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Abstract
Advocates of lazy functional programming languages often cite easy
parallelism as a major benefit of abandoning mutable state [1]. This
idea drove research into the theory and implementation of compilers
that take advantage of implicit parallelism in a functional program.
Using static analysis techniques compilers can attempt to identify
where a program can benefit from parallelism and ensure that those
expressions are executed concurrently with the main thread of
execution [2, 3]. These techniques can produce improvements in
the runtime performance of a program, but are limited by the static
analyses’ poor prediction of runtime performance. Our work is
on the development of a system that uses feedback from runtime
profiling in addition to well-studied static analysis techniques in
order to achieve higher performance gains than through static
analysis alone.

Keywords Implicit Parallelism, Lazy Functional Languages, Auto-
matic parallelism, Strictness Analysis, Projections, Iterative Compi-
lation, Feedback Directed Compilation

1. Introduction
The amenability of functional languages to parallelism has long
been advertised [4, 5] but the ultimate goal of writing a program
in a functional style and having the compiler find the implicit
parallelism still requires work. Static analysis, when used alone,
has underperformed in this endeavor [2, 3, 6, 7]. Our thought is that
the compiler should incorporate runtime profile data into decisions
about parallelism the same way a programmer would manually tune
a parallel program.

By using runtime feedback we can have the compiler be generous
when introducing parallelism into the program. The profiling data
will then point to the par annotations that under-perform and the
compiler will disable the parallelism they introduce.

1.1 Contributions
The main focus of our work has been the design and implementation
of an experimental compiler that allows for implicit parallelism.
The source language of the compiler is an enriched lambda calculus
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which is suitable for use as a functional core language in a larger
compiler. The contributions of our work are as follows:

• The use of switchable par annotations1

• An implementation of Hinze’s projection based strictness analy-
sis [8]

• Utilising the correspondence between projections and strategies
to introduce parallelism into a program

• Using search strategies to improve upon the initial par place-
ment

This paper presents an overview of the design of our compiler
and some of the design decisions that were made. As we are now
beginning to run experiments, this paper also serves as a documented
hypothesis for our results.

1.2 Compiler Pipeline
The compiler is composed of 5 main phases, illustrated in Figure 1

1. Parsing

2. Defunctionalisation

3. Projection based Strictness Analysis

4. Generation of strategies

5. Placement of par annotations

6. G-Code Generation

7. Execution

8. Feedback and iteration

The parsing and G-Code generation are done in the standard
way and will not be discussed further. The rest of the paper is
organised by following the compiler pipeline as shown in figure 1.
In §2 we explain the advantages of performing defunctionalisation.
We motivate our use of a projection based strictness analysis [9] in
§3. §4 is a description of the correspondence between projections
and strategies [10] which allows us to generate parallel strategies
based on the projections provided by the strictness analysis. The
technique used for utilising the runtime profiling to switch off some
of the introduced parallelism is described in§5 along with possible
additional search techniques. Lastly, §6 contains our conclusions
and thoughts on possible future work.

2. Defunctionalisaton
As mentioned above, the design of the compiler utilises a defunction-
alising transformation on the input programs. Defunctionalisation

1 Our par annotations take the familiar form of par a b = b, where the
first argument is ‘sparked off’ in parallel and the function returns its second
argument.
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Figure 1. Compiler Pipeline After Parsing

specialises higher-order functions to the instances of their func-
tion arguments. Here we give our motivation for introducing this
transformation.

Central to our design is the concept of par placement within
a program. Each par is identified by its position in the AST. Due
to the higher-order nature of our language, basing our parallelism
on the location of a par can lead to undesirable circumstances. For
example, a common pattern in parallel programs is to introduce a
parallel version of the map function

parMap :: (a -> b) -> [a] -> [b]
parMap f [] = []
parMap f (x:xs) = let y = f x

in y ‘par‘ y : parMap f xs

This function allows us to use a common technique (mapping)
with the possibility of performance gains through parallelism. How-
ever, when the computation f x is inexpensive, the parallelism may
not provide any benefit or could even be detrimental. As parMap
may be used throughout a program it is possible that there are
both useful and detrimental instances of the function. For instance,
parMap f may provide useful parallelism while parMap g may
cost more in overhead than we gain from any parallelism. Unfor-
tunately when this occurs we are unable switch off the par for
parMap g without losing the useful parallelism of parMap f. This
is because the par annotation is within the body of parMap. By spe-
cialising these functions we create two separate parMap functions:
parMapf and parMapg. This now provides us with par annotations
in each of the instances of parMap.

parMapf [] = []
parMapf (x:xs) = let y = f x

in y ‘par‘ y : parMapf xs

parMapg [] = []
parMapg (x:xs) = let y = g x

in y ‘par‘ y : parMapg xs

Because of defunctionalisation we are able to deactivate the
par for the inexpensive computation, g x, without affecting the
parallelism of the worthwhile computation, f x.

3. Strictness Analysis
The view of lazy languages (evaluation should only occur when
necessary) can be at odds with the goals of performance through
parallelism (do as much work as possible for faster execution time)
[6]. Call-by-need semantics forces the compiler to take care in
deciding which sub-expressions can safely be executed in parallel.

Having a simple parallelisation heuristic such as ‘compute all
arguments to functions in parallel’ can alter the semantics of a non-
strict language, introducing non-termination or runtime errors that
would not have occurred during a sequential execution. For example,
in a strict language, the function below would not terminate due
to having to evaluate ⊥ before entering the function, while lazy

languages can compute the correct result since they only evaluate
expressions when they are needed:

squareFirst :: Int -> Int -> Int
squareFirst x ⊥ = x * x

The problem of knowing which arguments are required for a
function is known as strictness analysis [11] and forms the core of
the static analysis phase of the compiler. In this section we provide
a brief overview of the two predominant techniques for strictness
analysis, ideal2 analysis and projection based analysis. We then
motivate our decision to use a projection based analysis.

3.1 Ideal Analysis
The main idea behind abstract interpretation is that you can throw
away information about your program that is not necessary for the
property you are analysing. When dealing with the Integer type,
it may not be necessary to know the actual value of an integer, but
instead only some of the information about that integer. Mycroft’s
“The Theory and Practice of Transforming Call-by-need into Call-
by-value” [11] introduced the use of abstract interpretation for
performing strictness analysis on call-by-need programs.

In the case of strictness analysis, we only require information
about how defined a value is, and do not need to know about its
concrete value.

In short, when performing ideal analysis we only concern our-
selves with the definedness of values when analysing the strictness
properties of programs.

With the strictness information in hand we can annotate our
program to execute strict arguments in parallel with the function.
In short, the strictness analysis informs the initial placement of
par annotations in a program. Basing the initial placement on
strictness information is important because we aim for our compiler
to maintain the semantics of the initial sequential program.

When using a safe analysis we may not be able to determine
all of the needed arguments for a given function. However, we can
be certain that any argument the analysis determines is needed is
definitely needed. This safety is crucial in avoiding the introduc-
tion of ⊥ where it would not have occurred in a sequential lazy
implementation [12].

The strictness properties of a function can be defined more
formally as follows: A function of the form

f n1 n2 . . . nn = e

is said to be strict in argument nm iff

f . . . ⊥m · · · = ⊥

3.2 Projections
Strictness analysis as originally described by Mycroft is only capable
of dealing with a two-point domain (values that are definitely needed,

2 This terminology is used by Hinze in [8] to differentiate between the two
methods.
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ID: accepts all lists

T (tail strict): accepts all finite lists

H (head strict): accepts lists where the head of the list is defined
(recursively)

HT (H and T strict): accepts finite lists where every member is
defined

Figure 2. Four contexts on lists as described in [9].

and values that may or may not be needed). This works well for types
that can be represented by a flat domain (Integer, Char, Bool, etc.)3

but falls short on more complex data structures. For example, if a list
argument is needed for a function to terminate, we can only evaluate
up to the first cons safely. However, there are many functions on
lists where evaluating the entire list (or even just the spine) can be
safe. The canonical examples are length and sum. When evaluating
the length of the list it would be safe to have evaluated the spine (and
only the spine) of the list beforehand. This makes intuitive sense, if
the evaluation of the spine is non-terminating, then the evaluation
of length would be non-terminating as well. The function sum
extends the same premise to the spine and the elements of a list.

In order to accommodate this type of reasoning, Wadler devel-
oped the well known four-point domain for lists [12]. While this
work allowed for analysis to be performed on functions accepting
lists, it was not easily extended to functions on other data structures.

Another approach involved projections from domain theory.
Projection based analysis provides two benefits over ideal based
analysis: The ability to analyse functions over arbitrary structures,
and a correspondence with parallel strategies [10, 13]. This allows
use to use the projections provided by our analysis to produce an
appropriate function to compute the strict arguments in parallel.

Ideally we could generate and utilise strategies on any arbitrary
type. This would allow to compiler to annotate the needed expression
with the maximal safe amount of reduction. This requires us to use
a more sophisticated form of strictness analysis: projections [9].

Projections asks a slightly different question than the ideal
analysis described above. If the above asks “When passing this
argument as ⊥ is the result of the function call ⊥?” then projections
ask “If there is a certain degree of demand for the result of this
function, what degree of demand is there on its arguments?”.

First let us explain what is meant by ‘demand’. The function
length requires that the input list be finite, but no more. We can
therefore say that length demands the spine of the argument list.
The function append is a more interesting example

append :: [a] -> [a] -> [a]
append [] ys = ys
append (x:xs) ys = x : append xs ys

By studying the function we can tell that the first argument must
be defined to the first cons, but we cannot know whether the second
argument is ever needed. However, what if the result of append
needs to be a finite list? In other words the function calling append
requires that its input list be finite.

A simple example of this is the following program

lengthOfBoth :: [a] -> [a] -> Int
lengthOfBoth xs ys = length (append xs ys)

In this case both arguments to append must be finite. Projections
allow us to make this distinction with the use of contexts [8, 9].

For lists we have the following contexts:
We can now say more about the strictness properties of append:

3 Any type that can be represented as an enumerated type.

ID (append xs ys) = ID!(xs); ID(ys)
T (append xs ys) = T!(xs); T!(ys)
H (append xs ys) = H!(xs); H(ys)
HT (append xs ys) = HT!(xs); HT!(ys)

Here we use the convention from [8] of using ! to denote the
strictness of a context. ID! requires the list be defined to the first
cons, whereas an expression in an ID context may not be needed.

Hinze’s Work on Projections
Much of the work on strictness analysis as a means to achieve
implicit parallelism focused on the ideal analysis approach. This
was mostly an accident of timing, the work on projections had not
been fully developed when implicit parallelism was a more active
research area. In particular, the wonderful work on the “Automatic
Parallelization of Lazy Functional Programs” [3] only used two and
four-point domains (as described in [12]) in their strictness analysis.
This limits the ability of the compiler to determine the neededness
of more complex structures.

While projections were known as a possible technique for
strictness analysis, the theory was much more complex and many
of the details regarding the generality of the approach were not
yet worked out. The work of Hinze [8] shows how projections can
be used to determine the strictness information on complex data-
types and sets the technique on a solid theoretical foundation that
ensures its generality (in particular when working with polymorphic
functions).

Using results from domain theory we are able to construct pro-
jections for every user-defined type, and furthermore each projection
represents a specific strategy for evaluating the structure [8]. This
provides us with the ability to generate appropriate parallel strategies
for arbitrary types.

4. Projections and Strategies
As mentioned in the previous section, one of the reasons that
projections were chosen for our strictness analysis is their corre-
spondence to parallel strategies. The main idea behind strategies
is that it is possible to write functions whose sole purpose is to
force the evaluation of specific parts of a structure [10, 13]. An
important point is that all strategies return (), having the type
type Strategy a = a -> (), which tells us that strategies are
not used for their computed result but for the evaluation they force
along the way.

The simplest strategy, named r0 in [13], which performs no re-
ductions is defined as r0 x = (). The strategy for weak head nor-
mal form is only slightly more involved: rwhnf x = x ‘seq‘ ()

Neither of these strategies are of much interest. The real power
comes when strategies are used on nested data-structures. Take lists
for example, evaluating a list sequentially or in parallel provides us
with the following two strategies

seqList :: Strategy a -> Strategy [a]
seqList s [] = ()
seqList s (x:xs) = s x ‘seq‘ (seqList s xs)

parList :: Strategy a -> Strategy [a]
parList s [] = ()
parList s (x:xs) = s x ‘par‘ (parList s xs)

First notice that each strategy takes another strategy as an
argument. The provided strategy is what determines how much of
each element to evaluate. If the provided strategy is r0 the end result
would be that only the spine of the list is evaluated. On the other end
of the spectrum, providing a strategy that evaluates a value of type
a fully would result in list’s spine and elements being evaluated.
Already we can see a correspondence between these strategies and

3 2014/9/25



the contexts shown in figure 2. The T context (tail strict) corresponds
to the strategy that only evaluates the spine of the list, while the HT
context corresponds to the strategy that evaluates the spine and all
the elements of a list.

This correspondence allows us to generate strategies based
on the results of our strictness analysis. Because the projection
based approach gives us the ability to describe different levels of
demand on arbitrary data-types, we then get all of the corresponding
strategies to evaluate up to that demand, but no more.

One aspect of strategies that does not directly correspond a
context is choice between seq and par. Every context can be fully
described by both sequential and parallel strategies. One goal of
our work is to determine when it is appropriate to use parallelism
in a strategy. Every field of a constructor has the potential to be
evaluated in parallel. When a constructor has one field, it is not
usually beneficial to do so, but when the constructor has two or
more fields, it can be beneficial to evaluate some of the fields in
parallel. It is not clear, generally, which fields should be parallelised
and which should be evaluated in sequence. We currently rely on
heuristics but we believe that performing a path analysis would aid
in this task [14].

5. Iterative Compilation
We now have all of the building blocks for what we see as our
contribution. We believe there are several reasons why previous
work into implicit parallelism has not achieved the results that
researchers have hoped for. Chief amongst those reasons is that the
static placement of parallel annotations is not sufficient for creating
well-performing parallel programs.

Imagine that you were writing a parallel program. When writing
the source code you may study the structure and then decide where to
place par annotations. When the program is compiled and executed
you find that the performance was not satisfactory. Normally, one
would return to the source for the program and adjust the placement
of parallel annotations. This is the approach advocated by [15] and
[16]. However, many of the previous attempts at implicit parallelism
only analyse the program statically and do not adjust any parallel
annotations after runtime data is gathered. This would be equivalent
to a programmer never adjusting annotations after profiling the
program.

There is one significant exception to this. In 2007 Harris and
Singh published their results on a feedback directed implicit paral-
lelism compiler [7]. The results were mostly positive (in that most
benchmarks saw an improvement in performance) but were not
to the degree desired. Since this research was published we have
seen no other attempt in this line of research within the functional
programming community.

The work in [7] attempted to use runtime profile data to introduce
parallel annotations into the program based on heap allocations. In
short, when viewing the parallel execution of a program as a tree,
their method seeks to expand the tree based on previous executions
of the program. Our goal is to develop a system that begins with a
program that perhaps has too much parallelism and uses runtime data
to prune the execution tree. We have implemented a few mechanisms
to make this possible.

5.0.1 Logging:
The runtime system maintains records of the following global
statistics:

• Number of reduction cycles
• Number of sparks
• Number of blocked threads
• Number of active threads

These statistics are useful when measuring the overall perfor-
mance of a parallel program, but tells us very little about the useful-
ness of the threads themselves.

In order to ensure that the iterative feedback system is able to
determine the overall ‘health’ of a thread, it is important that we
collect some statistics pertaining to each individual thread. For this
reason we have used a similar system as that outlined in [16]. With
the following metrics being recorded for each thread:

• Number of reduction cycles
• Number of sparks
• Number of blocked threads
• Which threads have blocked the current thread

This allows us to reason about the productivity of the threads
themselves. An ideal thread will perform many reductions, block
very few other threads, and be blocked rarely. A ‘bad’ thread will
perform few reductions and be blocked for long periods of time.

5.0.2 Transformation:
In order for the iterative feedback to be able to change the paralleliza-
tion of a program, it must be able to determine which expressions
can be transformed. The method we have devised is based on the
idea that a specific par in the source program can be deactivated
and therefore no longer create parallel tasks, while maintaining the
semantics of the program. The method has two basic steps:

• par’s are identified via the G-Code instruction PushGlobal "par"
and each par is given a unique identifier.

• When a thread creates the heap object representing the call to
par the runtime system looks up the status of the par using its
unique identifier. If the par is ‘on’ execution follows as normal.
If the par is off the thread will ignore the G-Code instruction
Par.

5.0.3 Iteration:
Using the runtime profile data we can experiment with different
search methods. We can represent a program’s par switches as a bit
string with each par’s current setting stored in a bit.

One technique would be to ignore the runtime data altogether!
There are lots of algorithms used for searching for optimal configu-
rations of bit strings. In our case the fitness-function would simply
be the overall running time of the program when run with a specific
par setting.

However, while we feel that blind search techniques are worth
exploring, guided search is more likely to produce results quickly.
The first search heuristic could be very simple: After every execution,
turn off the par site whose threads have the lowest average reduction
count. Repeat this process until switching a par off increases the
overall runtime of the program.

Another possibility is to determine an overhead penalty for
sparking parallel threads. If the average reduction count for all
the threads from a par site is less than the overhead penalty, the par
is switched off. Other forms of penalties could also be introduced.
Blocking other threads, being blocked for extended periods of time,
creating too many parallel threads (or not enough) could all be
measures that incur a penalty.

6. Conclusions
We hope we have motivated the key design choices and ideas behind
our compiler: Utilising defunctionalisation in §2, and the use of
projections over other strictness analysis methods §3. And that
we have shown that there is a natural correspondence between
projections and strategies §4 that allows us to generate parallel
strategies from the results of our strictness analysis.
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6.1 Future Work
One area that we expect to explore is the use of other forms of spe-
cialisation. Defunctionalisation specialises higher-order functions
to first-order ones. Other possibilities include specialising polymor-
phic functions into their monomorphic versions and specialising
functions based on their call-depth.

The first of these allows for the possibility that a polymorphic
function that introduces parallelism may only provide a benefit when
applied to arguments of a certain type. The depth-specialisation
confronts the common granularity problem when writing recursive
algorithms that introduce parallelism. The top-level call of the
function may see huge benefits from its parallelism, but the lower
level calls may not be as worthwhile (the nfib function is a good
example of this, parallelising the recursive calls of nfib 25 may be
worthwhile, but not for nfib 2).
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