
Extended Abstract Preprint for IFL 2014

Flipping Fold, Reformulating Reduction
An Exercise in Categorical Design

Gershom Bazerman
S&P/CapitalIQ

gershomb at gmail

1. Introduction
We begin this paper by considering the Haskell ‘Foldable‘ type-
class, a stalwart of the standard libraries. Unlike many other type-
classes, most famously Monad, Foldable itself has been equipped
with no required laws. This is rather surprising, as folds themselves
are some of the most well understood and studied aspects of func-
tional programming, and the universal properties of folds, in gen-
eral, are what we often use to prove laws. We will explore why it
is hard to give laws to Foldable on its own. From there we will de-
fine a naturally arising class, adjoint to Foldable, which we name
Buildable. In turn, we will explore how Foldable and Buildable
in conjunction, each individually lawless, nonetheless are mutually
constrained by an elegant set of laws arising from categorical prin-
ciples. We will then explore Buildable as an independently useful
class that allows us to compose systems of streaming and parallel
computation, and explore its relationship to a prior, similar formu-
lation. The aim of this paper is then threefold; to provide laws to
Foldable, to provide a new, useful class of Buildable types, and
along the way, to illustrate a way in which categorical thinking can
give rise to practical results.

2. Recalling Foldable
The ‘Data.Foldable‘ library, written by Ross Paterson, and part of
the standard libraries that ship with the Glasgow Haskell Compiler,
provides a Foldable typeclass. While it has many methods, all
methods can be derived by the user defining only one of foldr or
foldMap. So we consider the cleaner interface given below.

class Foldable t where
foldr ::

(a -> b -> b) -> b -> t a -> b Source
foldMap ::

Monoid m => (a -> m) -> t a -> m Source

In fact, there is a further function, not in the class, but included
in the file, which also provides a complete implementation of ‘fold-
able‘. We can consider its definition as follows:

toList :: Foldable t => t a -> [a]
toList t = foldr (:) [] t

[Copyright notice will appear here once ’preprint’ option is removed.]

Without much work, one can see how ‘foldr‘, ‘foldMap‘, and
‘build‘ are all interdefinable and hence equal in expressive power.
When one considers folds in general, one typically expects them
to universally characterize the meaning of a particular data struc-
ture in terms of all operations possible on it – in fact that is the
very definition of a proper fold. However, we can observe that the
‘foldr‘ given here in fact characterizes all operations possible on a
data structure when considered as a list. So the laws of folds them-
selves follow naturally from our usual constructions, and are given
directly. However, what it means to consider a data structure to a
list is left completely undefined. For example, we could equip all
type constructors of arity one with the Foldable instance who acts
as the empty list. This would violate user expectations, but not any
particular given typeclass law. Clearly something must be done.

3. Enter Buildable
If the laws of Foldable won’t come from the class itself, then
they must come from interaction with other classes. This is the
pattern we have seen elsewhere, recently where work by Jaske-
lioff, and later Bird and Gibbons has provided ‘Traversable‘ func-
tors with laws as given by their interrelationship with Applicative
actions.[6][1] Much earlier, of course, we had to define the rela-
tionship of ‘Eq‘ and ‘Ord‘ instances such that they agreed. Other
examples also abound.

What class shall we use to interact with ‘Foldable‘? A clue
is provided in the genuine definition of ‘toList‘, which in turn is
defined in terms of ‘build‘, imported from ‘GHC.Exts‘.

toList :: Foldable t => t a -> [a]
toList t = build (\ c n -> foldr c n t)

build ::
forall a.
(forall b. (a -> b -> b) -> b -> b)
-> [a]

build g = g (:) []

Why this indirection? Well, as the documentation tells us,
”GHC’s simplifier will transform an expression of the form ‘foldr k
z (build g)‘, which may arise after inlining, to ‘g k z‘, which avoids
producing an intermediate list.”. This is an instance of ”shortcut
fusion” as introduced by Gill, Launchbury, and Peyton Jones.[2]
Recent work by Hinze[? ] has explored the relationship between
shortcut fusion and the categorical notion of an adjoint, which we
will come back to. In any case, in the special case of ‘foldr‘ and
‘build‘ on lists, we observe that they correspond to providing a full
isomorphism between lists and the partial application of the fold
function to lists, which is to say between lists seen ”initially” and
lists seen ”finally” as characterized by their universal property.

Extended Abstract Preprint for IFL 2014 1 2014/9/25



Just as as the ‘Foldable‘ typeclass simply wraps up ‘fold‘, we
now introduce a ‘Buildable‘ typeclass to wrap up ‘build‘. As all
Foldables can provide a ‘toList‘, we also provide a ‘fromList‘ to
help examine the behaviour of Buildables.

class Buildable f a where
build :: ((a -> f a -> f a) -> f a -> f a) -> f a
build g = g insert unit

singleton :: a -> f a
singleton x = build (\c n -> c x n)

unit :: f a
unit = build (\cons nil -> nil)

insert :: a -> f a -> f a
insert x xs = build (\cons nil -> x ‘cons‘ xs)

fromList :: Buildable f a => [a] -> f a
fromList xs = foldr insert unit xs

A minimal complete definition is given by ‘build‘, or by ‘insert‘
coupled with ‘unit‘. The ‘build‘ function can be seen as providing
the concrete constructors to a partially applied fold, and the ‘insert‘
and ‘unit‘ functions as just introducing the two constructors (the
binary and unary operations) explicitly.

There are a few design decisions here worth justifying. First, the
choice to use a multi-parameter typeclass, and second the choice
(only implicitly present here) not to require any sort of monoidal
behaviour, and instead a looser notion of “adjoint” laws. Both
decisions can be justified by examining a standard type that clearly
should be buildable, but nonetheless is not isomorphic to list –
‘Set‘. We can write a Buildable instance for ‘Set‘ like so:

instance Ord a => Buildable Set a where
unit = Set.empty
insert = Set.insert

Here the purpose of the extra type variable becomes clear –
while the ‘Ord‘ constraint is not necessary to “tear down” a set,
it certainly is necessary to build one up, and thus must be included
in our typeclass. While this costs us in terms of verbosity, at least it
introduces no loss in expressiveness.

Now we consider the behaviour of the interaction of fromList
and toList on ‘Set‘. Whatever laws we introduce must surely not
rule out such a basic instance. Clearly we expect ‘thereBack xs
:: toList . Set.fromList‘ to reorder our elements. Further-
more, we expect it to merge duplicate elements. However, we also
know that if we iterate ‘thereBack‘ repeatedly, it is idempotent. In
this case, ‘toList‘ is a retraction of ‘fromList‘, and the composi-
tion ‘fromList . toList‘ is a split idempotent. More generally, we
can consider the functorial nature of ‘Foldable‘ and ‘Buildable‘ to
produce a set of laws claiming that when both instances exist, they
should be adjoint.

4. Folds, Builds, and Adjunctions
The connection of adjointness to folds, unfolds and fusion laws has
been explored in the recent work of Ralf Hinze[4,5]. In general,
fusion laws are about moving to an “adjoint space” where compo-
sition is directly given, and then shifting back to the original space
to present the result. Although the movement between regular and
church-encoded lists given in fold/build fusion is an isomorphism,
in general there is no such restriction. Streams including ‘yield‘
are a bigger space than lists, etc. The purpose behind such adjunc-
tions is, loosely speaking, to allow us to capture “only what mat-
ters” about a computation. When “moving across” the two functors

which make up an adjoint, we are able to transport where the work
of functions occurs.

To examine how this plays out in the terrain of ‘Foldable‘ and
‘Buildable‘ we can translate a version of the adjoint laws to our
specialized usecase. In the ”hom-set adjunction” formulation, for
two categories C and D and two functors F : D → C and
G : C → D, we have the formula:

C(FX, Y ) ∼= D(X,GY )

Take C to be some ‘Buildable‘ and ‘Foldable‘ functor f, and D
to be ‘List‘, and we arrive at the following Haskell claim: For
all functions ‘f : f a -> f b‘, there is a function ‘g : [a] ->
[b]‘ such that ‘f . fromList :: [a] -> f b‘ is isomorphic
to ‘toList . g :: [a] -> f b‘. That is to say, all functions
on ‘Foldables‘ can be translated to functions on ‘Buildables‘, and
vice versa, such that even if they do not actually coincide, when we
”move across” the types appropriately, they will.

When our ‘Buildable‘ and ‘Foldable‘ instances are lawful, we
can in fact write functions to witness this directly, if not efficiently.

f2g f = toList . f . fromList
g2f g = fromList . g . toList

And so we see that functions on lists may be seen as functions
on functors adjoint to list ”factored through” lists, and dually that
functions on functors adjoint to list may be viewed as actions on
lists ”factored” through the adjoint, and that such notions coincide.
In the specific case of ‘Set‘, this means that there is no function
on sets that cannot be written as a function on the list underlying
a set, and furthermore that there is no function yielding a list that
underlies a Set that cannot be transformed directly into a function
on sets.

5. Reducers as Buildables
Hinze and Jeuring introduced a predecessor class to ‘Foldable‘
named ‘Reduce‘.[5] However, it is in fact ‘Buildable‘ that really
provides the ”reduction” component directly – with ‘Foldable‘ de-
scribing the ”shape” of a reduction but ‘Buildable‘ providing the
actual target semantics of any given fold. ‘Foldable‘ describes how
to fold, but it is ‘Buildable‘ that fixes a fold to a concrete meaning.
In fact, ‘Buildable‘ provides a very close analog, though more the-
oretically motivated, to the ‘Monoidal Reducers‘ available in Ed-
ward Kmett’s reducers package.

The following code listing demonstrates the “basic” functional-
ity that all notions of reduction should share – the ability to define
multiple aggregations such as sum and count, and the ability to zip
them into one pass. Here the aggregations we define happen to be
in fact monoidal. But in general, no such restriction applies.

newtype Sum a = Sum {getSum :: a}
instance Num a => Monoid (Sum a) where

mempty = Sum 0
mappend (Sum x) (Sum y) = Sum (x + y)

newtype Count = Count Int deriving Show
instance Monoid Count where

mempty = Count 0
mappend (Count x) (Count y) = Count (x + y)

newtype Const m a = Const m

instance Num a => Buildable (Const (Sum a)) a where
unit = Const (Sum 0)
insert x (Const xs) = Const (Sum x ‘mappend‘ xs)

instance Buildable (Const Count) a where

Extended Abstract Preprint for IFL 2014 2 2014/9/25



unit = Const (Count 0)
insert x (Const xs) = Const (Count 1 ‘mappend‘ xs)

newtype Product f g a = Product (f a, g a)

instance (Buildable f a, Buildable g a) =>
Buildable (Product f g) a where

unit = Product (unit, unit)
insert x (Product (xs,ys)) =

Product (insert x xs, insert x ys)

The listing contains two items of particular interest. First, we
introduce a ‘Const‘ type to carry around explicit information about
what should be ”fed in” to a ‘Buildable‘, and more generally to
lift an aggregation into a functorial context. Second, we introduce
a traditional product of functors, and give it a ‘Buildable‘ instance
directly. By construction our builds only require one pass, and so
we can introduce concurrent reductions while operating in constant
space.

6. Composing Buildables Horizontally and
Vertically

7. Extensions and Transformations
8. Serial and Parallel Computation
9. Relating Builds to Traversals
10. Related Work
As discussed, the closest analogue to the work presented here is
Edward Kmett’s monoidal reducers package. The concrete differ-
ence is that rather than generalize over things of kind ‘* -> *‘,
Monoidal Reducers are equipped with two type parameters, each
of kind ‘*‘ – the things that reducers ”accept”, and the things that
reducers ”reduce to.” Furthermore, these reducers, as one would
infer from the name, are required to operate as a monoid does, i.e.
associatively. (Less importantly for our purposes, Monoidal Reduc-
ers, as one would not infer from the name, are in fact generalized
as to work over semigroups [i.e. they do not require an ”empty”
value equivalent to ‘unit‘ as presented here]). In the absence of any
other constraints, requiring associative structure is about the mini-
mal law one can require such a structure to hold. However, as have
seen, in the presence of an interaction with ‘Foldable‘, we can get
a looser but still sufficient notion of a lawful structure even without
requiring associativity – and in fact, there are very good reasons we
should not!

Rich Hickey also arrived at similar formulations to Kmett’s,
though in an untyped context, in the ‘reducers‘ library for Clojure.
The inspiration for both lines of work is owed to Guy Steele’s
2009 ICFP invited talk ”Organizing Functional Code for Parallel
Execution.”

11. Conclusion
Acknowledgments
References
[1] Bird, R., Gibbons, J., et al. Haskell 2013: 25-36

[2] Gill, A., Launchbury, J., and Peyton Jones, S. L. (1993) A short cut
to deforestation. Proceedings, Conference on Functional Languages and
Computer Architecture, 223-232.

[3] Hinze, R. Adjoint Folds and Unfolds. MPC 2010: 195-228

[4] Hinze, R. Type Fusion. AMAST 2010: 92-110

[5] Hinze, R. and Jeuring, J. Generic Haskell: Practice and theory.
Technical Report UU-CS-2003-15, Department of Computer Science,
Utrecht University, 2003.

[6] Jaskelioff, M., Rypacek, O. MSFP 2012: 40-49

Extended Abstract Preprint for IFL 2014 3 2014/9/25


