
abstract

Task Oriented Programming with
Purely Compositional Interactive Vector Graphics

Peter Achten
Radboud University Nijmegen, Netherlands, ICIS,

MBSD
P.Achten@cs.ru.nl

Jurriën Stutterheim László Domoszlai
Rinus Plasmeijer

Radboud University Nijmegen, Netherlands, ICIS,
MBSD

j.stutterheim@cs.ru.nl,dlacko@gmail.com,rinus@cs.ru.nl

1. Abstract
Task Oriented Programming [24, 29] (TOP) is a paradigm that is
designed to construct multi-user, distributed, web-applications. The
iTask system [28] (iTasks) is a TOP framework that offers three core
concepts for software developers.

• Tasks which are abstractions of the work that needs to be per-
formed by (teams of) human(s) and software components. A
task is a value of parameterized type (Task a). The type pa-
rameter a models the task value the task is currently process-
ing. This value can be inspected by other tasks.

• Shared data sources (SDS) which are abstractions of informa-
tion that is shared between tasks. A SDS is a value of param-
eterized type (ReadWriteShared r w). The type parameters r

and w model the read and write values.
• Combinator functions that compose tasks and SDSs into more

complex tasks and SDSs and combinations of them.

The iTask system is a domain specific language (DSL) that is shal-
lowly embedded in the strongly typed, lazy, purely functional pro-
gramming language Clean [27, 30]. When developing an iTask
application, the task developer can concentrate on identifying the
tasks, the shared data sources, and their interrelation. The iTask sys-
tem uses generic programming [5, 21] and a hybrid static-dynamic
type system [31, 32] to generate all required machinery to create an
executable. Among the plethora of concerns, the iTask system au-
tomatically generates a graphical user interface (GUI) for any con-
ceivable first order model type. For this purpose the iTask system
offers a comprehensive set of data types that model common user
interface elements. In this way the task developer needs no work-
ing knowledge of JavaScript, HTML 5.0, handling (de)serialization
and events. However, this knowledge is required whenever the com-
prehensive set of model types does not cover a particular interface
element. This is unfortunate because it breaks the level of abstrac-
tion that is offered by the iTask system.

[Copyright notice will appear here once ’preprint’ option is removed.]

In this paper we show how the level of abstraction of iTask
can remain intact when task developers define new user interface
elements. This is done in a number of steps:

• We extend iTask with Images which are vector graphics based
renderings. An image of type (Image m) is a rendering of a
model value of type m . Images have a span to specify their
dimensionality and local coordinate-system (traditional running
from left-to-right and top-to-bottom), but there is no global
coordinate system in which they are positioned or global canvas
on which they are painted.

• We add combinator functions to compose images into more
complex images. The absence of a global coordinate system or
global canvas allows us to provide only three layout primitives:
the overlay (placing images on top of each other), grid (two-
dimensional structured layout), and collage (two-dimensional
arbitrary layout). Each layout primitive has an optional host
image that determines a reference span that is used for layout.

• We obtain interactivity by integrating images in iTask. Any
(composite) image of type (Image m) can react to user events
and define its behaviour via a pure function of type (m -> m)

that alters the image’s model value. This is in accordance to the
philosophy of tasks: behaviour only needs to be defined in terms
of how tasks depend on the model value of tasks and images.

The implementation of images and its combinator functions in
iTask is based on the Scalable Vector Graphics (SVG) standard
[10]. The low-level integration of these images in iTask is struc-
tured by means of editlets, and the high-level integration is done
via the iTask step task combinator function.

Compositional Images
The full paper contains a detailed explanation and motivation for
the compositional image library. Figure 1 displays the key elements
of the API. For this abstract, we state the key properties of the API.

• Think of a basic image as an overhead-projector slide that is
infinitely large. This slide can be rotated, scaled, and skewed. A
finite portion of the basic image has visual content, the extent of
which is defined by its span. The x-span always extends from
left to right, and the y-span always extends from top to bottom.

• Think of a composite image as a stack of overhead-project
slides. This stack can be rotated, scaled, and skewed. When
composing images, their span is used to control their rela-
tive location. There are three core image combinator functions:
overlay to stack images, grid to stack images row-by-row or
column-by-column, and collage to stack images and arrange

draft paper for pre-proceedings IFL 2014 1 2014/9/7

them to your liking. The commonly occurring layouts beside
and above are direct specializations of grid.

• The layout combinators have an optional host image parameter.
Think of the host image as the background image relative to
which the other images are to be arranged in terms of alignment.

• Images can have tags. This is needed when expressing spans in
terms of the span(s) of other parts of the image.

• A (composite) image of type (Image m) can be made interac-
tive by attributing it with a pure function of type (m -> m),
thus resulting in a change of image model value. This function
is evaluated whenever the user clicks in the image (regardless
of the location and transformation of the image).

:: Image m / / Opaque type
:: Span / / Opaque type
:: Host m :== Maybe (Image m)
:: ImageTag :== String
:: FontDef :== String
:: ImageOffset :== (Span, Span)

:: XAlign = AtLeft | AtMiddleX | AtRight
:: YAlign = AtTop | AtMiddleY | AtBottom
:: ImageAlign :== (XAlign, YAlign)

:: GridDimension = Rows Int | Columns Int
:: GridLayout :== (GridXLayout, GridYLayout)
:: GridXLayout = LeftToRight | RightToLeft
:: GridYLayout = TopToBottom | BottomToTop

:: ImageLayout m :== [ImageOffset] [Image m] (Host m) -> Image m
overlay :: [ImageAlign] -> ImageLayout m
beside :: [YAlign] -> ImageLayout m
above :: [XAlign] -> ImageLayout m
grid :: GridDimension GridLayout [ImageAlign] -> ImageLayout m
collage :: ImageLayout m

empty :: Span Span -> Image m
text :: FontDef String -> Image m
circle :: Span -> Image m
ellipse :: Span Span -> Image m
rect :: Span Span -> Image m

:: Slash = Slash | Backslash

xline :: Span -> Image m
yline :: Span -> Image m
line :: Slash Span Span -> Image m
polygon :: [ImageOffset] -> Image m
polyline :: [ImageOffset] -> Image m

rotate :: Real (Image m) -> Image m
fit :: Span Span (Image m) -> Image m
fitx :: Span (Image m) -> Image m
fity :: Span (Image m) -> Image m
skewx :: Real (Image m) -> Image m
skewy :: Real (Image m) -> Image m

px :: Real -> Span
ex :: FontDef -> Span
descent :: FontDef -> Span
textxspan :: FontDef String -> Span
imagexspan :: [ImageTag] -> Span
imageyspan :: [ImageTag] -> Span
columnspan :: [ImageTag] Int -> Span
rowspan :: [ImageTag] Int -> Span

Figure 1. The key elements of the Image API.

Integration in iTask
The integration of interactive, compositional images in iTask con-
cerns the following components:

• The images are mapped to SVG. We face two major hurdles: (i)
SVG adopts an imperative-style rendering model, so we must
take care to unravel the declarative image specifications and
paint them in the right order in SVG; (ii) text dimensions can
only be computed at the client-side of the application, so the
layout of images can not be performed entirely on the server-
side of iTask.

• To establish the server-client side communication, we use iTask
editlets.

These will be described in detail in the full paper.

Case studies
We demonstrate the new iTask approach by means of the following
case studies:

• a 1-person pocket calculator,
• a 2-person, distributed, tic-tac-toe game,
• a 2-person, distributed, trax game [1],
• a N -person, distributed, ligretto card game.

Related work
Functional programming and GUIs share a long research history
[2–4, 6–9, 11–19, 22, 23, 25, 26]. The full paper compares and
discusses these approaches in more detail. For this abstract we
restrict ourselves to the following observations:

• Regarding compositional images, the work by Henderson [19,
20] has been influential to many compositional approaches, as
well as ours. Similar to Henderson’s approach, we abstract from
absolute location, but we do not from size. In the context of
scalable vector graphics, the latter is not an issue because at
any time images can be resized to any demanded size.

• Regarding compositional GUIs, Haggis [15] is similar in their
approach to layout and transform GUIs. A difference is that
Haggis has a monadic flavour: the GUI elements that are to
be combined need to be declared before their handles can be
used to arrange them inside layouts. In our approach, the iTask
system ‘collects’ the offered images in the task specifications.

• Regarding ‘completeness’, we have not yet made use of all
graphics elements that are offered by SVG. Concepts that are
currently missing but are intended to be included in the iTask
system are Bézier curves, multi-line text blocks, gradients, gen-
eralized clipping, and filtering. The layout combinators that we
propose were inspired by the Racket image API [14]. The three
core layout primitives overlay, grid, and collage of our ap-
proach can model them. The current proposal’s event model is
certainly incomplete as it covers only user-mouse clicks. We
expect that extending the model to deal with the usual set of
mouse and keyboard events follows the same approach.

Conclusions
In the TOP iTask framework multi-user, distributed, web-applica-
tions can be developed on a high level of abstraction because the
task developer can concentrate on identifying and specifying the
required tasks, information, and how they relate, knowing that the
iTask framework can generate a suitable web application. The pa-
per shows how this property can also be satisfied when develop-
ing applications that require custom built user interface(element)s.
Because images are compositional, the task developer can concen-
trate on identifying and specifying the required graphical elements,

draft paper for pre-proceedings IFL 2014 2 2014/9/7

knowing that the image library generates a suitable SVG rendering.
Via editlets graphically customized tasks are integrated seamlessly
in the TOP paradigm.

References
[1] P. Achten. Why functional programming matters to me. In P. Achten

and P. Koopman, editors, The Beauty of Functional Code - Essays
Dedicated to Rinus Plasmeijer on the Occasion of His 61st Birthday,
Festschrift, number 8106 in LNAI, pages 79–96. Springer, August
2013. ISBN ISBN 978-3-642-40354-5.

[2] P. Achten and S. Peyton Jones. Porting the Clean Object I/O library to
Haskell. In M. Mohnen and P. Koopman, editors, Selected Papers of
the 12th International Workshop on the Implementation of Functional
Languages, IFL ’00, volume 2011 of LNCS, pages 194–213. Springer-
Verlag, Sept. 2001.

[3] P. Achten and R. Plasmeijer. The ins and outs of Concurrent Clean
I/O. Journal of Functional Programming, 5(1):81–110, 1995.

[4] P. Achten and R. Plasmeijer. Interactive functional objects in Clean.
In C. Clack, K. Hammond, and T. Davie, editors, Selected Papers of
the 9th International Workshop on the Implementation of Functional
Languages, IFL ’97, volume 1467 of LNCS, pages 304–321. Springer-
Verlag, Sept. 1998.

[5] A. Alimarine. Generic functional programming: conceptual design,
implementation and applications. PhD thesis, Institute for Computing
and Information Sciences, Radboud University Nijmegen, The Nether-
lands, 2005.

[6] M. Carlsson and T. Hallgren. Fudgets - a graphical user interface in
a lazy functional language. In Proceedings of the 6th International
Conference on Functional Programming Languages and Computer
Architecture, FPCA ’93, Kopenhagen, Denmark, 1993.

[7] K. Claessen, T. Vullinghs, and E. Meijer. Structuring graphical
paradigms in TkGofer. In Proceedings of the 2nd International Con-
ference on Functional Programming, ICFP ’97, volume 32(8), pages
251–262, Amsterdam, The Netherlands, 9-11, June 1997. ACM Press.

[8] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: web program-
ming without tiers. In Proceedings of the 5th International Symposium
on Formal Methods for Components and Objects, FMCO ’06, volume
4709, CWI, Amsterdam, The Netherlands, 7-10, Nov. 2006. Springer-
Verlag.

[9] A. Courtney and C. Elliott. Genuinely functional user interfaces. In
Proceedings of the 5th Haskell Workshop, Haskell ’01, Sept. 2001.

[10] E. Dahlström, P. Dengler, A. Grasso, C. Lilley, C. McCormack,
D. Schepers, and J. Watt. Scalable vector graphics (svg) 1.1 (second
edition). Technical Report REC-SVG11-20110816, W3C Recommen-
dation 16 August 2011, 2011.

[11] A. Dwelly. Functions and dynamic user interfaces. In Proceedings
of the 4th International Conference on Functional Programming Lan-
guages and Computer Architecture, FPCA ’89, pages 371–381, Sept.
1989.

[12] C. Elliot. Tangible functional programming. In Proceedings of the
12th International Conference on Functional Programming, ICFP
’07, pages 59–70, Freiburg, Germany, 1-3, Oct. 2007. ACM Press.
ISBN 978-1-59593-815-2.

[13] M. Elsman and N. Hallenberg. Web programming with SMLserver.
In Proceedings of the 5th International Symposium on the Practical
Aspects of Declarative Programming, PADL ’03. New Orleans, LA,
USA, Springer-Verlag, Jan. 2003.

[14] M. Felleisen, R. Findler, M. Flatt, and S. Krishnamurthi. A Functional
I/O System * or, Fun for Freshman Kids. In Proceedings Interna-
tional Conference on Functional Programming, ICFP ’09, Edinburgh,
Scotland, UK, 2009. ACM Press.

[15] S. Finne and S. Peyton Jones. Composing Haggis. In Eurographics
Workshop on Programming Paradigms in Graphics, pages 85–101,
Maastricht, the Netherlands, 1995. Springer.

[16] P. Graunke, R. Findler, S. Krishnamurthi, and M. Felleisen. Model-
ing web interactions. In P. Degano, editor, Proceedings of the 12th

European Symposium on Programming, ESOP ’03, volume 2618 of
Lecture Notes in Computer Science , pages 238–252, 7-11, Apr. 2003.

[17] M. Hanus. High-level server side web scripting in Curry. In Proceed-
ings of the 3rd International Symposium on the Practical Aspects of
Declarative Programming, PADL ’01, pages 76–92. Springer-Verlag,
2001.

[18] M. Hanus. Type-oriented construction of web user interfaces. In
Proceedings of the 8th International Conference on Principles and
Practice of Declarative Programming, PPDP ’06, pages 27–38. ACM
Press, 2006.

[19] P. Henderson. Functional geometry. In D. Friedman and D. Wise,
editors, Conference Record of the 1982 ACM Symposium on Lisp and
Functional Programming, pages 179–187, Pittsburgh, Pennsylvania,
1982. ACM Press. URL http://www.ecs.soton.ac.uk/~ph/
funcgeo.pdf.

[20] P. Henderson. Functional geometry. Higher-Order and Symbolic
Computation, 15:349–365, 2002.

[21] R. Hinze. A new approach to generic functional programming. In
T. Reps, editor, Proceedings of the 27th International Symposium on
Principles of Programming Languages, POPL ’00, Boston, MA, USA,
pages 119–132. ACM Press, 2000.

[22] P. Hudak, A. Courtney, H. Nilsson, and J. Peterson. Arrows, robots,
and functional reactive programming. In J. Jeuring and S. Peyton
Jones, editors, Proceedings of the 4th International Summer School
on Advanced Functional Programming, AFP ’03, volume 2638 of
Lecture Notes in Computer Science , pages 159–187. Oxford, UK,
Springer-Verlag, 2003.

[23] D. Leijen. wxHaskell: a portable and concise GUI library for Haskell.
In Proceedings of the 2004 ACM SIGPLAN workshop on Haskell,
pages 57–68, Snowbird, Utah, USA, 2004. ACM. . URL http:
//doi.acm.org/10.1145/1017472.1017483.

[24] B. Lijnse. TOP to the Rescue – Task-Oriented Programming for In-
cident Response Applications. PhD thesis, Institute for Computing
and Information Sciences, Radboud University Nijmegen, The Nether-
lands , 2013. ISBN 978-90-820259-0-3.

[25] F. Loitsch and M. Serrano. Hop client-side compilation. In Proceed-
ings of the 7th Symposium on Trends in Functional Programming, TFP
’07, pages 141–158, New York, NY, USA, 2-4, Apr. 2007. Interact.

[26] M. Morazán. Functional Video Games in the CS1 Classroom. In
R. Page, Z. Horváth, and V. Zsók, editors, Proceedings of the 11th
Symposium on Trends in Functional Programming, TFP ’10, volume
6546 of LNCS, pages 166–183, 2010.

[27] R. Plasmeijer and M. van Eekelen. Clean language report (version
2.1). http://clean.cs.ru.nl, 2002.

[28] R. Plasmeijer, P. Achten, P. Koopman, B. Lijnse, T. Van Noort, and
J. Van Groningen. iTasks for a change: Type-safe run-time change
in dynamically evolving workflows. In PEPM ’11 : Proceedings
Workshop on Partial Evaluation and Program Manipulation, PEPM
’11, Austin, TX, USA, pages 151–160, New York, 2011. ACM.

[29] R. Plasmeijer, B. Lijnse, S. Michels, P. Achten, and P. Koopman. Task-
Oriented Programming in a Pure Functional Language. In Proceedings
of the 2012 ACM SIGPLAN International Conference on Principles
and Practice of Declarative Programming, PPDP ’12, pages 195–206,
Leuven, Belgium, Sept. 2012. ACM. ISBN 978-1-4503-1522-7.

[30] J. van Groningen, T. van Noort, P. Achten, P. Koopman, and R. Plas-
meijer. Exchanging sources between Clean and Haskell: a double-
edged front end for the Clean compiler. In J. Gibbons, editor,
Haskell’10 : proceedings of the third ACM Haskell symposium on
Haskell, pages 49–60. ACM, 2010.

[31] T. van Noort. Dynamic Typing in Type-Driven Programming. PhD
thesis, Institute for Computing and Information Sciences, Radboud
University Nijmegen, The Netherlands , May 2012. ISBN 978-94-
6108-279-4.

[32] A. v. Weelden. Putting types to good use. PhD thesis, Institute for
Computing and Information Sciences, Radboud University Nijmegen,
The Netherlands, Oct. 17, 2007.

draft paper for pre-proceedings IFL 2014 3 2014/9/7

http://www.ecs.soton.ac.uk/~ph/funcgeo.pdf
http://www.ecs.soton.ac.uk/~ph/funcgeo.pdf
http://doi.acm.org/10.1145/1017472.1017483
http://doi.acm.org/10.1145/1017472.1017483
http://clean.cs.ru.nl

	Abstract

