
draft

Church Encoding of Data Types
Considered Harmful for Implementations

– Functional Pearl –

Pieter Koopman Rinus Plasmeijer
Institute for Computing and Information Sciences
Radboud University Nijmegen, The Netherlands

pieter@cs.ru.nl rinus@cs.ru.nl

Jan Martin Jansen
Netherlands Defence Academy (NLDA)

The Netherlands
jm.jansen.04@nlda.nl

Abstract
From the λ-calculus it is known how to represent (recursive) data
structures by ordinary λ-terms. Based on this idea one can repre-
sent algebraic data types in a functional programming language by
higher-order functions. Using this encoding we only have to im-
plement functions to achieve an implementation of the functional
language with data structures. In this paper we compare the fa-
mous Church encoding of data types with the less familiar Scott
and Parigot encoding.

We show that one can use the encoding of data types by func-
tions in a Hindley-Milner typed language by adding a single con-
structor for each data type. In an untyped context, like an efficient
implementation, this constructor can be omitted. By collecting the
basic operations of a data type in a type constructor class and pro-
viding instances for the various encodings, these encodings can co-
exist in a single program. This shows the differences and similari-
ties of the encodings clearly. By changing the instance of this class
we can execute the same algorithm in a different encoding.

We show that in the Church encoding selectors of constructors
yielding the recursive type, like the tail of a list, have an undesir-
able strictness in the spine of the data structure. The Scott encoding
does not hamper lazy evaluation in any way. The evaluation of the
recursive spine by the Church encoding makes the complexity of
these destructorsO(n). The same destructors in the Scott encoding
requires only constant time. Moreover, the Church encoding has
serious problems with graph reduction. The Parigot encoding com-
bines the best of both worlds, but in practice this does not offer an
advantage.

Categories and Subject Descriptors D [1]: 1; D [3]: 3Data types
and structures

Keywords Implementation, Data Types, Church Numbers, Scott
Encoding, Parigot Encoding

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction
In the λ-calculus it is well-known how to encode data types by λ-
terms. The most famous way to represent data types by functions
in the λ-calculus is based on the encoding of Peano numbers by
Church numerals [2, 3]. In this paper we review the Church encod-
ing of data types and show that it causes serve problems complexity
problems and spoils laziness. These problems can be prevented by
using the far less known Scott encoding of data types.

Based on this approach we can transform the algebraic data
types from functional programming language like Clean [30] and
Haskell [17] to functions. These algebraic data types are first in-
troduced in the language HOPE [10]. The algebraic data types are
equivalent to the polynomial data types used in type theory. Repre-
senting all data types by plain functions simplifies the implementa-
tion of the programming language. The implementation only has to
cope with plain higher order functions, instead of these functions
and data types. Most abstract machines [22] used to implement
programming languages contain special instructions to handle data
types, e.g., the SECD machine [24], the G-machine [21, 29] and
the ABC-machine [23]. When we represent data types by functions
the transformed programs only contain functions. Since the imple-
mentation of the transformed programs does not have to cope with
algebraic data types, they are easier to implement.

Barendregt [3] explains in chapter 6 how the Church encoding
was transformed to the typed λ-calculus in papers of Böhm and
various coauthors [5–9]. The Church encoding adapted to the typed
λ-calculus is also known as the Böhm-Berarducci encoding. Baren-
dregt introduces an alternative encoding called the standard repre-
sentation in [2]. This is a two step approach to represent λ-terms.
First, the λ-terms are represented as Gödel numbers. Next, these
Gödel numbers are represented as Church Numerals.

The oldest description of an alternative encoding is in a set of
unpublished notes of Dana Scott, see [12] page 504. This encoding
is reinvented many times in history. For instance, the implementa-
tion of the language Ponder is based on this idea [13]. Also the
language TINY from Steensgaard-Madsen uses the Scott encoding
[32]. The representation of data types by Mogensen is an extension
of the Scott encoding that enables reflection [3, 25]. For the im-
plementation of the simple programming language SAPL we rein-
vented this encoding [18, 19]. SAPL is used to execute Clean code
of an iTask program in the browser [31]. Naylor and Runciman
used the ideas from SAPL in the implementation of the Reduceron
[26]. Despite these publications the Scott encoding is still much
less famous than the Church encoding. Moreover, we do not know
a paper in which these encodings are thoroughly compared. Parigot
proposed an encoding for data types that is a combination of the
Church and Scott encoding [27, 28].

Church Encoding of Data Types Considered Harmful for Implementations 1 2014/9/23

Using one additional constructor for each type and encoding,
the encodings of the data types become valid types in the Hindley-
Milner type system. This enables experiments with the encodings
in typed functional languages like Clean and Haskell.

In this paper we use a type constructor class to capture all basic
operations on algebraic data types, constructors as well as match-
ing and selector functions. All manipulations of the data type in
the source language are considered to be expressed in terms of the
functions in this type class. By switching the instance of the type
class, we obtain another encoding of the data type. We add a sin-
gle constructor to the implementation of an algebraic data type by
functions. This constructor is necessary to make the encoding ty-
pable in the Hindley-Milner type system. This is necessary in order
to experiment with these encodings in a strongly typed language
like Haskell or Clean. Moreover, the constructor enables us to dis-
tinguish the various encodings as different instances of a type class.
Just like a newtype in Haskell there is no reason to use these con-
structors in an actual implementation based on these encodings.
The uniform encoding based on type classes helps us to compare
the various encodings of the data type.

In the next section we review the encoding of non-recursive
data types in the λ-calculus. In Section 3 the λ-calculus is replaced
by named higher-order functions. The named function makes the
notation of recursive algorithms easier. We show how recursive
data types can be represented by named function in Section 4. The
Church and Scott encodings will be different instances of the same
type constructor class. This makes the differences in the encoding
very clear. Optimisations of the encodings are discussed in Section
5. In Section 6 we conclude that algorithmic complexity of the
Church encoding is for recursive selector functions higher than the
complexity of the Scott encoding.

2. Data Types in the λ-calculus
Very early in the development of λ-calculus it was known how
to use λ-terms for manipulations handled nowadays by algebraic
data types in functional programming languages. Since one does
not want to extend the λ-calculus with new language primitives,
λ-terms achieving the effect of the data types were introduced.

For an enumeration type with n constructors without arguments,
the λ-term equivalent to constructor Ci, selects argument i from
the given n arguments: Ci ≡ λ x1 . . . xn . xi. For each function
over the enumeration type we supply n arguments corresponding
to results for the constructors. The simplest nontrivial example is
the type for Boolean values.

2.1 Booleans in λ-calculus
The Boolean values True and False can be represented by a data
type having just two constructors T and F 1. We interpret the first
argument as true and the second one as false.

T ≡ λ t f . t
F ≡ λ t f . f

For the Boolean values the most famous application of these terms
is probably the conditional.

cond ≡ λ c t e . c t e

Using Currying the conditional can also be represented as the iden-
tity function: cond ≡ λ c . c. We can even apply the Boolean value
directly to the then- and else-part. This is used in the following def-

1 In this paper we will use names starting with a capital for functions
mimicking constructors and names starting with a lowercase letter for all
other functions. Hence a boolean is a function with two arguments.

inition of the logical and-operator.

and ≡ λ x y . x y F
If the first argument x is true the result of the and-function is
determined by the argument y. Otherwise, the result of the and-
function is F (false).

2.2 Pairs in λ-calculus
This approach can be directly extended to data constructors with
non-recursive arguments. The arguments of the constructor in the
original data type are given as arguments to the function represent-
ing this constructor. A pair is a data type with a single constructor.
This constructor has two arguments. The functions e1 selects the
first element of such a pair and e2 the second element. The λ-terms
encoding such a pair are:

Pair ≡ λ x y p . p x y
e1 ≡ λ p . p (λx y . x)
e2 ≡ λ p . p (λx y . y)

With these terms we can construct a term that swaps the elements
in such a pair as:

swap ≡ λ p . Pair (e2 p) (e1 p)

3. Representing Data Types by Named Functions
It seems to be straightforward to transform the λ-terms represent-
ing Booleans and pairs to functions in a functional programming
language like Clean or Haskell. In this paper we will use Clean,
but any modern lazy functional programming language with type
constructor classes will give very similar results.

3.1 Encoding Booleans by Named Functions
The functions form Section 2.1 for the Booleans become23:

T :: a a → a
T t f = t

F :: a a → a
F t f = f

cond :: (a a → a) a a → a
cond c t e = c t e

3.2 Encoding Pairs by Named Functions
The direct translation of the λ-terms in Section 2.2 for pairs yields4:

Pair‘ :: a b → (a b → c) → c
Pair‘ x y = λp.p x y

e1‘ :: ((a b → a) → a) → a
e1‘ p = p (λx y.x)

e2‘ :: ((a b → b) → b) → b
e2‘ p = p (λx y.y)

swap‘ :: ((a a → a) → a) → (a a → b) → b
swap‘ p = Pair‘ (e2‘ p) (e1‘ p)

Unfortunately, the type for swap‘ requires that both elements of
the pair have the same type a. This is due to the fact that the
type for Pair‘ states the type of the access function as a b→c and

2 For typographical reasons we generally prefer a function like T t f = t
over the equivalent T = λt f.t.
3 In Haskell the type a a→a is written as a→a→a.
4 In Haskell the anonymous function λp.p x y is written as \p->p x y.

Church Encoding of Data Types Considered Harmful for Implementations 2 2014/9/23

the Hindley-Milner type system requires a single type for such an
argument [3]. The encoding with additional constructors and type
constructor classes developed below in Section 4.1 will remove this
limitation.

This restriction only limits the possibility to execute the encod-
ing in functions in a strongly typed language. In an untyped context
these functions will behave correctly.

4. Recursive Data Types
For recursive types we show two different ways to represent data
types by functions. The first approach is a generalisation of the
well-known Church numbers [2]. Here the recursive occurrences of
a function representing a constructor are all equal. This implies that
a recursive data structure mirrors an expanded fold as pointed out
by Hinze in [16]. This is especially convenient in λ-calculus since
recursive functions require that the function itself is passed around
as an additional argument. This recursion is usually achieved by an
application of the Y-combinator.

The second approach does nothing special for recursive argu-
ments of constructors. Hence, it uses explicitly recursive manipu-
lation functions for recursive data types, just like the algebraic data
types in functional programming languages like Haskell and Clean.
This arbitrary recursion pattern of these functions is not limited to
folds of the Church encoding. The oldest source of this approach is
a set of unpublished notes from Dana Scott, hence this approach is
called the Scott encoding.

Since we have named functions, arbitrary recursion is no prob-
lem at all. For this reason we state both encodings of the data type
and the associated manipulation functions directly as named func-
tions. In order to compare both encodings easily and to be able
to write functions that work for both encodings we construct type
(constructor) classes for the data types in our description. The type
constructor class will contain the constructors and the selection
functions for elements of the constructors.

These type classes require a constructor in the functions repre-
senting data types. We already want to insert constructors to enable
the use of the functional encodings in a strongly typed language.
The constructors are still unnecessary when we fix the encoding
and work in an untyped setting.

4.1 Pairs Revisited
In our new approach Pair is a type constructor class with a con-
structor Pair and two destructors e1 and e2. These destructors select
the first and second argument.

class Pair t where
Pair :: a b → t a b
e1 :: (t a b) → a
e2 :: (t a b) → b

Using the primitives from this class, the swap function becomes5:

swap :: (t a b) → t b a | Pair t
swap p = Pair (e2 p) (e1 p)

Note that the use of the type class yields better readable types
and eliminates the problem with the types of the arguments in the
function swap. Here it is completely valid to use different types for
the elements of the pair. In fact, it is even possible to yield a pair
that is a member of another instance of the type constructor class
swap :: (t a b) → (u b a) | Pair t & Pair u.

5 The class restriction | Pair t in the type of the function swap
states that this function works for any type t that is an instance of
the type constructor class Pair. This ensures that Pair, e1 and e2
are defined for t. In Haskell such a class constraint is written as
swap :: (Pair t) ⇒ (t a b) → t b a.

4.1.1 Pairs with Native Tuples
The instance of Pair for 2-tuples is completely standard.

instance Pair (,) where
Pair a b = (a , b)
e1 (a , b) = a / / equal to the function fst from StdEnv
e2 (a , b) = b / / equal to the function snd from StdEnv

4.1.2 Pairs with Functions
Since Pair is not recursive, both encodings of such a pair with func-
tions coincide. We introduce a placeholder type FPair to satisfy the
type class system. This also allows use to introduce a universally
quantified type variable t for the result of manipulations of the type.

:: FPair a b = FPair (∀t: (a b→t) → t)

instance Pair FPair where
Pair a b = FPair λp.p a b
e1 (FPair p) = p λa b.a
e2 (FPair p) = p λa b.b

In order to give FPair the kind required by the type constructor class
Pair the type of the result t is an universal quantified type in this
definition. This makes the definition of swap typable in a Hindley-
Milner type system, even without a type constructor class, while
the definition of swap‘ in Section 3.2 restricts the elements e1 and
e2 of the pair to have identical types.

4.2 Peano Numbers
The simplest recursive data type is a type Num for Peano numbers.
This type has two constructors. Zero is the non recursive construc-
tor that represents the value zero. The recursive constructor Succ
yields the successor of such a Peano number, it has another Num
as argument. There are two basic manipulation functions, a test on
zero and a function computing the predecessor of a Peano number.

class Num t where
Zero :: t
Succ :: t → t
isZero :: t → Bool
pred :: t → t

It is of course possible to replace the basic type Bool by the type
representing Booleans in this format introduced in Section 3. We
use here a basic type to show that both type representation perfectly
mix.

4.2.1 Peano Numbers with Integers
An implementation of these numbers based on integers is:

instance Num Int where
Zero = 0
Succ n = n+1
isZero n = n == 0
pred n = i f (n > 0) (n - 1) undef

4.2.2 Peano Numbers with an Algebraic Data Type
The implementation of Num with an ordinary algebraic data type
Peano has no surprises. We use case expressions instead of separate
function alternatives to make the definitions a little more compact.

:: Peano = Z | S Peano

instance Num Peano where
Zero = Z
Succ n = S n
isZero n = case n of Zero = True ; _ = False
pred n = case n of S m = m ; _ = undef

Church Encoding of Data Types Considered Harmful for Implementations 3 2014/9/23

4.2.3 Peano Numbers in the Church Encoding
The first encoding with functions is just the encoding of Church
numbers in this format. The type Peano has two constructors.
Hence, each constructor function has two arguments. The first ar-
gument represents the case for zero, the second one mimics the
successor. A nonnegative number n is represented by n applica-
tions of this successor to the value for zero. The constructor Succ
adds one application of this function.

The test for zero yields True when the given number n is Zero.
Otherwise, the result is False. The predecessor function in the
Church encoding is somewhat more challenging. The number n is
represented by n applications of some higher order function s to a
given value z. The predecessor must remove one of the function
s. The first solution for this problem is found by Kleene while
his wisdom teeth were extracted at the dentist [11]. The value
zero is replaced by a tuple containing undef, the predecessor of
zero6, and the predecessor of the next number: zero. The successor
function recursively replaces the tuple (x ,s x) by (s x ,s (s x))
starting at z. The result of this construct is the tuple (pred n ,n). The
predecessor function selects the first element of this tuple. Since
the predecessor is constructed from the value zero upwards to n,
the complexity of this operation is O(n).

Just like in the representation of pairs we add a constructor CNum
to solve the type problems of this representation in the Hindley-
Milner type system of Clean. The universally quantified type vari-
able b ensures that the functions representing the the constructors
can yield any type without exposing this type in CNum. This type is
very similar to the type cnat := ∀X.X→ (X→X)→ X used
for Church numbers in polymorphic λ-calculus, λ2 [14].

The pattern FPair _ in the pred function is an artefact of our
encoding by type classes, it solves the overloading of Pair.

:: CNum = CNum (∀b: b (b→b) → b)

instance Num CNum where
Zero = CNum λzero succ.zero
Succ n = CNum λzero succ.succ ((λ(CNum x).x) n zero succ)
isZero (CNum n) = n True λx.False
pred (CNum n)
= CNum λz s.e1 (n (Pair undef z)

(λp=:(FPair _).Pair (e2 p) (s (e2 p))))

Notice that the successor itself passes the values for zero and succ
recursively to the given number n. Removing the constructor CNum
from the argument of Succ is done in its right-hand side to prevent
this argument that the argument is strict. This enables the proper
evaluation of expressions like isZero (Succ undef).

The function Succ has to add one application of the argument
succ to the given number. Since all functions are equal this can
be done in two ways. Above we add the additional application of
succ to the encoding of n. It is in this encoding also possible to re-
place the given value of zero in the recursion by succ zero. That
is Succ (CNum n) = CNum λzero succ.n (succ zero) succ. The di-
rect access to both side of the sequence of applications of succ is
unique for the Church encoding. We will use this below in Section
5 to optimise fold like operations over recursive types in the Church
encoding.

4.2.4 Peano Numbers in the Scott Encoding
The type SNum to represent the Scott representation of numerals uses
a constructor and a universally quantified type variable for exactly

6 Every now and then people use zero instead of undef as predecessor
of Zero. This prevents runtime errors, but it does not correspond to our
intuition of numbers and complicates reasoning. For instance, the property
pred n == pred m ⇒ n == m does not hold since pred (succ zero)
becomes equal to pred zero.

the same reasons as the Church encoding. This type is related to the
types assigned to Scott numerals by Abadi et al., [1]. This type is
again similar to snat := ∀X.X→(snat→X)→ X used for Scott
numbers in λ2µ [14]. Since we have recursive functions in our core
language, the external recursion in this problem is no problem. In
λ-calculus we need for instance a fixed point-combinator for the
recursion.

The Scott encoding for the non-recursive cases Zero and isZero
is equal to the Church encoding. For the recursive functions Succ
and pred the Scott encoding is simpler than the Church encoding.
The recursion pattern of the Scott encoding is very similar to the
definitions for the type Peano.

:: SNum = SNum (∀b:b (SNum→b) → b)

instance Num SNum where
Zero = SNum λzero succ.zero
Succ n = SNum λzero succ.succ n
isZero (SNum n) = n True λx.False
pred (SNum n) = n undef λx.x

Since the implementation of pred in this Scott encoding is a simple
selection of an element of a constructor its complexity is O(1).
This is much better than the O(n) complexity of the same operator
in the Church encoding.

4.2.5 Peano Numbers in the Parigot Encoding
Parigot proposed a different encoding of data types in an attempt to
enable reasoning about algorithms as well as an efficient implemen-
tation of these algorithms [27, 28]. These papers do not mentioning
the Scott encoding. In addition for a recursive type the constructors
contain the Church-Style fold argument, as well as the Scott-style
plain recursive argument. For numbers this reads:

:: PNum = PNum (∀b:b (PNum b→b) → b)

instance Num PNum where
Zero = PNum λz s.z
Succ p = PNum λz s.s p ((λ(PNum n).n) p z s)
isZero (PNum n) = n True λp x.False
pred (PNum n) = n undef (λp x.p)

It will be no surprise that this type resembles the type in λ2µ:
pnat := ∀X.X → (pnat → X → X) → X used for Parigot
numbers in [14] (called Church-Scott numbers there).

Notice that pred is implemented here in the more efficient Scott
way. The second argument of Succ is more suited for a fold-like
operation.

4.2.6 Using the Type Class Num
Using the primitive from the class Num we can define manipula-
tion functions for these numbers. The transformation of any of
these number encodings to one of the other encodings is given by
NumToNum. This uniform transformation is a generalisation of the
transformations between Church and Scott numbers in [20]. The
context determines the encodings n and m. Using a very similar re-
cursion pattern we can define addition for all instances of Num by
the function add.

NumToNum :: n → m | Num n & Num m
NumToNum n | isZero n

= Zero
= Succ (NumToNum (pred n))

add :: t t → t | Num t
add x y | isZero x

= y
= add (pred x) (Succ y)

Church Encoding of Data Types Considered Harmful for Implementations 4 2014/9/23

Using details of the encoding it is possible to optimise these func-
tions. Although the definitions work for all instances, the algorith-
mic complexity depends on the encoding selected. In particular the
processor function pred is O(n) in the Church encoding and O(1)
for the other implementations of Num. In Section 5 we discuss how
this can be improved for these examples.

4.3 Lists
In the Peano numbers all information is given by the number of
applications of Succ in the entire data structure. Recursive data
types that contain more information are often needed. The simplest
extension of the Peano numbers is the list. The Cons nodes of a list
corresponds to the Succ in the Peano numbers, but in contrast to the
Peano numbers a Cons contains an element stored at that place in the
list. This is modelled by type class List. Compared to Num there is
an additional argument a in the constructor for the recursive case,
and there is an additional primitive access function head to select
this element from the outermost Cons.

class List t where
Nil :: t a
Cons :: a (t a) → t a
isNil :: (t a) → Bool
head :: (t a) → a
tail :: (t a) → t a

4.3.1 List with the Native List Type
The instance for the native lists in Clean is very simple7

instance List [] where
Nil = []
Cons a x = [a:x]
isNil xs = case xs of [] = True ; _ = False / / isEmpty
head xs = case xs of [a:x] = a ; _ = undef / / hd
tail xs = case xs of [a:x] = x ; _ = undef / / tl

4.3.2 List in the Church Encoding
The instance inspired on the Church numbers is rather similar to
the instance for CNum. The definition for Nil is completely similar
to the instance for Zero. The constructor Cons has the list element
to be stored as additional argument. Here it does matter whether
we insert the new element at the head or the tail of the list. It is
actually quite remarkable that we can add an element to the tail
of the list without explicit recursion. Note that the arguments for
nil and cons are passed recursively to the tail x of the list. The
manipulation functions isNil and head directly yield the desired
result by applying the function xs to the appropriate arguments.
The implementation of tail is more involved. We use the approach
known from pred. From the end of the list upwards a new list
is constructed that is the tail of this list. Note that this is again
O(n) work with n the length of the list. Moreover, it spoils lazy
evaluation by requiring a complete evaluation of the spine of the
list. This also excludes the use of infinite list as arguments of this
version of the tail.

:: CList a = CList (∀b: b (a→b→b) → b)

instance List CList where
Nil = CList λnil cons.nil
Cons a x = CList λn c.c a ((λ(CList l).l) x n c)
isNil (CList l) = l True λa x.False
head (CList l) = l undef λa x.a
tail (CList l)
= CList λnil cons.e1 (l (Pair undef nil)

(λa p=:(FPair _).Pair (e2 p) (cons a (e2 p))))

7 In Haskell the list [a:x] is written as (a:x). The expression [a:x] is valid
Haskell, but it is a singleton list containing the list (a:x) as its element.

4.3.3 List in the Scott Encoding
The implementation of lists based on Scott numbers differs at the
recursive argument of the Cons constructor. Here we use a term of
type SList a. In the list based on Church numbers this argument has
type b, the result type of the list manipulation. As a consequence,
we do not pass the arguments nil and cons as arguments to the tail
x in the definition for the constructor Cons. This makes the access
function tail a simple O(1) access function.

:: SList a = SList (∀b: b (a→(SList a)→b) → b)

instance List SList where
Nil = SList λnil cons.nil
Cons a x = SList λnil cons.cons a x
isNil (SList xs) = xs True λa x.False
head (SList xs) = xs undef λa x.a
tail (SList xs) = xs undef λa x.x

4.3.4 List in the Parigot Encoding
Just as for numbers the Parigot encoding of Cons contains an argu-
ment for Scott type of recursion (i.e. x), as well as for the Church
type recursion (i.e. ((PList l).l) x n c).

:: PList a = PList (∀b: b (a (PList a) b→b) → b)

instance List PList where
Nil = PList λnil cons.nil
Cons a x = PList λn c.c a x ((λ(PList l).l) x n c)
isNil (PList l) = l True λa t x.False
head (PList l) = l undef (λa t x.a)
tail (PList l) = l undef (λa t x.t)

4.3.5 Using the List Type Class
Using the primitives from List the list manipulations fold-right and
fold-left can be defined in the well-known way.

foldR :: (a b→b) b (t a) → b | List t
foldR op r xs | isNil xs

= r
= op (head xs) (foldR op r (tail xs))

foldL :: (a b→a) a (t b) → a | List xs
foldL op r xs | isNil xs

= r
= foldL op (op r (head xs)) (tail xs)

Due to the O(n) complexity of tail in the Church represen-
tation, the folds have O(n2) complexity in the Church encoding
when the operators op is strict in both arguments. In the other in-
stances of List the complexity is only O(n). In Section 5 we show
how this complexity problem can be fixed for foldR.

The transformation from one list encoding to any other instance
of List is done in ListToList by an application of this foldR.
The summation of a list is done by a fold-left since the use of
an accumulator enables a constant memory implementation. This
function works for any argument type a having an addition operator
+ and a unit element zero.

ListToList :: (t a) → u a | List t & List u
ListToList xs = foldR Cons Nil xs

suml :: (t a) → a | List t & + , zero a
suml xs = foldL (+) zero xs

4.3.6 Measuring Execution Time
Using these definitions we can easily verify the described be-
haviour of the implementations of the class List. Our first ex-
ample is extremely simple; it takes the head of the tail of a list.

Church Encoding of Data Types Considered Harmful for Implementations 5 2014/9/23

By just changing the type at a strategic place, here the function
headTail, we enforce another implementation of List. When we
replace CList in this function by SList, PList or [] that type in-
stance of List is used. The length of the list is controlled by the
definition of m.

headTail :: !(CList Int) → Bool
headTail l = head (tail l) == 2

fromTo :: Int Int → t Int | List t
fromTo n m | n > m

= Nil
= Cons n (fromTo (n+1) m)

Start = headTail (fromTo 1 m)

All experiments are done with 32-bit Clean 2.4 running on
windows 7 in a virtual box on a MacBook Air with 1.8 GHz Intel
Core i5 under OS X version 10.9.4. For reliable measurements the
computation is repeated such that the total execution time is at least
10 seconds.

head (tail (fromTo 1 m))

m CList Int SList Int PList Int [Int]

2 6.5 10−8 3.3 10−8 5.5 10−8 1.1 10−8

10 2.8 10−7 3.3 10−8 5.5 10−8 1.1 10−8

102 2.5 10−6 3.3 10−8 5.5 10−8 1.1 10−8

103 2.6 10−5 3.3 10−8 5.5 10−8 1.1 10−8

104 2.8 10−5 3.3 10−8 5.5 10−8 1.1 10−8

105 4.7 10−5 3.3 10−8 5.5 10−8 1.1 10−8

Figure 1. Execution time in seconds as function of the length for
the encodings of List. Note the double logarithmic scale.

It is no surprise that the execution time for SList Int and [Int]
is completely independent of the upper bound, m, of the list. Due to
lazy evaluation the list is only evaluated until its second element.
As predicted the execution time for CList Int is linear in the length
of the list since tail enforces evaluation until the Nil. For very
long lists in the Church representation, e.g. 105 elements, garbage
collection causes an additional increase of the execution time.

In the second experiment we enforce evaluation of the entire list
by computing the sum of the numbers 1 to m and check whether
this sum is indeed m(m− 1)/2 for various values of m. We use a
tail recursive definition for the function Sum:

sum :: (t Int) → Int | List t
sum l | isNil l

= 0
= head l + sum (tail l)

sum (fromTo 1 m)

m CList Int SList Int PList Int [Int]

1 1.2 10−7 6.6 10−8 9.7 10−8 2.0 10−8

10 3.7 10−5 5.4 10−7 7.5 10−7 1.4 10−7

102 2.8 10−2 5.9 10−6 8.2 10−6 2.0 10−6

103 3.3 10+1 5.8 10−5 8.3 10−5 2.1 10−5

104 6.2 10−4 9.0 10−4 2.1 10−4

105 6.5 10−3 9.6 10−3 2.2 10−3

Figure 2. Execution time in seconds as function of the length for
the encodings of List.

As expected the execution time for SList Int and [Int] grows
linear with the the number of elements in the list. The version
for CList Int is again much slower. Since the tail inside sum is
O(n) for a list in the Church representation, the sum itself is at
leastO(n2). The measurements show that the actual execution time
grows as O(n3) in the Church representation. Since the tail in the
Church representation yields a function application, the reduction
of an application tail l cannot be shared. This expression is re-
evaluated for each use of the resulting list. Each of these tail

functions is O(n). This makes the total complexity of sum O(n3)
in the Church representation and O(n) in the Scott representation
and in the native lists of Clean.

In the final example we apply the quick-sort algorithm to a
lists of pseudo random integers in the range 0..999. Quick-sort is
implemented for all list implementations in the class List by the
function qs.

qs :: (l a) → (l a) | List l & < , == a
qs l | isNil l

= Nil
= append (qs (fltr (λx.x < y) l))

(append (fltr (λx.x == y) l)
(qs (fltr (λx.y < x) l))) where y = head l

append :: (t a) (t a) → (t a) | List t
append l1 l2 | isNil l1

= l2
= Cons (head l1) (append (tail l1) l2)

fltr :: (a→Bool) (l a) → l a | List l
fltr p l | isNil l

= Nil
| p x

= Cons x (fltr p (tail l))
= fltr p (tail l) where x = head l

qs (take m randomInts))

m CList Int SList Int PList Int [Int]

1 7.5 10−7 5.2 10−7 6.0 10−7 1.8 10−7

10 1.8 10−4 1.0 10−5 1.3 10−5 4.1 10−6

102 1.5 10−1 2.1 10−4 2.8 10−4 8.9 10−5

103 1.6 10+2 3.0 10−3 3.9 10−3 1.3 10−3

104 3.3 10−2 4.4 10−2 1.4 10−2

105 3.9 10−1 5.3 10−1 1.7 10−1

Figure 3. Relation between execution time in seconds and length
of the list for four different implementations of List.

The measurements show the expected O(n log n) growth with
the length of the list for the Scott representation of lists and native
lists in Clean. The Church representation shows again a O(n3)
growth with the length of the list. Since Quick-sort requires more
list operations than sum, the increase in execution time is even
bigger than for sum.

The Scott representation, SList Int, is on average a factor 2.8
slower than the native Clean lists, [Int]. This additional execution
time is caused by the additional constructors SList need to convince
the type system of correctness of this representation. This factor is
independent of the size of the lists.

Functions like sum, append and fltr used in these examples can
be expressed as applications of fold. It is possible to optimise a
fold in the Church representation as outlined in Section 5. Since we
study the representation of data structures by functions for a simple
compiler, it is unrealistic to expect such a compiler to perform the

Church Encoding of Data Types Considered Harmful for Implementations 6 2014/9/23

required transformations. Moreover, this does not solve the prob-
lems with laziness, in examples like head (tail (fromTo 1 m)) ,
and the complexity problems in situations where the tail function
is not part of a foldr, like qs_o2.

4.4 Tree
We demonstrate how the approach is extended to data types with
multiple recursive arguments such as binary trees. The construc-
tor for nonempty trees, Fork, has now two recursive instances as
argument instead of just one. There are now two selectors for the
recursive arguments, left and right, instead of just tail.

class Tree t where
Leaf :: t a
Fork :: (t a) a (t a) → t a
isLeaf :: (t a) → Bool
elem :: (t a) → a
left :: (t a) → t a
right :: (t a) → t a

4.4.1 Tree with an Algebraic Data Type
The instance for a two constructor algebraic data type is again
standard.

:: Bin a = Empty | Node (Bin a) a (Bin a)

instance Tree Bin where
Leaf = Empty
Fork x a y = Node x a y
isLeaf t = case t of Empty = True ; _ = False
elem t = case t of (Node x a y) = a ; _ = undef
left t = case t of (Node x a y) = x ; _ = undef
right t = case t of (Node x a y) = y ; _ = undef

4.4.2 Tree in the Church Encoding
The instance based on Church numbers passes the arguments for
leaf and node now to two recursive occurrences in the constructor
Fork for nonempty trees. The selector functions for the recursive
arguments, left and right, use the same pattern as pred and tail.
The difference is that there are two recursive cases. Fortunately,
they can be handled with a single function. For readability we use
tuples from Clean instead of a Pair as introduced in Section 2.2.
Like above this selection function visits all n nodes in the subtree.
Hence, its complexity is O(n) while the version using ordinary
algebraic data types does the job in constant time, O(1).

:: CTree a = CTree (∀t: t (t a t→t) → t)

instance Tree CTree where
Leaf = CTree λleaf fork
Fork (CTree x) a (CTree y)
= CTree λleaf fork. fork (x leaf fork) a (y leaf fork)
isLeaf (CTree t) = t True λx a y.False
elem (CTree t) = t undef λx a y.a
left (CTree t)
= CTree λe f.e1 (t (undef ,e) (λ(s ,t) a (x ,y).(t ,f t a y)))
right (CTree t)
= CTree λe f.e1 (t (undef ,e) (λ(s ,t) a (x ,y).(y ,f t a y)))

4.4.3 Tree in the Scott Encoding
The version based on the Scott encoding of numbers is again much
more similar to the implementation based on plain algebraic data
types. In the constructor Fork for nonempty trees the arguments
leaf and node are not passed to the recursive occurrences of the
tree, x and y. This makes the selection of the recursive elements
identical to the selection of the non recursive argument, elem. The
complexity of the three selection functions is the desired O(1).

:: STree a = STree (∀t: t ((STree a) a (STree a)→t) → t)

instance Tree STree where
Leaf = STree λleaf node.leaf
Fork x a y = STree λleaf node.node x a y
isLeaf (STree t) = t True λx a y.False
elem (STree t) = t undef λx a y.a
left (STree t) = t undef λx a y.x
right (STree t) = t undef λx a y.y

4.4.4 Using the Tree Type Class
Using the primitives from Tree we can express insertion for binary
search trees by the function insertTree.

insertTree :: a (t a) → t a | Tree t & < a
insertTree a t

| isLeaf t = Fork Leaf a Leaf
| a < x = Fork (insertTree a (left t)) x (right t)
| a > x = Fork (left t) x (insertTree a (right t))
| otherwise = t / / x == a

where x = elem t

Note that the recursion pattern in this function is dependent of the
value of the element to be inserted, a, and the element in the current
node, elem t.

When the selectors left and right operate in constant time the
average cost of an insert in a balanced tree are O(log n), and in
worst case the insert is O(n) work. For the implementation based
on Church numbers however, the complexity of the selectors left
and right is O(n). This makes the average complexity of an insert
in a balanced tree O(n log n), in worst case the complexity is
even O(n2). In testing basic properties of trees this is very well
noticeable. Even with small test cases tests with the data structures
based on the Church numbers take at least one order of magnitude
more time than all other tests for the definitions in this paper
together.

4.5 General Transformations
The examples in the previous sections illustrate the general trans-
formation scheme from a constructor based encoding to a function
based encoding. In the transformations below we omit the addi-
tional type and constructors used in this paper to handle the various
versions in a single type constructor class. A type T with a argu-
ments and n constructors named C1 . . . Cn will be represented by
n functions. The transformation T specifies the functions needed
to represent a type T .

T JT x1 . . . xa = C1 a11 . . . a1m | . . . |Cn an1 . . . anm K
= CJC1 a11 . . . a1m K n · · · CJCn an1 . . . anm K n

The function for constructor Ci with m arguments has the same
name as this constructor and has n + m arguments. C yields the
function for the given constructor.

CJCi ai1 . . . aim K n
= Ci a1 . . . am x1 . . . xn = xi AJ a1 K n . . . AJ am K n

For all arguments in the Scott encoding and the non recursive argu-
ments in the Church encoding, the transformation A just produces
the given argument.

AJ a K n = a

For recursive arguments in the Church encoding however, all argu-
ments of the function C are added:

A2J a K n = (a x1 . . . xn)

These definitions show that a constructor is basically just a
selector that picks the continuation corresponding to its constructor

Church Encoding of Data Types Considered Harmful for Implementations 7 2014/9/23

number. In a function over type T we provide a value for each
constructor, similar to a case distinction in a switch expression.

SJ case e of
C1 a11 . . . a1m = r1;

. . .

Cn an1 . . . anm = rn; K
= e (λa11 . . . a1m . r1) . . . (λan1 . . . anm . rn)

Due to recursive passing of arguments in the Church encoding, a
recursive argument aj will be transformed to an expression of the
result type R of the case expression. In the Scott encoding it will
still have type T . This implies that we can still decide in the body
ri whether we want to apply the function recursively or not. In the
Church encoding the function is alway applied recursively.

5. Optimisations
In a real implementation of a functional language that represents
data types by functions, the type constructor classes introduced
here and the constructors required by those type classes should be
omitted. They are only introduced in this paper to allow experi-
ments with the various representations.

A version of the Church encoding for lists without additional
constructors can be expressed directly in Clean.

:: ChurchList a r :== r (a r→r) → r

cnil :: (ChurchList a r)
cnil = λn c.n

ccons :: a (ChurchList a r) → (ChurchList a r)
ccons a x = λnil cons.cons a (x nil cons)

ctail :: (ChurchList a (r ,r)) → (ChurchList a r)
ctail xs = λn c.fst (xs (undef ,n) (λa (x ,y).(y ,c a y)))

clToStrings::(ChurchList a [String]) → [String]|toString a
clToStrings xs = xs ["[]"] λa x.[toString a , ": ": x]

Although these function are accepted by the compiler, there are
severe limitations to this approach. The type system rejects many
combinations of these function. This is due to the monomorphism
constraint on function arguments. These problems are very similar
those encountered by the function swap‘ in Section 3.2.

The Hindley-Milner type system does not accept the Scott en-
coding of data types without additional constructors, see Baren-
dregt [3] or Barendsen [4] for a proof. Geuvers shows that this can
be typed in λ2µ: λ2 + positive recursive types [14]. Nevertheless,
these functions work correctly in an untyped world with higher or-
der functions.

snil = λnil cons.nil
scons a x = λnil cons.cons a x
stail xs = xs undef (λa x.x)

5.1 Using the Structure of the Type Representations
The destructors of the implementations of data constructors based
on Church numbers are all very expensive operations, typically
O(n) where n is the size of the recursive data structure. When
the shape of the computation matches the recursive structure of
the Church encoding we can achieve an enormous optimisation by
replacing definitions based on the interface provided by the type
constructor classes by direct implementations. Since the encoding
based on Church numbers is basically a foldr, as explained by
Hinze in [16], these optimisations will work for manipulations that
can be expressed as a foldr.

5.2 Peano Numbers
Many operations on Peano numbers can be expressed as a fold op-
eration. For instance, a Peano number of the form λzero succ.succ
(succ .. zero) can be transformed to an integer by providing the
argument 0 for zero and the increment function, inc, for integers for
succ. For the same operation on number in the Scott encoding we
need to specify the required recursion explicitly. This is reflected
in the tailor made instances of the class toInt for these number
encodings.

instance toInt CNum where toInt (CNum n) = n 0 inc
instance toInt SNum where toInt (SNum n) = n 0 (inc o toInt)

The complexity of both transformations is O(n). For the Church
encoding this is a serious improvement compared to using NumToNum
to transform a CNum to Int. Due to the O(n) costs of pred for CNum
the complexity of this transformation is O(n2). For the other en-
coding we can at best gain a constant factor. This can be generalised
in a translation of CNum to other instances of Num.

CNumToNum :: CNum → n | Num n
CNumToNum (CNum n) = n Zero Succ

Similar clever definitions are known for the addition and multipli-
cation of Church numbers. We express the optimised addition as an
instance of the operator + for CNum. We achieve addition by replac-
ing the zero of x by the number y zero succ. In exactly the same
way we can achieve multiplication by replacing the successor such
of x by λz.y z succ.

instance + CNum where
(+) (CNum x) (CNum y) = CNum λz s.x (y z s) s

instance * CNum where
(*) (CNum x) (CNum y) = CNum λz s.x z (λz2.y z2 s)

It is obvious that this reduces the complexity of these operations
significantly. However, the addition is not the constant O(1) ma-
nipulation it might seem to be. The result is a function and any ap-
plication determining a value with this function will be O(n×m)
work. This is of course a huge improvement to O(n2 ×m) for the
addition for CNum using the function add from Section 4.2.6.

Those optimisations are only possible when the structure of the
manipulation can be expressed by the structure of the encoding of
CNum. No solutions of this kind are known for operations like prede-
cessor and subtraction. For the predecessor it might look attractive
to transform the encoding from CNum to SNum and perform the prede-
cessor here in O(1) instead of in O(n) in CNum. Unfortunately, this
transformation itself is O(n), even using the optimised CNumToNum
function. Nevertheless, such a transformation is worthwhile when
we need to do more operation with higher cost in the CNum encoding
that in the SNum encoding. This occurs for instance in subtractionm
from n by repeated applications of the predecessor function, here
the complexity drops from O(n × m) to O(n + m). This is still
more expensive that the O(m) for the other encodings.

5.3 Lists
The Church encoding of lists is based on a fold-right. Also the
Parigot encoding contains such a fold. By making an optimised
fold function instead of the simple recursive version from Section
4.3.5 we can take advantage of this representation.

class foldR_o t :: (a b→b) b !(t a) → b

instance foldR_o CList where
foldR_o f r (CList l) = l r f

instance foldR_o PList where
foldR_o f r (PList l) = l r λa t x.f a x

Church Encoding of Data Types Considered Harmful for Implementations 8 2014/9/23

instance foldR_o SList where
foldR_o f r (SList l) = l r λa x.f a (foldR_o f r x)

instance foldR_o [] where
foldR_o f r l = case l of []=r ; [a:x]=f a (foldR_o f r x)

For the Church and Parigot encoding of lists we directly use the
given function f the the fold of this representation. The Scott
encoding and the native lists of Clean does not have such a direct
fold. Hence, we define an explicit recursive function.

5.4 Effect of the Optimisations
In order to determine the effect of the optimised fold implementa-
tion we replaced the functions append and filter in the function qs
by their fold based variant shown above.

qs_o :: (t a) → (t a) | < , == a & foldRo , List t
qs_o l | isNil l

= Nil
= appendo (qs_o (fltro (λx.x < h) l))

(appendo (fltro (λx.x == h) l)
(qs_o (fltro (λx.h < x) l))) where h = head l

append_o :: (t a) (t a) → t a | foldRo , List t
append_o l1 l2 = foldR_o Cons l2 l1

fltr_o :: (a→Bool) (t a) → t a | foldRo , List t
fltr_o p l = foldR_o (λa x.if (p a) (Cons a x) x) Nil l

The results of this experiment are listed in Figure 4.

qs_o (take m randomInts))

m CList Int SList Int PList Int [Int]

1 3.2 10−7 4.5 10−7 3.5 10−7 1.1 10−7

10 5.8 10−6 6.2 10−6 6.5 10−6 2.1 10−6

102 1.2 10−4 1.3 10−4 1.3 10−4 4.7 10−5

103 1.7 10−3 1.9 10−3 1.9 10−3 7.2 10−4

104 1.8 10−2 2.0 10−2 2.0 10−2 7.9 10−3

105 2.4 10−1 2.9 10−1 2.9 10−1 1.0 10−1

Figure 4. Execution time in seconds as function of the length for
the encodings of List.

When all recursive list operations are replaced by an optimised
fold-right all encodings of lists show very similar execution results.
The small differences are explained by the additional arguments
that have to be passed around in the Parigot encoding, and the addi-
tional constructors needed by this simulation of the Scott encoding.

These gains work only properly when every list manipulation
is a fold-right. Introducing a single other operation can completely
spoil the performance. Consider for instance a somewhat different
formulation of our Quick-sort algorithm.

qs_o2 :: (t a) → (t a) | < , == a & foldRo , List t
qs_o2 l | isNil l

= Nil
= appendo (qs_o2 (fltro (λx.x < h) t))

(Cons h (qs_o2 (fltro (λx.h ≤ x) t)))
where h = head l ; t = tail l

The measurements in Figure 5 show that behaves similar to fold-
based Quick-sort for most encodings. For small lists two instead
of three filters over the list yields a gain. For long lists there will
be many duplicates of the numbers between 0 and 999, hence
the additional of equal elements yields a small gain. The overal
complextity isO(n logn). For the Church-lists however, the single
tail is a complete party breaker. For the same reasons as before the
complexity is O(n3) in this Church encoding.

qs_o2 (take m randomInts))

m CList Int SList Int PList Int [Int]

1 2.1 10−7 2.2 10−7 1.8 10−7 7.2 10−8

10 1.2 10−5 4.3 10−6 3.7 10−6 2.2 10−6

102 5.6 10−3 9.4 10−5 9.4 10−5 5.8 10−5

103 5.6 100 1.5 10−3 1.5 10−3 1.1 10−3

104 6.0 10+3 2.3 10−2 2.3 10−2 1.8 10−2

105 9.1 10−1 8.2 10−1 5.8 10−1

Figure 5. Execution time in seconds as function of the length for
the encodings of List.

5.5 Optimization of other Operations
This kind of optimisation works only for operations that can be
expressed as a fold-right. This implies that we cannot use it for
many common list manipulations like, fold-left (foldl), take, drop,
and insertion in a sorted list. For many operations that require a
repeated application of tail it is worthwhile to transform the CList
to a SList, perform the transformation on this SList, and finally
transform back to the CList when we really want to use the Church
encoding. This route via the lists in Scott encoding still force the
evaluation of the spine of the entire list.

In some programming tasks it is possible to construct also in
the Church encoding an implementation that executes the given
task with a better complexity than obtained by applying the default
deconstructs. For instance, the function to take the first n elements
of a list using the functions from the class List is:

takeL :: Int (t a) → t a | List t
takeL n xs | n > 0 && not (isNil xs)

= Cons (head xs) (takeL (n - 1) (tail xs))
= Nil

For the Church encoding this has complexity O(n × L) where n
is the number of elements to take and L is the length of the list.
The complexity for the Scott encoding is O(n), just like a direct
definition in Clean. In contrast with the Church encoding, the Scott
encoding is not strict in the spine of the list. Using a tailor-made
instance of the fold in the Church encoding, the complexity of the
take function can be reduced to O(L):

takeC :: Int (CList a) → CList a
takeC n (CList xs)
= fst (xs (Nil , xs 0 (λa x.x + 1) - n)

(λa (ys , m).(i f (m > 0) Nil (Cons a ys) , m - 1)))

The expression xs 0 (λa x.x+1) computes the length of the lists.
The outermost fold produces length xs − n times Nil. When
the counter m becomes non-positive, the fold starts copying the
list elements. For finite lists, this is the same result as takeL m. It
is not obvious how to derive such an optimised algorithm from
an arbitrary function using the primitives from a class like List.
Hence, constructing an optimised version requires in general non-
trivial human actions. Even when this problem would be solved,
the Scott encoding still has a better complexity and more appealing
strictness properties.

5.6 Deforestation of Lists
Function fusion is a program transformation that tries to achieve the
result of two separate functions f and g applied after each other by
a single function h. That is we try to generate a function h such that
f · g ≡ h ⇒ ∀x . f(g x) = h x. Especially when fusion manages
to eliminate a data structure this transformation will reduce the
execution time significantly.

Church Encoding of Data Types Considered Harmful for Implementations 9 2014/9/23

Wadler introduced a special form of fusion called deforestation
[33]. In deforestation we recognise producers and consumers. For
lists, any function forcing evaluation and processing the list like
foldr is a good consumer. A producer is a similar recursive func-
tion that generates a list. When there is an immediate composition
of a producer and a consumer these functions can be fused and the
intermediate list is not longer needed. That is a function compo-
sition like foldR g r (foldR (Cons o f) Nil xs) can be fused to
foldR (g o f) r xs. This is a standard transformation in many ad-
vanced compilers for functional programming languages, e.g. the
GHC as described by Gill et. al. [15].

Since any CList is essentially a foldR that forces evaluation,
all Church lists are good consumers. When the list is generated
by a foldRC the function applied to as Cons-constructor can be
written as Cons o f. Hence functions like mapC are good producers.
This implies that there will be relatively many opportunities for
deforestation in a program based on Church lists. Although the gain
of deforestation can be a substantial factor, it does not change the
complexity of the algorithm.

5.7 Optimisation of Tree Manipulations
The results from lists immediately carry over to trees. Any fold over
a tree in the Church encoding can be optimised by to call of foldTC.

foldTC :: (b a b→b) b (CTree a) → b
foldTC f r (CTree t) = t r f

Using this fold we can collect all elements in a search tree by
a single in-order traversal of the Church tree in a Church list by
inorderC.

inorderC :: (CTree a) → CList a
inorderC t = foldTC (λx a y.appendC x (Cons a y)) Nil t

This works only for tree manipulations that can be expressed
efficiently by a fold over the tree. As a consequence it does not
solve the complexity problems for insertion, lookup and deletion
from binary search trees.

6. Summary
For simple implementations of functional programming languages
it is convenient to transform the data types to functions. By translat-
ing all data types to functions, we only need to implement functions
on the core level in our implementation. The implemented language
still provides algebraic data types like lists and trees to the user, but
there is no runtime notion of these types needed. Such transforma-
tions are well known in λ-calculus. In this paper we use a language
with named functions and basic types like numbers and characters,
instead of pure λ-calculus. The named functions enable us to use
recursion in an easier way than in the λ-calculus. In this paper we
showed and compared three different implementation strategies for
recursive data types by functions. The first strategy is an extension
of the well known Church numerals. These Church numerals are
treated in nearly all introductory texts about the λ-calculus. The
second encoding is based on an idea originating from unpublished
notes of Scott. Due to the lack of a good reference, this encoding is
reinvented several times in history. The third encoding in a combi-
nation of the previous two known as the Perigot encoding.

The difference between these encodings is in the way they han-
dle recursion. In the Church encoding the functions representing
the data type contain a fold-like recursion pattern to process the
list. In the Scott encoding the recursive manipulations are done by
a recursive function that resembles the recursive functions in ordi-
nary functional programming languages much closer.

By using some additional constructors we were able to imple-
ment instances of a type constructor class capturing the basic oper-

ations of lists or trees for an algebraic data type, an encoding based
on Church numerals and an encoding of Scott numbers.

The comparison shows us that the functions producing the re-
cursive branch in a constructor, like the tail of a list or a subtree
of in a binary tree, are troublesome in the Church encoding. These
operations become spine strict in the recursion. This undesirable
strictness of the Church encoding ruins lazy evaluation and gives
the selection operators an undesirable high complexity. The amount
of work to be done is proportional to the size of the data structure
instead of constant. This is caused by fold-based formulation of the
selector functions. In the Scott encoding the selectors are simple
non recursive λ-expressions, hence they do not have the strictness
and complexity problems of the Church encoding.

The complexity problems of the Church representation are in-
creased by the fact that the reduction of a recursive selector is not
shared in graph reduction. A selector in the Church representation
is a higher order function that needs the next manipulation as argu-
ment before it can be evaluated.

When the manipulation used is essentially a fold it is possible
to optimise the functions implementing the data structure in the
Church encoding to achieve the required complexity. For manipu-
lations that are not a fold, the fold-like recursion pattern enforced
by the Church encoding really hampers. Since many useful pro-
grams are not only executing folds over their recursive data struc-
tures, we consider the Church encoding of data structures harmful
for the implementation purposes discussed in this paper.

The Perigot encoding contains both a Scott encoding and a
Church encoding. Compared with the Church encoding it solves
the complexity problems of selecting the recursive branch and
it prevents the undesired strict evaluation. However, the Perigot
encoding does not bring us the best of both worlds. The additional
effort and space required to maintain both encodings spoils the
potential benefits of the native fold-right recursion compared with
Scott encoding.

Acknowledgments
Special thanks to Peter Achten from the Radboud University for
useful feedback on draft versions of this work and stimulating
discussions. Aaron Stump form the university of Iowa stimulated us
to look again at the Parigot encoding. The feedback of anonymous
referees helped us to improve the reading frame of this paper.

References
[1] M. Abadi, L. Cardelli, and G. D. Plotkin. Types for

the scott numerals. Unpublished note, 1993. URL
http://lucacardelli.name/Papers/Notes/scott2.pdf.

[2] H. Barendregt. The Lambda Calculus: Its Syntax and Semantics. Stud-
ies in Logic and the Foundations of Mathematics. Elsevier Science,
1985. ISBN 9780080933757.

[3] H. Barendregt, W. Dekkers, and R. Statman. Lambda Calculus with
Types. Perspectives in Logic. Cambridge University Press, 2013.
ISBN 9780521766142.

[4] E. Barendsen. An unsolvable numeral system in lambda calculus. J.
Funct. Program., 1(3):367–372, 1991.

[5] A. Berarducci and C. Böhm. Automatic synthesis of typed Lambda-
programs on term algebras. Theoretical Computer Science, 39
(820076097):135–154, 1985.

[6] A. Berarducci and C. Böhm. A self interpreter of Lambda-calculus
having a normal form. In E. Börger, G. Jäger, H. Kleine Büning,
S. Martini, and M. M. Richter, editors, Computer Science Logic. 6th
Workshop, CSL ’92, volume 702 of LNCS, pages 85–99. Springer,
1993. ISBN 978-3-540-56992-3.

[7] C. Böhm. The CUCH as a formal and description language. In T. Steel,
editor, Formal Languages Description Languages for Computer Pro-
gramming, pages 179–197. North-Holland, 1966.

Church Encoding of Data Types Considered Harmful for Implementations 10 2014/9/23

[8] C. Böhm and W. Gross. Introduction to the CUCH. In E. Caianiello,
editor, Automata Theory, pages 35–65, London, UK, 1966. Academic
Press.

[9] C. Böhm, A. Piperno, and S. Guerrini. Lambda-definition of func-
tion(al)s by normal forms. In D. Sannella, editor, ESOP, volume 788
of LNCS, pages 135–149. Springer, 1994. .

[10] R. M. Burstall, D. B. MacQueen, and D. T. Sannella. HOPE: An
experimental applicative language. In Proceedings of the 1980 ACM
Conference on LISP and Functional Programming, LFP ’80, pages
136–143. ACM, 1980.

[11] J. Crossley. Reminiscences of logicians. In J. Crossley, editor, Algebra
and Logic, volume 450 of Lecture Notes in Mathematics, pages 1–62.
Springer, 1975. ISBN 978-3-540-07152-5.

[12] H. B. Curry, J. R. Hindley, and J. P. Seldin. Combinatory Logic,
Volume II. North-Holland, 1972.

[13] J. Fairbairn and U. of Cambridge. Computer Laboratory. Design and
Implementation of a Simple Typed Language Based on the Lambda-
calculus. Computer Laboratory Cambridge: Technical report. Univer-
sity of Cambridge, Computer Laboratory, 1985.

[14] H. Geuvers. The Church-Scott representation of inductive and
coinductive data. Types 2014, Paris, Draft, 2014. URL
http://www.cs.ru.nl/∼herman/PUBS/ChurchScottDataTypes.pdf.

[15] A. Gill, J. Launchbury, and S. L. Peyton Jones. A short cut to defor-
estation. In Proceedings of the Conference on Functional Program-
ming Languages and Computer Architecture, FPCA ’93, pages 223–
232. ACM, 1993.

[16] R. Hinze. Theoretical pearl church numerals, twice! J. Funct. Pro-
gram., 15(1):1–13, Jan. 2005. ISSN 0956-7968.

[17] P. Hudak, S. L. P. Jones, P. Wadler, B. Boutel, J. Fairbairn, J. H. Fasel,
M. M. Guzmán, K. Hammond, J. Hughes, T. Johnsson, R. B. Kieburtz,
R. S. Nikhil, W. Partain, and J. Peterson. Report on the programming
language haskell, a non-strict, purely functional language. SIGPLAN
Notices, 27(5):1–, 1992.

[18] J. Jansen, P. Koopman, and R. Plasmeijer. Efficient interpretation
by transforming data types and patterns to functions. In H. Nilsson,
editor, Revised Selected Papers of the 7th TFP’06, volume 7, pages
73–90, Nottingham, UK, 2006. Intellect Books.

[19] J. Jansen, P. Koopman, and R. Plasmeijer. From interpretation to
compilation. In Z. Horváth, editor, Proceedings of the 2nd CEFP’07,
volume 5161 of LNCS, pages 286–301, Cluj Napoca, Romania, 2008.
Springer.

[20] J. M. Jansen. Programming in the λ-calculus: From Church to Scott
and back. In P. Achten and P. Koopman, editors, The Beauty of
Functional Code, volume 8106 of LNCS, pages 168–180. Springer,
2013. ISBN 978-3-642-40354-5.

[21] T. Johnsson. Compiling Lazy Functional Languages. PhD thesis,
Chalmers University of Technology, 1987.

[22] W. Kluge. Abstract computing machines: a lambda calculus perspec-
tive. Texts in theoretical computer science. Springer, 2005. ISBN
3-540-21146-2.

[23] P. W. M. Koopman, M. C. J. D. V. Eekelen, and M. J. Plasmeijer. Oper-
ational machine specification in a functional programming language.
Software: Practice and Experience, 25(5):463–499, 1995. ISSN 1097-
024X.

[24] P. J. Landin. The mechanical evaluation of expressions. The Computer
Journal, 6(4):308–320, 1964.

[25] T. Æ. Mogensen. Efficient self-interpretations in lambda calculus. J.
Funct. Program., 2(3):345–363, 1992.

[26] M. Naylor and C. Runciman. The reduceron: Widening the von
neumann bottleneck for graph reduction using an fpga. In O. Chitil,
Z. Horváth, and V. Zsók, editors, IFL, volume 5083 of LNCS, pages
129–146. Springer, 2007. ISBN 978-3-540-85372-5.

[27] M. Parigot. Programming with proofs: A second-order type theory. In
Proc. ESOP ’88, LNCS 300, pages 145–159. Springer, 1988.

[28] M. Parigot. Recursive programming with proofs. Theor. Comput. Sci.
94, pages 335–336, 1992.

[29] S. L. Peyton Jones and J. Salkild. The spineless tagless g-machine.
In Proceedings of the Fourth International Conference on Func-
tional Programming Languages and Computer Architecture, FPCA
’89, pages 184–201. ACM, 1989. ISBN 0-89791-328-0.

[30] R. Plasmeijer and M. van Eekelen. Clean language report (version
2.1). http://clean.cs.ru.nl, 2002.

[31] R. Plasmeijer, P. Achten, and P. Koopman. iTasks: executable spec-
ifications of interactive work flow systems for the web. In R. Hinze
and N. Ramsey, editors, Proceedings of the ICFP’07, pages 141–152,
Freiburg, Germany, 2007. ACM.

[32] J. Steensgaard-Madsen. Typed representation of objects by functions.
ACM Trans. Program. Lang. Syst., 11(1):67–89, Jan. 1989. ISSN
0164-0925.

[33] P. Wadler. Deforestation: Transforming programs to eliminate trees.
In Proceedings of the Second European Symposium on Programming,
pages 231–248, Amsterdam, The Netherlands, The Netherlands, 1988.
North-Holland Publishing Co.

Church Encoding of Data Types Considered Harmful for Implementations 11 2014/9/23

