
Declaration-level Change and Dependency
Analysis of Hackage Packages

Extended Abstract

Philipp Schuster and Ralf Lämmel
Software Languages Team, Department of Computer Science, University of Koblenz-Landau, Germany

Abstract
Version numbers for Haskell packages on Hackage communicate
when an update is possibly breaking and prevent installation of
such updates. However, version numbers say nothing about which
declarations actually changed. Similarly, version bounds on depen-
dencies do not take into account which declarations a package ac-
tually uses. This leads to cases where installation of a package is
unnecessarily prohibited. We describe a methodology and an sup-
porting infrastructure, HackPackUp, for determining if and how an
update affects a package. In a sample of 1,578 packages, we find
5,404 scenarios where an update is prohibited even though a pack-
age uses none of the changed declarations.

Categories and Subject Descriptors D.3.3 [PROGRAMMING
LANGUAGES]: Language Constructs and Features; D.2.7 [SOFT-
WARE ENGINEERING]: Distribution, Maintenance, and Enhance-
ment; F.3.2 [LOGICS AND MEANINGS OF PROGRAMS]: Se-
mantics of Programming Languages

Keywords Haskell. Hackage. Package Update. Version Bound.
Program Analysis. Mining Software Repositories. HackPackUp.

1. Motivation
Imagine a hypothetical package favorites of version 0.2.0. Haskell
or Hackage’s Package Versioning Policy (PVP)1 defines the major
part of a version number to be the first two digits (in our example:
0.2) and the minor part to be the rest (in our example: 0). Version
numbers are ordered lexicographically. It also specifies that all
dependencies on favorites should be constrained with a lower and
an upper bound. The lower bound excludes versions the package
was not tested with. The upper bound includes all future minor
versions but excludes all future major versions. So if for example

1 PVP: http://www.haskell.org/haskellwiki/Package_
versioning_policy Explanation of the idea behind the PVP:
http://www.haskell.org/haskellwiki/The_Monad.Reader/
Issue2/EternalCompatibilityInTheory

[Copyright notice will appear here once ’preprint’ option is removed.]

some package was tested with favorites version 0.1.1 and 0.2.0 the
version bounds should be favorites >= 0.1.1&& < 0.3).

Further imagine, there is a function declaration color in a mod-
ule in favorites. If a new version of favorites with an improved
but backwards compatible implementation for color is released, its
version number would only be increased in the minor part (in our
example: 0.2.1). In this way, future installations of packages de-
pending on favorites could use the improved version. If however,
in a new version of favorites, the declaration for color would be re-
moved, then the change would be backwards incompatible and the
version number would have to be increased in the major part (in
our example: 0.3.0). This means no existing package depending on
favorites can be installed with the new version. They all have to be
checked manually for compatibility and updated accordingly. If a
package did not even use color, then the update would not affect the
package, thereby prohibiting installation unnecessarily. We want to
know if such cases exist in practice and how significant of a prob-
lem this is. To this end, we need information about the changes and
the dependencies at the level of individual declarations for pack-
ages on Hackage.

The research reported in this extended abstract is an instance of
‘mining software repositories’; see [4] for a survey. Such mining
has also been researched in a Haskell/Hackage context with an ob-
jective different from ours; see the analysis of generic programming
on Hackage [1]. The analysis of declaration-level changes and de-
pendencies, as it is central to our research, also relates to change
impact analysis, which is an established subject specifically for im-
perative languages; see [5] for a survey. For instance, a fine grained
impact analysis which includes mining for an evolving software
repository is reported in [3]. On the Haskell front, there exist tools
to check what symbols a Hackage package update changes, e.g.,
hackage-diff,2 but the analysis of changes at a declaration-level and
their impact in terms of dependencies has not been the subject of
research.

2. Research question
Our initial research question is this: Do unnecessarily prohibited
update scenarios exist on Hackage? An update scenario is charac-
terized by a package, a dependency of that package that satisfies the
dependency constraints and any later version of that dependency.
A prohibited update scenario is one where the later version of the
dependency does not satisfy the constraints. An unnecessarily pro-
hibited update scenario is one that could be permitted based on the
criterion that the package is not ‘affected’ by revised or deleted dec-
larations in the newer version of the dependency. Just like the PVP,
we do not consider additions to be breaking because while added

2 http://hackage.haskell.org/package/hackage-diff

1 2014/9/8

http://www.haskell.org/haskellwiki/Package_versioning_policy
http://www.haskell.org/haskellwiki/Package_versioning_policy
http://www.haskell.org/haskellwiki/The_Monad.Reader/Issue2/EternalCompatibilityInTheory
http://www.haskell.org/haskellwiki/The_Monad.Reader/Issue2/EternalCompatibilityInTheory
http://hackage.haskell.org/package/hackage-diff


Hackage

Selected packages

Declaration
Source code
Genre
Declared symbols
Referenced symbols

Annotated syntax tree

Download

Process module files

Extract declarations

Database
Packages
Declarations
Symbols

Insert

Package
Name
Version number
Dependencies

Insert
Parse Cabal file

Numbers of
Packages
Update scenarios
Prohibited scenarios
...

Measure

Figure 1. Overview of the fact extraction and measurement process.

declarations could cause name clashes these can be prevented with
explicit import lists.

In fact, we would like to find out whether the problem of unnec-
essarily prohibited update scenarios is a significant one. Thus, we
complement our research question as follows: How many unneces-
sarily prohibited update scenarios exist on Hackage? Accordingly,
we perform (roughly) the following measurements by analyzing (a
sample of) Hackage packages:

• How many update scenarios are there?
• How many of those are prohibited?
• How many of those prohibited are ‘unnecessary’?

3. Fact extraction model
Fact extraction is applied to a set of packages (i.e., all of Hackage
or a sample thereof). A package is uniquely identified by its name
and its version number. A package p depends on package p′ if the
name of p′ is listed as a dependency in the package description of p
and the version number of p′ satisfies the constraints in the package
description. An update is a pair of packages with the same name
and where the version number of the first package is smaller than
the version number of the second package. The version numbers do
not have to be consecutive, an update may skip several versions. A
major update is where the major parts of the version numbers are
different; otherwise we speak of a minor update.

A package declares a set of declarations, possibly subdivided
into several modules. Every declaration has these properties: a

genre (i.e., function, type, class, instance), sets of declared and
referenced symbols, and the source code or AST underlying the
declaration. Symbols are to be qualified by module names and
genres (because of separate namespaces).

Using these basic facts, we can compute what symbols of a de-
pendency a package requires and in what way an update changes a
symbol. This allows us to decide if an update affects a package. We
are inspired by other work on classifying software changes [2]. By
collecting all such information and general package descriptions
for Hackage packages (all of Hackage or a sample thereof), we can
compute the measurements of §2.

4. Methodology
We address the research question through the following methodol-
ogy. Figure 1 gives an overview.

• Download Hackage packages. We may need to trade scalability
for completeness; see the actual selection of packages in the
case study (§5).

• For each package’s Cabal file, save these properties in the
database:

The package’s name and version number.

Which of all the packages under investigation it is allowed
to depend on according to the dependency constraints. Usu-
ally, multiple different minor and major versions are al-
lowed.

2 2014/9/8



Packages 1,578
Declarations 332,663
Symbols 36,603
Update scenarios 212,176

Minor 113,030
Allowed 113,000
Prohibited 30

Major 99,146
Allowed 77,418

Affected 40,479
Unaffected 36,939

Prohibited 21,728
Affected 16,354
Unaffected 5,374

Figure 2. Measurement results of the case study.

An immediate next version, if it exists, together with the
status whether it differs in the major version part. From the
immediate next versions we can generate all updates. We are
primarily interested in major updates, but the minor updates
are interesting for validating the methodology.

• Attempt to install every package.
• Run the HackPackUp processor instead of the regular com-

piler:

Preprocess and parse to get the abstract syntax tree (AST).

Resolve names to annotate every symbol occurrence in the
AST with its origin.

Save properties of each declaration in a database:

− Source code

− Genre

− Declared symbols

− Referenced symbols
• Run measurements (§2) against that database.

5. Case study
While the initial goal was to analyze all of Hackage, for scalability
reasons, we had to choose some segment of Hackage. Without such
selection, we would have to exercise too many dependencies and
validate too many results. We looked for a list of packages that
share many dependencies to minimize the number of packages we
have to process. Stackage is a Haskell package repository with
fewer packages than Hackage has. It is also complete in the sense
that all dependencies of all its packages are included in it. We got
the list of packages from Stackage and took all versions of all those
packages from Hackage.

Table 2 lists number of entities resulting from fact extraction
and storage in the database (§3 and §4).

We computed 212,176 update scenarios from our data. An up-
date scenario consists of three parts: A package, a dependency of
that package that satisfies the constraints and any later version of
that dependency. In 113,030 of these update scenarios the update
does not involve a major version change which means they should
not be prohibited and indeed only 30 are. The other 99,146 update
scenarios involve a major update. In 21,728 of these the version of
the later dependency does not satisfy the constraints anymore. This
means they are prohibited by an upper version bound.

We find that in 5,404 of the prohibited update scenarios the
update does not affect the package and are therefore unnecessarily
prohibited. We conclude this because none of the symbols the

package requires from the first version of its dependency are absent
or different in the second. If on the other hand we look at the
77,418 major update scenarios that are allowed we find that in
40,479 of those the update does indeed remove or alter at least one
of the symbols required by the package. This could mean that the
upper version bounds are wrong or missing. This could also mean
that there are backwards compatible changes to parts of a package
and backwards incompatible changes to another part requiring the
update to be classified as major. We plan to investigate this problem
in future work.

Besides the fact that we have only taken a sample of Hackage
there are other threats to validity. Not all packages of the sample
can be processed with HackPackUp. We use haskell-src-exts3 for
parsing and haskell-names4 for name resolution. Most packages are
only tested to work with GHC and make implicit assumptions about
preprocessor flags, language extensions and builtin modules and
therefore are not immediately parseable or some symbols fail to be
resolved. We do not consider the base package as a dependency be-
cause it is a dependency of almost every package and for simplicity
we only have one version and no information about the declarations
of base available. We currently ignore type class instances because
their resolution is out of scope of our tool.

At the time of writing, we are working on validating our classi-
fication of the update scenarios as unnecessarily prohibited. To this
end, we need to install the packages with the varying dependencies.
This proves difficult because of the number of installs and the time
they take to build, especially in the view of a clean state needed for
each test install.

In summary we can say that we indeed have found a significant
number of cases where an update scenario is prohibited while
the update would not affect the package. We have found, to our
surprise, that in many update scenarios a major update does affect
the package while it is still allowed. This observation calls for
future work.

References
[1] N. Bezirgiannis, J. Jeuring, and S. Leather. Usage of generic program-

ming on hackage: Experience report. In Proceedings of the 9th ACM
SIGPLAN Workshop on Generic Programming, WGP ’13, pages 47–52.
ACM, 2013.

[2] J. Buckley, T. Mens, M. Zenger, A. Rashid, and G. Kniesel. Towards a
taxonomy of software change: Research articles. J. Softw. Maint. Evol.,
17(5):309–332, Sept. 2005.

[3] G. Canfora and L. Cerulo. Fine grained indexing of software repos-
itories to support impact analysis. In Proceedings of the 2006 Inter-
national Workshop on Mining Software Repositories, MSR ’06, pages
105–111. ACM, 2006.

[4] H. Kagdi, M. L. Collard, and J. I. Maletic. A survey and taxonomy of
approaches for mining software repositories in the context of software
evolution. J. Softw. Maint. Evol., 19(2):77–131, Mar. 2007.

[5] B. Li, X. Sun, H. Leung, and S. Zhang. A survey of code-based change
impact analysis techniques. Softw. Test., Verif. Reliab., 23(8):613–646,
2013.

3 http://hackage.haskell.org/package/haskell-src-exts
4 http://hackage.haskell.org/package/haskell-names

3 2014/9/8

http://hackage.haskell.org/package/haskell-src-exts
http://hackage.haskell.org/package/haskell-names

	Motivation
	Research question
	Fact extraction model
	Methodology
	Case study

