be defined using a simple
combinator language. In this example, we define rewriters for arith-
metic expressions involving addition, zero, and successors, but the
approach can easily be extended to cover more equalities.

Let a rewriter be a function in TT -> Maybe Tactic. A
rewriter, when passed a goal, should either return a tactic that sim-
plifies the goal or Nothing. Figure 5 demonstrates two rewriters
for addition. The first uses the library proof plusSuccRightSucc,
which expresses the identity n + Succ(m) = Succ(n +m). The
second uses the proof plusZeroRightNeutral, which expresses
that zero is a right-identity of addition. Quasiquotes provide a con-
venient notation for both pattern-matching the goal terms and con-
structing the proof objects to rewrite with. Without quasiquotes,
the first example would be much longer, as can be seen in Figure 6.

It is important to point out that this is a particularly easy case
to translate. The function is monomorphic, with no implicit argu-
ments to be solved. The types in question are first-order, with no pa-

rewrite_plusSuccRightSucc : TT -> Maybe Tactic
rewrite_plusSuccRightSucc
(App

(App
(P Ref (NS (UN "plus") ["Nat", "Prelude"]) _)
n)

(App
(P (DCon 1 _)

(NS (UN "S") ["Nat", "Prelude"])
_)

m)) =
Just (Rewrite

(App (App (P Ref
(NS (UN "plusSuccRightSucc")

["Nat", "Prelude"])
_)

n)
m))

rewrite_plusSuccRightSucc _ = Nothing

Figure 6. A rewriter, without quasiquotes

rameters or indices. In many realistic programs, especially those in
which implicit arguments must be solved, the relationship between
the term to be rewritten and its low-level reflected representation
might be much more difficult to discern.

Returning to the rewriting library, we can define a few simple
combinators:

(<||>) : (TT -> Maybe Tactic) ->
(TT -> Maybe Tactic) ->
TT -> Maybe Tactic

rewrite_eq : (TT -> Maybe Tactic) ->
TT -> Maybe Tactic

rewrite_nat : (TT -> Maybe Tactic) ->
TT -> Maybe Tactic

The (<||>) operator attempts to rewrite using its left-hand rewriter.
If this fails, it will attempt to rewrite with its right-hand operator.
The operators rewrite_eq and rewrite_nat recurse over the
structure of the goal, attempting to apply rewrite rules at each step.
They apply to equality types and natural number expressions, re-
spectively.

It is possible to derive a rewriter for equalities of expressions
involving natural numbers and addition as follows:

rewrite_eq
(rewrite_nat

(rewrite_plusSuccRightSucc <||>
rewrite_plusZeroRightNeutral))

This rewriter can be used in a custom tactic to repeatedly rewrite
until a normal form has been reached.

6.2 Error Reflection
As described in the introduction and in a previous paper [5], Idris’s
error reflection allows programmatic rewriting of error messages.
This can be used to provide domain-specific errors for embedded
domain-specific languages, but most type errors are of the form
“Can’t unify t1 with t2”, where t1 and t2 can be arbitrarily large
terms. Additionally, dependent types often lead to a lot of redun-
dant information being retained on terms in order to propagate type
information - and much of this information is collected on implicit
arguments that need to be inferred by the elaborator anyway. With-
out quasiquotation, pattern-matching on these terms inside of re-
flected error messages is extremely verbose and error-prone.

6 2014/9/24

%error_handler
vectRewrite : Err -> Maybe (List ErrorReportPart)
vectRewrite (CantUnify x

‘(Vect ~n ~a)
‘(Vect ~m ~b)
_ _ _) =

if n /= m
then Just [TextPart "Mismatching lengths."]
else Nothing

vectRewrite _ = Nothing

Figure 7. Error rewriter for vector lengths

As a simple example, Figure 7 demonstrates an error message
rewriter provides a hint to users who attempt to use a vector whose
length does not match the expected length. This code will cause
unification errors between two vector types, when their lengths
are not identical, to be replaced by the message “Mismatching
lengths”. For reasons of space, this is a very simple example. The
equivalent of just one of the patterns, ‘(Vect ~n ~a), is:

App (App (P (TCon _ 2)
(NS (UN "Vect") ["Vect", "Prelude"])
(Bind _

(Pi (P (TCon _ 0)
(NS (UN "Nat")

["Nat", "Prelude"])
Erased))

(Bind _
(Pi (TType _))
(TType _)))

n)
a

where the universal patterns are a result of the special quoting rules
that are applied in a pattern context.

This example was very simple. Many realistic error rewriting
rules are much more complicated. Without quasiquotes, the error
reflection feature would be worthless, because the effort required
to manually elaborate terms would be far too great.

7. Conclusion and Future Work
This paper introduced a quasiquotation feature in the Idris lan-
guage. These quotations can decrease the verbosity of reflection
and allow the use of the implicit argument resolution mechanisms
and type-driven overloading when constructing reflected terms.
Idris’s type-driven elaboration mechanism [3] needed only a small
amount of new code in order to handle this unforeseen extension,
providing evidence that the approach can scale to new features.

The present implementation of quasiquotation has one major
limitation: the elaboration of some terms in the high-level Idris lan-
guage results in auxiliary definitions, which are then referenced
in the elaborated TT terms. This is because, in TT, all pattern
matching must occur at the top level. As an example, case blocks
and pattern-matching lets are elaborated into top-level functions.
Presently, the quotations of these terms simply refer to names of
definitions that do not exist. Potential solutions to this problem in-
clude rejecting terms with this kind of side effect or tracking the
original syntax that results in auxiliary definitions, so that two quo-
tations of the same high-level term will refer to the same auxiliary
name. Neither potential solution is entirely satisfactory.

Presently, the elaboration of quasiquote patterns introduces a
number of universal patterns in invisible parts of the term where
the user would not be able to predict or control the contents, such
as machine-generated unused names. However, the locations at

which these patterns are inserted is currently not well founded
in experience, and it may match too many terms. It would be
useful to have a means of being more precise, or possibly even
using dependent pattern matching to ensure a kind of restricted α-
equivalence between the term being destructured and the quoted
term in the pattern.

Acknowledgments
I would like to thank Edwin Brady for his assistance with the
Idris implementation. Additionally, I would like to thank my
Ph.D. advisor Peter Sestoft for his comments on drafts of this
paper and Eugene Burmako and Denys Shabalin for correcting
my misunderstandings of Scala’s quasiquotes. This work was
funded by the Danish National Advanced Technology Foundation
(Højteknologifonden) grant 017-2010-3.

References
[1] L. Augustsson. Cayenne — a language with dependent types. In

Proceedings of the Third ACM SIGPLAN International Conference on
Functional Programming, ICFP ’98, pages 239–250, New York, NY,
USA, 1998. ACM. .

[2] A. Bawden. Quasiquotation in Lisp. In O. Danvy, editor, Proceedings
of the 1999 ACM SIGPLAN Workshop on Partial Evaluation and
Semantics-Based Program Manipulation, pages 4–12, 1999.

[3] E. Brady. Idris, a general purpose dependently typed programming
language: Design and implementation. Journal of Functional Pro-
gramming, 23:552–593, 9 2013.

[4] E. Burmako. Scala macros: Let our powers combine!: On how rich
syntax and static types work with metaprogramming. In Proceedings
of the 4th Workshop on Scala, SCALA ’13. ACM, 2013.

[5] D. R. Christiansen. Reflect on your mistakes! Lightweight domain-
specific errors. Unpublished manuscript, 2014.

[6] D. de Rauglaudre. Camlp4 reference manual, 2003. URL http:
//pauillac.inria.fr/camlp4/manual/.

[7] D. Delahaye. A tactic language for the system coq. In Proceedings
of Logic for Programming and Automated Reasoning (LPAR), volume
1955 of Lecture Notes in Computer Science, November 2000.

[8] M. Gordon. From LCF to HOL: a short history. In G. Plotkin,
C. Stirling, and M. Tofte, editors, Proof, Language, and Interaction:
Essays in Honour of Robin Milner, pages 169–186. MIT Press, 2000.

[9] G. Mainland. Why it’s nice to be quoted: Quasiquoting for Haskell.
In Proceedings of the ACM SIGPLAN Workshop on Haskell, Haskell
’07, pages 73–82. ACM, 2007.

[10] C. McBride. Dependently Typed Functional Programs and their
Proofs. PhD thesis, University of Edinburgh, 1999.

[11] Microsoft. Expression trees (c# and visual basic), accessed August,
2014. URL http://msdn.microsoft.com/en-us/library/
bb397951.aspx.

[12] W. v. O. Quine. Mathematical Logic. Harvard University Press,
revised edition, 1981.

[13] D. Shabalin, E. Burmako, and M. Odersky. Quasiquotes for Scala.
Technical Report 185242, École polytechnique fédérale de Lausanne,
2013.

[14] D. Syme. Leveraging .NET meta-programming components from
F#: integrated queries and interoperable heterogeneous execution. In
Proceedings of the 2006 workshop on ML, pages 43–54. ACM, 2006.

[15] W. Taha and T. Sheard. Metaml and multi-stage programming with
explicit annotations. Theoretical computer science, 248(1):211–242,
2000.

[16] The Agda Team. The Agda Wiki, accessed 2014. URL http:
//wiki.portal.chalmers.se/agda/.

[17] The MetaOCaml Team. MetaOCaml, accessed 2014. URL http:
//www.cs.rice.edu/~taha/MetaOCaml/.

7 2014/9/24

http://pauillac.inria.fr/camlp4/manual/
http://pauillac.inria.fr/camlp4/manual/
http://msdn.microsoft.com/en-us/library/bb397951.aspx
http://msdn.microsoft.com/en-us/library/bb397951.aspx
http://wiki.portal.chalmers.se/agda/
http://wiki.portal.chalmers.se/agda/
http://www.cs.rice.edu/~taha/MetaOCaml/
http://www.cs.rice.edu/~taha/MetaOCaml/

[18] P. van der Walt and W. Swierstra. Engineering proof by reflection
in Agda. In R. Hinze, editor, Implementation and Application of
Functional Languages, Lecture Notes in Computer Science, pages
157–173. Springer Berlin Heidelberg, 2013. ISBN 978-3-642-41581-
4. .

[19] B. Ziliani, D. Dreyer, N. R. Krishnaswami, A. Nanevski, and
V. Vafeiadis. Mtac: A monad for typed tactic programming in Coq.
In Proceedings of the 18th ACM SIGPLAN International Conference
on Functional Programming, ICFP ’13, pages 87–100. ACM, 2013.

8 2014/9/24

	Introduction
	Related Work
	A Brief History of Quasiquotation
	Reflection, Proof Automation, and Tactic Languages

	Reflection in Idris
	Idris Quasiquotations
	Elaboration
	The Elaboration Monad
	Elaborating Quasiquotations
	Elaborating Goal Types
	Elaborating Quasiquotation Patterns

	Examples
	Custom Tactics
	Trivial Goals
	Simplifying Arithmetic Expressions

	Error Reflection

	Conclusion and Future Work

