Project H: Programming R in Haskell
PRELIMINARY DRAFT

Mathieu Boespflug ~ Facundo Dominguez
Alexander Vershilov

Tweag 1/0

Abstract

A standard method for augmenting the “native” set of libraries
available within any given programming environment is to extend
this set via a foreign function interface provided by the program-
ming language. In this way, by exporting the functionality of ex-
ternal libraries via binding modules, one is able to reuse libraries
without having to reimplement them in the language du jour.

However, a priori bindings of entire system libraries is a te-
dious process that quickly creates an unbearable maintenance bur-
den. We demonstrate an alternative to monolithic and imposing
binding modules, even to make use of libraries implemented in
a special-purpose, dynamically typed, interpreted language. As a
case study, we present H, an R-to-Haskell interoperability solution
making it possible to program all of R, including all library pack-
ages on CRAN, from Haskell, a general-purpose, statically typed,
compiled language. We demonstrate how to do so efficiently, with-
out marshalling costs when crossing language boundaries and with
static guarantees of well-formation of expressions and safe acqui-
sition of foreign language resources.

Keywords R, Haskell, foreign function interface, quasiquotation,
language embedding, memory regions

1. Introduction

The success or failure in the industry of a programming language
within a particular problem domain is often predicated upon the
availability of a sufficiently plethoric set of good quality libraries
relevant to the domain. Libraries enable code reuse, which ulti-
mately leads to shorter development cycles. Yet business and regu-
latory constraints may impose orthogonal requirements that not all
programming languages are able to satisfy.

Case in point: at Amgen, we operate within a stringent regula-
tory environment that requires us to establish high confidence as to
the correctness of the software that we create. In life sciences, it is
crucial that we aggressively minimize the risk that any bug in our
code, which could lead to numerical, logical or modelling errors
with tragic consequences, goes undetected.

[Copyright notice will appear here once ’preprint’ option is removed.]

Allen Brown

Amgen

We present a method to make available any foreign library
without the overheads typically associated with more traditional
approaches. Our goal is to allow for the seamless integration of
R with Haskell — invoking R functions on Haskell data and vice
versa.

Foreign Function Interfaces The complexity of modern soft-
ware environments makes it all but essential to interoperate soft-
ware components implemented in different programming lan-
guages. Most high-level programming languages today include
a foreign function interface (FFI), which allows interfacing with
lower-level programming languages to get access to existing sys-
tem and/or purpose-specific libraries [2, 9]. An FFI allows the
programmer to give enough information to the compiler of the host
language to figure out how to invoke a foreign function included as
part of a foreign library, and how to marshal arguments to the func-
tion in a form that the foreign function expects. This information is
typically given as a set of bindings, one for each function, as in the
example below:

{-# LANGUAGE ForeignFunctionInterface #-}
module Examplel (getTime) where
import Foreign
import Foreign.C

#include <time.h>

data TimeSpec = TimeSpec
{'seconds it Int64
,nanoseconds :: Int32

}

foreign import ccall ”clock_gettime”
c_clock_gettime :: Clockld — Ptr TimeSpec — 10 Clnt

getTime :: Clockld — 10 TimeSpec
getTime cid = alloca $ M\ts.do
throwErrnolfMinusl_ " getTime” $
c_clock_gettime cid ts
peek ts

In the above, c_clock_gettime is a binding to the clock_gettime ()
C function. The API conventions of C functions are often quite dif-
ferent from that of the host language, so that it is convenient to ex-
port the wrapper function getTime rather than the binding directly.
The wrapper function takes care of converting from C representa-
tions of arguments to values of user defined data types (performed
by the peek function, not shown), as well as mapping any foreign
language error condition to a host language exception.

Binding generators These bindings are tedious and error prone to
write, verbose, hard to read and a pain to maintain as the API of the
underlying library shifts over time. To ease the pain, over the years,

2014/9/8

binding generators have appeared [1], in the form of pre-processors
that can parse C header files and automate the construction of
binding wrapper functions and argument marshalling. However,
these tools:

1. do not alleviate the need for the programmer to repeat in the
host language the type of the foreign function;

2. add yet more complexity to the compilation pipeline;

3. being textual pre-processors, generate code that is hard to de-
bug;
4. are necessarily limited in terms of the fragments of the source

language they understand and the types they can handle, or
repeat the complexity of the compiler to parse the source code.

Point (1) above is particularly problematic, because function signa-
tures in many foreign libraries have a knack for evolving over time,
meaning that bindings invariably lag behind the upstream foreign
libraries in terms of both the versions they support, and the number
of functions they bind to.

Moreover, such binding generators are language specific, since
they rely on intimate knowledge of the foreign language in which
the foreign functions are available. In our case, the foreign language
is R, which none of the existing binding generators support. We
would have to implement our own binding generator to alleviate
some of the burden of working with an FFI. But even with such a
tool in hand, the tedium of writing bindings for all standard library
functions of R, let alone all functions in all CRAN packages, is but
a mildly exciting prospect. One would need to define a monolithic
set of bindings (i.e. a binding module), for each R package. Because
we cannot anticipate exactly which functions a user will need, we
would have little recourse but to make these bindings as exhaustive
as possible.

Rather than bind all of R, the alternative is to embed all of R.
Noting that GHC flavoured Haskell is a capable meta-programming
environment, the idea is to define code generators which, at each
call site, generates code to invoke the right R function and pass
arguments to it using the calling convention that it expects. In
this way, there is no need for a priori bindings to all functions.
Instead, it is the code generator that produces code spelling out
to the compiler exactly how to perform the R function call — no
binding necessary.

It just so happens that the source language for these code gen-
erators is R itself. In this way, users of H may express invoca-
tion of an R function using the full set of syntactical conveniences
that R provides (named arguments, variadic functions, etc.), or in-
deed write arbitrary R expressions. R has its own equivalent to
clock_gettime (), called Sys.time (). With an embedding of R
in this fashion, calling it is as simple as:

printCurrentTime = do
now < [r| Sys.time () |

putStrLn ("The current time is: " -4 fromSEXP now)

The key syntactical device here is quasiquotes [7], which allow
mixing code fragments with different syntax in the same source file
— anything within an [r| ...] pair of brackets is to be understood
as R syntax.

Contributions In this paper, we advocate for a novel approach
to programming with foreign libraries, and illustrate this approach
with the first complete, high-performance tool to access all of R
from a statically typed, compiled language. We highlight the dif-
ficulties of mixing and matching two garbage collected languages
that know nothing about each other, and how to surmount them by
bringing together existing techniques in the literature for safe mem-
ory management [6]. Finally, we show how to allow optionally as-

cribing precise types to R functions, as a form of compiler-checked
documentation and to offer better safety guarantees.

Outline The paper is organized as follows. We will first walk
through typical uses of H, before presenting its overall architecture
(Section 2). We delve into a number of special topics in later
sections, covering how to represent foreign values efficiently in a
way that still allows for pattern matching (Section 3.1), optional
static typing of dynamically typed foreign values (Section 3.2),
creating R values from Haskell (Section 3.3) and efficient memory
management in the presence of two separately managed heaps with
objects pointing to arbitrary other objects in either heaps (Section
3.4). We conclude with a discussion of the overheads of cross
language communication (Section 4) and an overview of related
work (Section 5).

2. H walkthrough and overall architecture
2.1 Foreign values

Foreign functions act on values, for which presumably these for-
eign functions know the representation in order to compute with
them. In the specific case of R, all values share a common struc-
ture. Internally, R represents every entity that it manipulates, be
they scalars, vectors, uninterpreted term expressions, functions or
external resources such as sockets, as pointers to a SEXPREC struc-
ture, defined in C as follows:

typedef struct SEXPREC {
SEXPREC_HEADER;
union {
struct primsxp_struct primsxp;
struct symsxp_struct symsxp;
struct listsxp_struct listsxp;
struct envsxp_struct envsxp;
struct closxp_struct closxp;
struct promsxp_struct promsxp;
}ou;
} SEXPREC, #*SEXP;

Each variant of the union struct corresponds to a different form
of value. However, no matter the form, all values at least share
the same header (called SEXPREC_HEADER). The type of pointers
to SEXPRECs is abbreviated as SEXP. In order to invoke functions
defined in R then, we simply need a way to construct the right
SEXPREC representing that invocation, and then have R interpret
that invocation. We will cover how to do so in Section 2.2, but for
now we do need to define in Haskell what a SEXP is:

data SEXPREC
type SEXP = Ptr SEXPREC

2.2 Interoperating scripting languages

R source code is organized as a set of scripts, which are loaded
one by one into the R interpreter. Each statement in a each script
is evaluated in-order and affects the global environment maintained
by the R interpreter, which maps symbols to values. In its simplest
form, H is an interactive environment much like R, with a global
environment altered by the in-order evaluation of statements.

The central and most general mechanism by which H allows
interoperating with R is quasiquotation. A quasiquote is a partial R
script — that is, a script with “holes” in it that stand in for as of yet
undetermined portions. An example quasiquote in Haskell of an R
snippet is:

[r| function(x) x + 1]

This quasiquote is ground, in that it does not contain any holes
(called antiquotes), but one can also antiquote inside a quasiquote:

2014/9/8

20 40 60 80 100
o

0
|
o

T T T T T
2 4 6 8 10

c(1, 4,9, 16, 25, 36, 49, 64, 81, 100)

c(1,2,3,4,5,6,7,8,9, 10)

Figure 1. Output of [r| plot (xs_hs, ys_hs)]. The data is gen-
erated from Haskell. R draws the plot.

let y = mkSEXP 1
in [r| function(x) x + y_hs |

By convention, any symbol with a _hs suffix is treated specially
(see Section 2.5). It is interpreted as a reference to a Haskell
variable defined somewhere in the ambient source code. That is,
any occurrence of a symbol of the form x_hs does not denote a
variable of the object language — it is an antiquote referring to
variable x in the host language. Given any quasiquote, it is possible
to obtain a full R script, with no holes in it, by splicing the value of
the Haskell variables into the quasiquote, in place of the antiquotes.

At a high-level, H is a desugarer for quasiquotes implemented
on top of a Haskell interactive environment, such as GHCi [4]. It
defines how to translate a quasiquotation into a Haskell expression.
Just as R includes an interactive environment, H includes an inter-
active environment, where the input is a sequence of Haskell ex-
pressions including quasiquoted R code snippets, such as in the
following session, where we plot part of the quadratic function, di-
rectly from the Haskell interactive prompt:

H) let zs = [1..10]:: [Double]

H) let ys = [2? | z < 5]

H) result < [r| as.character(ys_hs) |

H) H.print result

[1] l|1|| |l4|| “9" 'l16|l l|25|| l|36|| ll49|| ll64|| -
H) [r| plot(xs_hs, ys_hs) |

(graphic output (See Figure 1))

Now say that we are given a set of random points, roughly
fitted by some non-linear model. For the sake of example, we can
use points generated at random along a non-linear curve by the
following Haskell function:

import System.Random.MWC
import System.Random.MWC.Distributions
generate :: Int32 — 10 Double
generate ix =
withSystemRandom o asGenlO $ A\gen.
let r = (z — 10) * (z — 20) * (z — 40) * (z — 70)
+ 28 x z * (log)
in do v < standard gen
return $rx (1 + 0.15 % v)
where = = fromlntegral ix

As before, take a set of coordinates:

H) [r| xs <= c(1:100)]
H) [r|] ys <- mapply(generate_hsfun, xs) |

1.2e+07

ys
6.0e+06

0.0e+00

1:100

Figure 2. Fitting polynomial models of increasing degree (n =
{2,3,4}) to a set of points in Haskell. R fits the models.

generate_hsfun is a function splice — just like any other splice,
except that the spliced value is higher-order, i.e. a function. R’s
mapply () applies the Haskell function to each element of xs,
yielding the list ys.

Our goal is to ask R to compute estimates of the parameters
of polynomial models of increasing degree, with models of higher
degree having a higher chance of fitting our dataset well. The R
standard library provides the nls () function to compute the non-
linear least-squares estimate of the parameters of the model. For
example, we can try to fit a model expressing the relation between
ys to xs as a polynomial of degree 3:

H) [r]| P3 <= ys ~ a3*xs**3 + al2+xs**2 + al*xs + a0 |
H) [r| initialPoints <- list(a0=1,al=1,a2=1,a3=1) |
H) [r| model3 <- nls(P3, start=initialPoints) |

As the degree of the model increases, the residual sum-of-squares
decreases, to the point where in the end we can find a polynomial
that fits the dataset rather well, as depicted in Figure 2, produced
with the following code:

[r| pLot(xs,ys)]

(graphic output (See Figure 2))

[r| lines(xs,predict(model2), col =
[r| lines(xs,predict (modell), col |
[r| 1ines(xs,predict (model4), col = 4)]

]
w N
NN

2.3 Scripting from compiled modules

While an interactive prompt is extremely useful for exploratory
programming, writing a program as a sequence of inputs for a
prompt is a very imperative style of programming with limited
abstraction facilities. Fortuntaly, H is also a library. Importing the
library brings in scope the necessary definitions in order to embed
quasiquotes such as the above in modules of a compiled program.
Behind the scenes, the H library hosts an embedded instance
of the R interpreter, available at runtime. As in the interactive
environment, this embedded instance is stateful. It is possible to
mutate the global environment maintained by the interpreter, say
by introducing a new top-level definition. Therefore, interaction
with this embedded instance must be sequential. In order to enforce
sequential access to the interpreter, we introduce the R monad and
make all code that ultimately calls into the interpreter actions of

2014/9/8

the R monad. As a first approximation, the R monad is a simple
wrapper around the IO monad (but see Section 3.4)".

newtype R a =R (10 a)
withEmbeddedR:: R a — 10 a

withEmbeddedR first spawns an embedded instance, runs the pro-
vided action, then finalizes the embedded instance. There is no
other way to run the R monad.

2.4 Rationale

R is a very dynamic language, allowing many code modifications
during runtime, such as rebinding of top-level definitions, super as-
signment (modifying bindings in parent scopes), (quasi-)quotation
and evaluation of expressions constructed dynamically. The R pro-
gramming language is also so-called “latently typed” - types are
checked during execution of the code, not ahead of time. Many of
these features are not compiler friendly.

Haskell, by contrast, is designed to be much easier to compile.
This means that not all R constructs and primitives can be readily
mapped to statically generated Haskell code with decent perfor-
mance. In particular, top-level definitions in Haskell are never dy-
namically rebound at runtime: a known function call is hence often
a direct jump, rather than incurring a dynamic lookup in a symbol
table (the environment).

Much of the dynamic flavour of R likely stems from the fact
that it is a scripting language. The content of a script is meant to be
evaluated in sequential order in an interactive R prompt. The effect
of loading multiple R scripts at the prompt is in general different
depending on the order of the scripts.

Central to the design of Haskell, by contrast, is the notion of
separately compilable units of code, called modules. Modules can
be compiled separately and in any order (provided some amount of
metadata about dependencies). Contrary to R scripts, the order in
which modules are loaded into memory is non-deterministic.

For this reason, in keeping to a simple solution to interoperat-
ing with R, we choose to devolve as much processing of R code as
possible to an embedded instance of the R interpreter and retain the
notion of global environment that R provides. This global environ-
ment can readily be manipulated from an interactive environment
such as GHCi [4]. In compiled modules, access to the environment
as well as encapsulation of any effects can be mediated through a
custom monad, the R monad presented in Section 2.3.

2.5 Runtime reconstruction of expressions

Quasiquotes are purely syntactic sugar that are expanded at compile
time. They have no existence at runtime. A quasiquote stands for
an R expression, which at runtime we therefore have to reconstruct.
In other words, the expansion of a quasiquote is code that generates
an R expression. For a ground quasiquote whose content is R
expression S, we construct a Haskell expression E, such that

R_Parse(S) = E.

This law falls out as a special case of a more general law about
antiquotation: for any substitution ¢ instantiating each antiquoted
variable in .S with some SEXP, we should have that

R_Parse(S)o = Eo.

That is, the abstract syntax tree (AST) constructed at runtime (right
hand side) should be equivalent to that returned by R_parse () at
compile time (left hand side). The easiest way to ensure this prop-
erty is to simply use the R parser itself to identify what AST we

I This definition does not guarantee that R actions will only be executed
when the associated R interpreter instance is extant. See Section 3.4 for a
fix.

need to build. Fortunately, R does export its parser as a standalone
function, making this possible. Note that we only call the parser at
compile time — reconstructing the AST at runtime programmati-
cally is much faster than parsing.

The upside of reusing R’s parser when expanding quasiquotes
is that we get support for all of R’s syntax, for free, and avoid a
potential source of bugs. The flipside is that we cannot reliably
extend R’s syntax with meta-syntactic constructs for antiquotation.
We must fit within R’s existing syntax. It is for this reason that
antiquotation does not have a dedicated syntax, but instead usurps
the syntax of regular R variables.

3. Special topics
3.1 A native view of foreign values

Programming across two languages typically involves a tradeoff:
one can try shipping off an entire dataset and invoking a foreign
function that does all the processing in one go, or keep as much of
the logic in the host language and only call into foreign functions
punctually. For example, mapping an R function frobnicate()
over a list of elements might be done entirely in R, on the whole
list at once,

H) ys < [r| mapply (frobnicate, xs_hs) |
or elementwise, driven from Haskell,
H) ys + mapM (Az. [r| frobnicate(x_hs) |) zs

The latter style is often desirable — the more code can be kept in
Haskell the safer, because more code can be type checked statically.

The bane of language interoperability is the perceived cost of
crossing the border between one language to another during exe-
cution. Any significant overhead incurred in passing arguments to
a foreign function and transferring control to it discourages tightly
integrated programs where foreign functions are called frequently,
such as in the last line above. Much of this cost is due to marshalling
values from the native representation of data, to the foreign repre-
sentation, and back.

By default, and in order to avoid having to pay marshalling
and unmarshalling costs for each argument every time one in-
vokes an internal R function, we represent R values in exactly
the same way R does, as a pointer to a SEXPREC structure (de-
fined in R/Rinternals.h). This choice has a downside, however:
Haskell’s pattern matching facilities are not immediately available,
since only algebraic datatypes can be pattern matched.

HExp is R’s SEXP (or *SEXPREC) structure represented as
a (generalized) algebraic datatype. Each SEXPREC comes with a

“type” tag the uniquely identifies the layout (one of primsxp_struct,

symsxp_struct, efc. as seen in Section 2.1). See Figure 3 for an
excerpt of the R documentation enumerating all possible type tags®.
A simplified definition of HExp would go along the lines of Fig-
ure 4. Notice that for each tag in Figure 3, there is a corresponding
constructor in Figure 4.

For the sake of efficiency, we do not use HExp as the basic
datatype that all H generated code expects. That is, we do not
use HExp as the universe of R expressions, merely as a view. We
introduce the following view function to locally convert to a HExp,
given a SEXP from R.

hexp :: SEXP — HExp

The fact that this conversion is local is crucial for good performance
of the translated code. It means that conversion happens at each use
site, and happens against values with a statically known form. Thus
we expect that the view function can usually be inlined, and the

2In R 3.1.0, there are 23 possible tags.

2014/9/8

NILSXP There is only one object of type NILSXP, R_NilValue,
with no data.

SYMSXP Pointers to the PRINTNAME (a CHARSXP), SYMVALUE and
INTERNAL. (If the symbol’s value is a . Internal function, the
last is a pointer to the appropriate SEXPREC.) Many symbols
have the symbol value set to R_UnboundValue.

LISTSXP Pointers to the CAR, CDR (usually a LISTSXP or NILSXP)
and TAG (a SYMSXP or NILSXP).

CHARSXP LENGTH, TRUELENGTH followed by a block of bytes
(allowing for the nul terminator).

REALSXP LENGTH, TRUELENGTH followed by a block of C dou-
bles.

Figure 3. Extract from the R documentation enumerating all the
different forms that values can take.

short-lived HExp values that it creates is compiled away by code
simplification rules applied by GHC. Notice how HExp as defined
in Figure 4 is a shallow view — the fields of each constructor are
untranslated SEXP’s, not HExp’s. In other words, a HExp value
corresponds to the one-level unfolding of a SEXP as an algebraic
datatype. The fact that HExp is not a recursive datatype is crucial
for performance. It means that the hexp view function can be
defined non-recursively, and hence is a candidate for inlining®.

In this manner, we get the convenience of pattern matching
that comes with a bona fide algebraic datatype, but without paying
the penalty of allocating long-lived data structures that need to be
converted to and from R internals every time we invoke internal R
functions or C extension functions.

Using an algebraic datatype for viewing R internal functions
further has the advantage that invariants about these structures
can readily be checked and enforced, including invariants that R
itself does not check for (e.g. that types that are special forms of
the list type really do have the right number of elements). The
algebraic type statically guarantees that no ill-formed type will ever
be constructed on the Haskell side and passed to R.

We also define an inverse of the view function:

unhexp :: HExp — SEXP

3.2 “Types” for R
3.2.1 Of types, classes or forms

Haskell is a statically typed language, whereas R is a dynamically
typed language. However, this apparent mismatch does not cause
any particular problem in practice. This is because the distinction
between statically typed” languages and “dynamically typed” lan-
guages is largely artificial, stemming from the conflation of two
distinct concepts: that of a class and that of a type [5].

The prototypical example of a type with multiple classes of
values is that of complex numbers. There is one type of complex
numbers, but rwo (interchangeable) classes of complex numbers:
those in rectangular coordinates and those in polar coordinates.
Both classes represent values of the same type. Harper further
points out:

Crucially, the distinction between the two classes of
complex number is dynamic in that a given computation
may result in a number of either class, according to conve-
nience or convention. A program may test whether a com-
plex number is in polar or rectangular form, and we can

3 The GHC optimizer never inlines recursive functions.

data HExp
= Nil -- NILSXP
| Symbol SEXP SEXP SEXP -- SYMSXP
| List SEXP SEXP SEXP -- LISTSXP
| Char Int32 (Vector Word8) -- CHARSXP
| Real Int32 (Vector Double) -- REALSXP

Figure 4. Untyped HExp view.

form data structures such as sets of complex numbers in
which individual elements can be of either form.

Hence what R calls "types” are better thought of as “’classes” in
the above sense. They correspond to variants (or constructors) of a
single type in the Haskell sense. R is really a unityped language.

We call the type of all the classes that exist in R the universe
(See Section 3.1). Each variant of the union field in the SEXPREC
structure defined in Section 2.1 corresponds to a class in the above
sense. The SEXPREC structure is the universe.

Because “class” is already an overloaded term in both R and in
Haskell, in the following we use the term form to refer to what the
above calls a "class”.

Some R functions expect a large number of arguments. It is
not always clear what the usage of those functions is. It is all
too easy to pass a value of the wrong form as an argument, or
provide too many arguments, or too few. R itself cannot detect such
conditions until runtime, nor is it practical to create a static analysis
for R to detect them earlier, given the permissive semantics of the
language. However, some information about the expected forms
for arguments is given in R’s documentation for practically every
function in the standard library. It is often useful to encode that
information from the documentation in machine checkable form,
in such a way that the Haskell compiler can bring to bear its own
existing static analyses to check for mismatches between formal
parameters and actual arguments.

3.2.2 Form indexed values

To this end, in H we have form indexed SEXPs. The actual defini-
tion of a SEXP in H is:

newtype SEXP s (a :: SEXPTYPE)
= SEXP (PTR SEXPREC)

The a parameter refers to the form of a SEXP (See Section 3.4
for the meaning of the s type parameter). In this way, a SEXP
of form REALSXP (meaning a vector of reals), can be ascribed the
type SEXP s R.Real, distinct from SEXP s R.Closure, the type
of closures. These types are all of kind SEXPTYPE, a datatype
promoted to a kind*. Each inhabitant of the SEXPTYPE kind
corresponds to a type tag as seen in Figure 3.

When some given function is used frequently throughout the
code, it is sometimes useful to introduce a wrapper for it in Haskell,
ascribing to it a particular type. For example, the function that
parses source files can be written as’:

import qualified Foreign.R.Type as R

parse :: SEXP s 'R.String -- Filename of source
— SEXP s 'R.Int -- Number of expressions to parse
— SEXP s 'R.String -- Source text

4 Using GHC’s -XDataKind language extension.

5The’ is an artifact of the ~-XDataKinds extension, useful for disambigua-
tion. It is not strictly necessary, but it is good practice to use it.

2014/9/8

— R s (SEXP s 'R.Expr)
parse file n txt = [r| parse(file_hs, n_hs, txt_hs) |

Now that we have a Haskell function for parsing R source files, with
a Haskell type signature, the Haskell compiler can check that all
calls to parse () are well-formed. We found this feature immensely
useful to document in the source code itself how to call various R
functions, without having to constantly look up this information in
the R documentation.

Of course, while form indexing SEXP can in practice be a
useful enough surrogate for a real type system, it does not replace
a real type system. A reasonable property for any adequate type
system is type preservation, also called subject reduction. That is,
we ought to have that:

II'FM:Tand M | Vthen'FV : T

where M is an expression, 7" is a type and V' is the value of M. The
crude form of indexing presented here does not enjoy this property.
In particular, given some arbitrary expression, in general the form
of the value of this expression is unknown. We have the following
type of SEXP’s of unknown form:

data SomeSEXP s = Va.SomeSEXP (SEXP s a)

Because the form of a value is in general unknown, the type of eval
is:

eval :: SEXP s a — R s (SomeSEXP s)

That is, for any SEXP of any form a, the result is a SEXP of some
(unknown) form.

3.2.3 Casts and coercions

SEXP’s of unknown form aren’t terribly useful. For example, they
cannot be passed as-is to the successor function on integers, defined
as:

succ :: SEXP s 'R.Int — R s SomeSEXP
succz = [r x_hs + 1]
Therefore, H provides casting functions, which introduce a dy-

namic form check. The user is allowed to coerce the type in Haskell
of a SEXP given that the dynamic check passes. cast is defined as:

cast :: SSEXPTYPE a — SomeSEXP s — SEXP s a
castty s
| fromSing ty = R.typeOf s = unsafeCoerce s

| otherwise = error "cast: Dynamic type cast failed."

where SSEXPTYPE is a singleton type reflecting at the type level
the value of the first argument of cast. The use of a singleton type
here allows us to to write a precise specification for cast: that the
type of the return value is not just any type, but uniquely determined
by the value of the first argument ty.

Now, [[r] 1 + 1] stands for the value of the R expression
“1 + 1”. Thatis,

two=[r|1 + 1] :: SomeSEXP s
In order to compute the successor of two, we need to cast the result:

three :: R s SomeSEXP
three = succ (two ‘cast‘ R.Int)

3.3 R values are (usually) vectors

An idiosyncratic feature of R is that scalars and vectors are treated
uniformly, and in fact represented uniformly. This means that pro-
vided an interface to manipulate vectors alone, we can handle all
scalars as well as all vectors. H exports a library of vector manipula-
tion routines, that mirrors the API of the standard vector package.

The advantage of keeping data represented as R vectors throughout
a program is that no marshalling or unmarshalling costs need be in-
curred when passing the data to an R function. Because we provide
the exact same API as for any other (non-R) vector representations,
it is just as easy to manipulate R vectors instead, throughout.

3.4 Memory management

One tricky aspect of bridging two languages with automatic mem-
ory management such as R and Haskell is that we must be careful
that the garbage collectors (GC) of both languages see eye-to-eye.
The embedded R instance manages objects in its own heap, sepa-
rate from the heap that the GHC runtime manages. However, ob-
jects from one heap can reference objects in the other heap and the
other way around. This can make garbage collection unsafe because
neither GC has a global view of the object graph, only a partial view
corresponding to the objects in the heaps of each GC.

3.4.1 Memory protection

Fortunately, R provides a mechanism to “protect” objects from
garbage collection until they are unprotected. We can use this
mechanism to prevent R’s GC from deallocating objects that are
still referenced by at least one object in the Haskell heap.

One particular difficulty with protection is that one must not
forget to unprotect objects that have been protected, in order to
avoid memory leaks. H uses “regions” for pinning an object in
memory and guaranteeing unprotection when the control flow exits
a region.

3.4.2 Memory regions

There is currently one global region for R values, but in the future
H will have support for multiple (nested) regions. A region is
opened with the runRegion action, which creates a new region and
executes the given action in the scope of that region. All allocation
of R values during the course of the execution of the given action
will happen within this new region. All such values will remain
protected (i.e. pinned in memory) within the region. Once the
action returns, all allocated R values are marked as deallocatable
garbage all at once.

runRegion :: (Vs.R s a) - 10 a

Regions are transactions, in that protection prevails during the
transaction and ceases after transaction closure.

3.4.3 Automatic memory management

Nested regions work well as a memory management discipline for
simple scenarios when the lifetime of an object can easily be made
to fit within nested scopes. For more complex scenarios, it is often
much easier to let memory be managed completely automatically,
though at the cost of some memory overhead and performance
penalty. H provides a mechanism to attach finalizers to R values.
This mechanism piggybacks Haskell’s GC to notify R’s GC when
it is safe to deallocate a value.

automatic :: MonadR m = R.SEXP s a — m (R.SEXP G a)

In this way, values may be deallocated far earlier than reaching the
end of a region: As soon as Haskell’s GC recognizes a value to no
longer be reachable, and if the R GC agrees, the value is prone to be
deallocated. Because automatic values have a lifetime independent
of the scope of the current region, they are tagged with the global
region G (a type synonym for GlobalRegion).

For example:

do z < [r| 1:1000]
y[r2]
return $ automatic [r| x_hs * y_hs |

2014/9/8

[o accessors 0 @ views
o o =
S 3 S
1 — - —
—_ [— = —
w2
g g
P o
E
g
Z 051 N
0 \
fib tree

Figure 5. Normalized comparison of runtimes between views and
accessor functions.

Automatic values can be mixed freely with other values.

4. Benchmarks

As explained in Section 3.1, there are essentially two ways to
deconstruct a SEXP value returned from R: using accessor function
provided by R’s C extension API, or construct a view of the SEXP
as an algebraic datatype and perform case analysis on that. The
latter approach is more convenient, but potentially slower, because
it nominally implies allocating a view data structure. However, as
argued in Section 3.1, through careful engineering of the view, we
expect the compiler to optimize away any extra allocation. In this
section, we test this hypothesis experimentally.

To compare the performance cost of using a view function,
we implement two micro benchmarks. The £ib benchmark mea-
sures the performance of a naive implementation in Haskell of
the Fibonacci series over R integers. Likewise, the tree bench-
mark concerns a binary tree traversal function implemented in
Haskell, where the tree is represented using generic R vectors. The
results® are provided in Figure 4. They were obtained using the
Criterion benchmarking tool [10] using the default settings on a
lightly loaded machine. Where the standard deviations are signifi-
cant (¢ 1%), we indicate them with error bars.

As expected, using a view does not significantly impact per-
formance. In fact, as can be seen in the tree benchmark, views
can even be faster than using accessor functions. The reason is
that a view function can be completely inlined, yielding code that
makes direct memory accesses to statically known offsets in mem-
ory, given a pointer to a SEXPREC structure. Accessors, on the
other hand, are C functions that are opaque to the compiler — they
cannot be inlined, meaning that the overhead of calling a C func-
tion, using the standard calling convention, must be incurred at each
field access.

5. Related Work
TODO

6. Conclusion

Given modern extensions to the Haskell programming language,
the language turns out to support surprisingly easy interoperability
with other languages, with opt-in static guarantees on what argu-
ments get passed to a function, but without the hassle of elabo-
rate bindings. The enabling ingredient here is the existence of a

6 Benchmarks available at http://github.com/tweag/H.

quasiquotation mechanism, which makes it easy to express calls
to foreign language functions in the foreign language itself, in a
way that matches up the foreign documentation for that function.
Many of the ideas in this paper can be transposed to any other func-
tional language provided an equivalent quasiquotation mechanism
exists (e.g. Camlp4 [8] or extension points in OCaml, or SML quo-
tation [11]). In a multistage language but without quasiquotation,
the strategy for avoiding marshalling costs would still apply, but
constructing foreign calls would likely turn out rather less conve-
nient.

Interacting with a latently typed language necessarily induces
some number of runtime checks. While foreign functions can be
selectively typed in the host language, this in practice requires a
pervasive use of casts and coercions. Casts are runtime checks that
have a cost, but moreover a cast failure is not very informative as
to why it happened. A future direction could include integrating a
notion of blame [3] into H, in order to better pinpoint the true cause
of a dynamic check failure.

References

[1] M. M. Chakravarty. C — HASKELL, or yet another interfacing
tool. In Implementation of Functional Languages, pages 131-148.
Springer, 2000.

[2] M. M. Chakravarty, S. Finne, F. Henderson, M. Kowalczyk, D. Leijen,
S. Marlow, E. Meijer, S. Panne, S. P. Jones, A. Reid, et al. The Haskell
98 foreign function interface 1.0. An Addendum to the Haskell Report.

[3] R. B. Findler and M. Felleisen. Contracts for higher-order functions.
In ACM SIGPLAN Notices, volume 37, pages 48—-59. ACM, 2002.

[4] GHC Team. The Glorious Glasgow Haskell Compilation System
User’s Guide, Version 7.8.3.

[5] R. Harper. Practical foundations for programming languages. Cam-
bridge University Press, 2012.

[6] O. Kiselyov and C.-c. Shan. Lightweight monadic regions. In ACM
Sigplan Notices, volume 44, pages 1-12. ACM, 2008.

[7]1 G. Mainland. Why it’s nice to be quoted: quasiquoting for Haskell. In
Proceedings of the ACM SIGPLAN workshop on Haskell workshop,
pages 73-82. ACM, 2007.

[8] M. Mauny and D. de Rauglaudre. A complete and realistic implemen-
tation of quotations for ml. In Proc. 1994 Workshop on ML and its
applications, pages 70-78, 1994.

[9] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of
Standard ML, revised edition. MIT Press, 1(2):2-3, 1997.

[10] B. O’Sullivan. Criterion, 2014. URL http://www.serpentine.
com/criterion/.
[11] K. Slind. Object language embedding in standard ml of new jersey. In

Proceedings of the Second ML Workshop, CMU SCS Technical Report.
Carnegie Mellon University, Pittsburgh, Pennsylvania, 1991.

2014/9/8

