
Editlets: type based client side editors for iTasks

László Domoszlai
Radboud University Nijmegen, Netherlands, ICIS,

MBSD
dlacko@gmail.com

Bas Lijnse Rinus Plasmeijer
Radboud University Nijmegen, Netherlands, ICIS,

MBSD
b.lijnse@cs.ru.nl,rinus@cs.ru.nl

Abstract
The iTask framework is for the construction of distributed systems
where users work together on the internet. It offers a domain spe-
cific language for defining applications, embedded into the lazy
functional language Clean. From the mere declarative specification
a complete multi-user web application is generated. Although the
generated nature of the user interface entails a number of benefits
for the programmer, it suffers from the lack of possibility to cre-
ate custom UI building blocks. In a precursory work we proposed
tasklets for the development of custom, interactive web compo-
nents. However, as tasklets are implemented as a computational el-
ement, a task, they lack some fundamental properties limiting their
usability; these are compositionality and the capability of two-way
communication between the clients and the server. In this paper,
we introduce editlets to overcome these limitations. In addition,
editlets also provide a general way to communicate in edits instead
of exchanging the whole data; it does not just help with reducing
the communication cost, but also enables multiple clients to work
on the same shared data with minimizing the risk of conflicting up-
dates.

1. Introduction
Task Oriented Programming [5, 7] (TOP) is a paradigm that is
designed to construct multi-user, distributed, web-applications. The
iTask system [6] (iTasks) is a TOP framework that offers a domain
specific language embedded in the pure, lazy functional language
Clean.

According to the TOP paradigm, the unit of application logic is
a task. Tasks are abstract descriptions of interactive persistent units
of work that have a typed value. When a task is executed, it has
an opaque persistent value, which can be observed by other tasks
in a controlled way. In iTasks, complex multi-user interactions can
be programmed in a declarative style just by defining the tasks that
have to be accomplished. The specification of the tasks is given by
a domain specific language (DSL). Furthermore, the specification
is given on a very high level of abstraction and does not require
the programmer to provide any user interface definition. Merely by
defining the workflow of user interaction, a complete multi-user
web application is generated, all the details e.g. the generation of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IFL ’14, October 1–3, 2014, Boston, Massachusetts, US.
Copyright c© 2014 ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

web user interface, client-server communication, state management
etc. are automatically taken care of by the framework itself.

The iTask system uses generic programming [1, 4] and a hybrid
static-dynamic type system [8, 9] to generate the user interface.
From the programmers perspective, it is achieved in two levels. In
the most basic level, the iTasks engine can be asked to generate user
interface for any conceivable first order model type. iTasks uses a
predefined set of primitive user interface elements to generate the
GUI, a client side editor, for the given type, then dynamically cre-
ates an associated primitive task. On the higher level, additional
user interface elements are generated as tasks are combined to-
gether. These elements reflect the actual combinators in use and
express the ”flow” of the application.

Developing web applications such a way is straightforward in
the sense that the programmers are liberated from these cumber-
some and error-prone jobs, such that they can concentrate on the
essence of the application. The iTask system makes it very easy to
develop interactive multi-user applications. The down side is that
one has only limited control over the customization of the gener-
ated user interface. In real world applications, it is often necessary
to develop custom user interface elements to achieve special func-
tionality.

To overcome this limitation, in a previous work we introduced
tasklets [2], a special primitive task type, for the development
of custom, interactive web components. Tasklets are written in
Clean and executed in a web browser using a Clean to JavaScript
compilation technique [3]. In the browser, they have unlimited
access to browser resources through some library functions while
on the server they behave like ordinary iTasks tasks.

Using tasklets, we have successfully developed many interac-
tive components for a wide range of applications, but we also expe-
rienced certain limitations of the technology. These are the follow-
ing:

1. Tasklets cannot work with shared data. As an example, it is not
possible to create an interactive map, and enable multiple users
to make concurrent modifications to that (e.g. add marks). This
limitation goes against the main principle of iTasks.

2. There is no way for two-way communication between the client
and the server part. Tasklets implement task interface which
enables the inspection of task values, the behavior of a task
cannot be influenced after its evaluation is started.

3. There is only limited compositionality at task level. Generated
editors cannot contain custom elements as they are primitive
tasks which cannot contain other tasks.

In this paper we rethought how to create interactive compo-
nents. We found that attaching the presentation logic to a type has
many advantages over our previous approach. The new type of in-
teractive elements are called editlets as they work on the lower ed-
itor level instead of task level as tasklets do. Editlets solve all the

aforementioned limitations while preserving compatibility: in the
most basic use cases they give back the functionality of tasklets.

Editlets also have the property that the client-server communi-
cation is done in edits, which means that the value of the editlet
is communicated through changes instead of exchanging the whole
value at every update. In certain cases it does not just reduces dras-
tically the communication cost (just think of a source code edi-
tor component), but also allows us to avoid update conflicts when
working on shared data.

In this paper we show how editlets can be defined, how they
work and interact with the other part of the iTask system. This is
done in a number of steps:

1. We extend iTask with editlets. An editlet consists of the type of
the value it holds, a type of the edits in use, a description of the
behavior of the component on the client side, and the logic of
creating and applying edits from and to its current value.

2. We develop a simple, but still realistic example of a drawing ap-
plications, where multiple people can work on the same image
on the same shared image to give a taste of editlets.

3. We explain the technical background of editles along with ad-
ditional remarks how they fit the iTasks architecture.

References
[1] A. Alimarine. Generic functional programming: conceptual design, im-

plementation and applications. PhD thesis, Institute for Computing and
Information Sciences, Radboud University Nijmegen, The Netherlands,
2005.

[2] L. Domoszlai and R. Plasmeijer. Tasklets: Client-side evaluation for
iTask3. In Domain specific languages, summer school, DSL’13, 2014.
Accepted for publication.

[3] L. Domoszlai, E. Bruël, and J. Jansen. Implement-
ing a non-strict purely functional language in JavaScript.
Acta Universitatis Sapientiae, 3:76–98, 2011. URL
http://www.acta.sapientia.ro/acta-info/C3-1/info31-4.pdf.

[4] R. Hinze. A new approach to generic functional programming. In
T. Reps, editor, Proceedings of the 27th International Symposium on
Principles of Programming Languages, POPL ’00, Boston, MA, USA,
pages 119–132. ACM Press, 2000.

[5] B. Lijnse. TOP to the Rescue – Task-Oriented Programming for Inci-
dent Response Applications. PhD thesis, Institute for Computing and
Information Sciences, Radboud University Nijmegen, The Netherlands
, 2013. ISBN 978-90-820259-0-3.

[6] R. Plasmeijer, P. Achten, P. Koopman, B. Lijnse, T. Van Noort, and
J. Van Groningen. iTasks for a change: Type-safe run-time change in
dynamically evolving workflows. In PEPM ’11 : Proceedings Work-
shop on Partial Evaluation and Program Manipulation, PEPM ’11,
Austin, TX, USA, pages 151–160, New York, 2011. ACM.

[7] R. Plasmeijer, B. Lijnse, S. Michels, P. Achten, and P. Koopman. Task-
Oriented Programming in a Pure Functional Language. In Proceedings
of the 2012 ACM SIGPLAN International Conference on Principles
and Practice of Declarative Programming, PPDP ’12, pages 195–206,
Leuven, Belgium, Sept. 2012. ACM. ISBN 978-1-4503-1522-7.

[8] T. van Noort. Dynamic Typing in Type-Driven Programming. PhD
thesis, Institute for Computing and Information Sciences, Radboud
University Nijmegen, The Netherlands , May 2012. ISBN 978-94-
6108-279-4.

[9] A. v. Weelden. Putting types to good use. PhD thesis, Institute for
Computing and Information Sciences, Radboud University Nijmegen,
The Netherlands, Oct. 17, 2007.

