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Abstract
In this paper we take the Krivine machine, a simple abstract ma-
chine for weak β-reduction, and augment it with the σ-calculus
to unlock strong reduction. We demonstrate that this abstract ma-
chine can be used to drive higher-order rewriting, and with some
alterations can be used for ‘higher-order term sharing’: rather than
normalising a term at each rewrite step, we view the lambda calcu-
lus itself as a sophisticated sharing mechanism, and make use of it
so as to avoid needless duplication of rewrite steps.

1. Introduction
Higher-order term rewriting [9] is a powerful generalisation of
first-order term rewriting in which rewrite steps are performed
modulo the simply-typed λ-calculus. Terms are generally assumed
to be normalised after each rewrite step, but doing so loses the
sharing of subterms present in the unreduced term. For example, the
normalisation (λA00)B →β ABB unshares B from one instance
to two, meaning if we wish to rewrite B to C then we must now do
it twice instead of only once.

In this paper we explore two known mechanisms for reducing
λ-terms: the Krivine machine [6], a simple abstract machine for
weak β-reduction; and the σ-calculus [1], an explicit substitution
calculus. We then introduce a new ‘Kσ-machine’ combining these
two approaches into an abstract machine for strong β-reduction.

By further extending this machine, and tracing the provenance
of the subterms forming a rewrite redex in a term’s normal form,
we can compute a reduction that reduces only the part of the term
needed to reveal that redex. This allows us to maintain during
reduction the sharing present in λ-terms, rather than β-normalising
rewritten terms as is generally done. This sharing scheme parallels
Wadsworth’s [11] ‘first-order’ mechanism for sharing using dags.
Comparatively, we make steps towards ‘higher-order term sharing’.

2. Preliminaries
We will assume familiarity with the simply-typed λ-calculus [2],
and will avoid the complexities of named variables by using De
Bruijn indices [3] exclusively.

[Copyright notice will appear here once ’preprint’ option is removed.]

Definition 1. The set simple types is the closure of a fixed set of
type atoms under the binary function type constructor→. Notation:
→ is right-associative: α→ β → γ = α→ (β → γ).

Definition 2. We use ε for the empty list, and :: for the ‘cons’
operator — i.e. datatype List(α) = ε | α :: List(α). We write α · β
for the concatenation of α and β.

Definition 3. A basis Γ is a list of simple types, with which we
may derive a simply-typed term t ∈ T, written Γ ` t : τ .

σ :: Γ ` 0 : σ

Γ ` n : σ =⇒ ρ :: Γ ` n+1 : σ

σ :: Γ ` t : τ =⇒ Γ ` λt : σ → τ

Γ ` t1 : σ → τ ∧ Γ ` t2 : σ =⇒ Γ ` t1t2 : τ

K : τ =⇒ Γ ` K : τ

Definition 4. A context C is a λ-term containing a single unique
‘hole’ symbol �. The hole in C may be ‘filled’ by a term t, written
C[t], replacing the hole with the term twith no variable adjustment.
Contexts may be composed, such that (C1 ;C2)[t] ≡ C2[C1[t]].

Definition 5. A substitution θ is a mapping from variables to terms
of the same type, which may be lifted to a homomorphism over
terms, written θ̂(t).

Definition 6. We write β-reduction as→β , η-reduction→η , and
their union, γ-reduction, →γ = →β ∪ →η . All are closed under
contexts and substitutions. There are a number of subrelations of
β-reduction:

• Weak reduction – as β-reduction, but reductions cannot be
performed under a lambda. Full β-reduction may in contrast
be called ‘strong reduction’.

• Head reduction – β-reduction of only the leftmost subterm,
such that the head — the leftmost atom (constant or variable)
applied to a ‘spine’ of argument terms — is found.

• Weak head reduction – head reduction that is also weak, such
that the weak head of a term may alternatively be a lambda that
does not form a β-redex.

A normal form — be it weak, strong, head, or weak head — is a
term that cannot be reduced by the respective relation. Any simply-
typed term has a unique normal form for each of these subrelations.

3. Explicit reduction
3.1 K-machine
The Krivine machine [6], or ‘K-machine’, is an abstract machine
for the weak β-reduction of λ-terms. The machine 〈〈t, e〉 | stack〉
has three components: the term t being reduced; the environment e,
a stack of term–environment pairs with the topmost corresponding
to De Bruijn index 0 and the bottom to index n; and the stack, like-
wise a stack of term–environment pairs, but from which items are
taken as arguments to applied lambdas. The machine is therefore of
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the following type, where the µ operator yields the least fixpoint of
a type.

(µα.T× List(α))× List(µα.T× List(α))

The mechanics of the K-machine are defined in terms of a set
of transition rules, detailed in Figure 1. The machine simulates
weak β-reduction, in that, given two machine configurations m
and m′ and terms t and t′, if m ∼ t and m′ ∼ t′, then m →∗
m′ =⇒ t→∗β t′, for the relation ∼:

〈〈t0, e0〉 | 〈t1, e1〉 :: . . . :: 〈tn, en〉 :: ε〉 ∼ ê0(t0)ê1(t1) . . . ên(tn)

When reducing a term t, we run the machine 〈〈t, ε〉 | ε〉 until it
halts. There are two possible configurations in which the machine
halts: 〈〈n, ε〉 | stack〉 and 〈〈K, e〉 | stack〉. In either case, t0 ≡
ê0(t0)↓β , so the weak head normal form has been found. We can
continue on to full weak normal form (i.e. all redexes not under
a lambda have been reduced) by recursing over the terms and
environments in the stack of the halted machine.

The reason the K-machine cannot perform strong β-reduction is
there is no way to represent in its stack the offset in De Bruijn in-
dices that would be required of the environment if the machine were
to move under a lambda. For this we need a more sophisticated data
structure, and for that we look towards explicit substitution.

3.2 λσ-calculus
The λσ-calculus [1] is a ‘substitution calculus’ that renders the
higher-order λ-calculus into a first-order term rewriting system,
thus formalising the mechanisms of substitution. σ-substitutions
may be thought of as a data structure for representing arbitrary λ-
calculus substitutions on De Bruijn indices. σ-substitutions have
the following constructors:

id = {n 7→ n} Identity
↑ = {n 7→ n+1} Shift

t · σ = {0 7→ t, n+1 7→ σ(n)} Cons
ρ ;σ = {n 7→ ρ(n)[σ]} Compose

Note that I use the notation ρ ;σ where Abadi, et al. have used
ρ ◦ σ, so as to avoid any confusion between left-to-right and right-
to-left composition. I also use the De Bruijn indices over the set
N = {0, 1, 2, . . .} rather than N+ = {1, 2, 3, . . .}. Neither of these
notational changes have any effect on the calculus itself.

Definition 7. A σ-substitution σ is applied to a λ-term t, written
t[σ], like so:

(t1t2)[σ] = t1[σ]t2[σ]

(λt)[σ] = λ(t[0 · (σ ; ↑)])
n[id] = n

n[↑] = n+1

0[t · σ] = t

n+1[t · σ] = n[σ]

n[ρ ;σ] = n[ρ][σ]

K[σ] = K

β-reduction is defined as the relation (λs)t →β s[t · id] closed
under contexts and substitution.

Definition 8. We extend simply-typed λ-terms to the λσ-calculus
by introducing a typing for σ-substitutions. We write Γ ` σ . Γ′ to
say that in the environment Γ the substitution σ has the environment

Γ′, by the following rules:

Γ ` id . Γ

τ :: Γ ` ↑ . Γ

Γ ` t : τ ∧ Γ ` σ . Γ′ =⇒ Γ ` t · σ . τ :: Γ′

Γ ` ρ . Γ′ ∧ Γ′ ` σ . Γ′′ =⇒ Γ ` ρ ;σ . Γ′′

We can then use this to derive simple types for σ-closures.

Γ ` σ . Γ′ ∧ Γ′ ` t : τ =⇒ Γ ` t[σ] : τ

3.3 Kσ-machine
We will now introduce the Kσ-machine, an extension of the K-
machine in which the environment stack has been generalised to a
σ-substitution. This unlocks reduction under lambda, as necessary
for strong β-reduction. The Kσ-machine is similar to the machine
described in [1], but the terms themselves are not modified in any
way, much like the original Krivine machine. With this approach
the structures of terms and substitutions are kept entirely separate,
which means that the type of the machine’s environment and stack
is independent from that of the term’s closures, if any. This will
prove important in §4.2, where the machine’s thunks’ closures are
labelled, but the terms’ are not.

In order to keep the machine definition simple, we assume that
σ-substitutions are always of the pattern (σ1 ; (σ2 ; . . . ; (σn ; id))).
The initial substitution (id) satisfies this pattern, and the rules of
the machine maintain it. Additionally, we parametrise the substi-
tution type, Subst(α), so that instead of ‘cons’ being of the type
T→ Subst→ Subst, it is of the type α→ Subst(α)→ Subst(α).
These substitutions then form maps of the type N→ α+ N. In the
case of the Kσ-machine, they are of the type µα. Subst(T × α).
We call these term–substitution pairs thunks.

These σ-substitutions alone do not quite give us full strong
reduction, however. Analogous to the K-machine halting at weak
head normal form, we would expect the Kσ-machine to halt at
(strong) head normal form λ . . . λt0(t1[σ1]) . . . (tn[σn]), where t0
is a variable or constant. But if we are to pass under a lambda,
we must discard it from the term, and we cannot know how many
lambdas are in the head normal form. The solution used in [1] is
to suspend the machine at this point, and to handle the ‘Lambda’
case external to the machine definition. We take a different tack: as
well as generalising environments to substitutions, we generalise
the stack to a context. This deviation will prove useful in §4.3,
where it drastically simplifies the operation of the machine.

Definition 9. A zipper [5] is a term representation of a context, or
a suspended traversal through a term. A zipper for the λ-calculus is
a first-order term with the following signature:

@α
l : Context(α)× α→ Context(α)

@α
r : α× Context(α)→ Context(α)

Λα : Context(α)→ Context(α)

>α : Context(α)

We omit the superscript type parameter where it may be inferred.
Each symbol has a meaning as a context, and may be thought of as
a traversal through a term.

• @l(C, t) represents the context (�t ;C).
• @r(t, C) represents the context (t� ;C).
• Λ(C) represents the context (λ� ;C).
• > represents the trivial context �.

Example 1. A context (λ�)K is represented by the zipper term
Λ(@l(>,K)), and (λ0)� the zipper term @r(λ0,>).

Where the K-machine has 〈t, e〉 :: stack, the Kσ-machine has
�(t[σ]) ;C, i.e. @l(C, t[σ]). Yet we can also add lambdas through
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Figure 1. K-machine

〈〈t1t2, e〉 | stack〉 → 〈〈t1, e〉 | 〈t2, e〉 :: stack〉 Apply

〈〈λt1, e1〉 | 〈t2, e2〉 :: stack〉 → 〈〈t1, 〈t2, e2〉 :: e1〉 | stack〉 Beta

〈〈0, 〈t, e2〉 :: e1〉 | stack〉 → 〈〈t, e2〉 | stack〉 Head

〈〈n+1, 〈t, e2〉 :: e1〉 | stack〉 → 〈〈n, e1〉 | stack〉 Tail

Figure 2. Kσ-machine

〈(t1t2)[σ] | C〉 → 〈t1[σ] | �(t2[σ]) ;C〉 Left

〈(λt)[σ] | �(u[ρ]) ;C〉 → 〈t[(u[ρ] · σ) ; id] | C〉 Beta

〈(λt)[σ] | C〉 → 〈t[(0[id] · (σ ; ↑)) ; id] | λ� ;C〉 Lambda

〈n[(π ; ρ) ;σ] | C〉 → 〈n[π ; (ρ ;σ)] | C〉 Associate

〈0[(u[π] · ρ) ;σ] | C〉 → 〈u[π ;σ] | C〉 Head

〈n+1[(u[π] · ρ) ;σ] | C〉 → 〈n[ρ ;σ] | C〉 Tail

〈n[↑ ;σ] | C〉 → 〈n+1[σ] | C〉 Shift

〈n[id ;σ] | C〉 → 〈n[σ] | C〉 Id

〈(t1t2)[σ] | C〉 → 〈t2[σ] | (t1[σ])� ;C〉 Right

〈(t[ρ])[σ] | C〉 → 〈t[ρ ;σ] | C〉 Closure

which we have passed with λ� ;C, i.e. Λ(C). The Kσ-machine is
therefore of the type,

(µα.T× Subst(α))× Context(µα.T× Subst(α))

The Kσ-machine is defined in Figure 2. The machine definition
has overlapping rules with which it is capable of any standard
reduction [2], but during normal operation (β-normalisation) we
assume that the ‘Beta’ rule is favoured over ‘Lambda’, and that
the ‘Left’ rule is used instead of the optional ‘Right’. There is also
a ‘Closure’ rule for composing two substitutions into one; this is
only necessary if the term structure itself may contain closures of
the λσ-calculus. Note that the machine’s ‘thunks’ are separate from
the term structure itself.

When reducing a term t, we run the machine 〈t[id] | �〉 until it
halts. Similar to the K-machine, the Kσ-machine simulates strong
β-reduction;

〈t[σ] | C〉 ∼ C[t[σ]]

4. Higher-order term sharing
Here we use Nipkow’s Higher-order Rewrite Systems (HRSs) [9],
or strictly speaking higher-order pattern rewrite systems, to which
they are most commonly restricted.

Definition 10. A higher-order pattern [8] is a β-normal term with
a constant at its head, and in which any free variable f may only in
the form ft1 . . . tk where each ti is η-equivalent to a distinct bound
variable.

Definition 11. A Higher-order Rewrite SystemH is a set of rewrite
rules 〈l, r〉 where l is a pattern and r a term of the same atomic
type, and FV(l) ⊇ FV(r). Each rule R induces a rewrite relation
t →R t′ where θ̂(l) ↔∗γ t and t′ ↔∗γ θ̂(r). H then induces the
union→H =

⋃
R∈H→R.

Although HRSs rewrite modulo the simply-typed λ-calculus,
it is generally assumed that the term is β-normalised after each

rewrite step. But if it is not, then the β-reduction potential of the
term acts as a kind of term sharing mechanism. For instance, a first-
order β-redex (λt1)t2 ‘shares’ the term t2 amongst all instances of
the variable 0 in t1; a rewrite step may take place in t2 and it will in
effect have occurred in any number of positions in t1 in the term’s
β-normal form.

Example 2. Given a rewrite system {〈B,C〉}, a term (λA00)B
can be written in one step to (λA00)C, the β-normal form of which
is ACC. But if we β-normalise the term first to ABB, it takes two
steps, via eitherABC orACB, to reachACC. This demonstrates
that B is being shared by the β-redex in the initial term.

The sharing arrangement in Example 2 can also be achieved
by representing a term as a dag, such that after the β-reduction of
a term (λt1)t2 all residual instances of t2 in t1 are references to
the same term, which can then be rewritten. This form of sharing
was formalised by Wadsworth [11]. However, the sharing offered
by the simply-typed λ-calculus as a whole, higher-order β-redexes
included, is in general more powerful than Wadsworth’s dags. With
dags, only full terms may be shared; if two terms are almost iden-
tical, but one has one term where the other has another, then they
cannot be shared despite their similarities.

Example 3. Given a term (λC(0A)(0B))(λt), reducing the root
β-redex would yield C((λt)A)((λt)B); with dag sharing the two
instances of λt would be shared. But further reduction to Ct1t2
would require t1 and t2 to become unshared, as the former contains
A where the latter does B. That the simply-typed λ-calculus can
share t1 and t2, in the single instance of t, demonstrates that it is
in general more powerful than dag sharing.

The question, then, is how to perform higher-order rewriting
without unsharing unnecessarily. This is related to Lévy’s optimal
reduction [7], but is not the same: we are using the λ(σ)-calculus
as the sharing mechanism, not as the term rewriting system being
shared. The notion that rewriting between non-normalised terms
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in a higher-order rewriting system can be seen as a kind of term
sharing is mentioned in [10].

4.1 β-traversals
Since β-reduction introduces no term structure (its right-hand side
as an HRS comprising only variables and applications), given a
reduction t →∗β t′, every atom (variable or constant) present in
t′ will have originated somewhere in t, and through the process
of reduction a copy will have been placed in its new position in t′.
During this process, its arguments and the value to which itself is an
argument may both have changed in any number of ways. If we are
to understand how the atom arrived at its position in t′, we would
like to keep a track of the context of reductions and substitutions
by which it got there.

Definition 12. A β-traversal may be thought of as a path through
the β-reduction of a term. A β-traversal is a first-order term with
the following signature:

@l : A→ A > : A

@r : A→ A B : A→ A

Λ : A→ A Σ : A×A→ A

β-traversals are akin to the zipper, but the @l and @r symbols
have as a subterm only a continuation of the context and not an
extra α value as with @α

l and @α
r . Furthermore, substitutions (Σ)

may cause there to be more than one top (>). In addition to the
symbols in the signature of the zipper,

• B indicates a β-reduction having occurred in its subterm, which
is itself somewhat ‘inside-out’, the lambda occurring outside
the application with which it formed a β-redex.

• Σ indicates a substitution having occurred as a result of some
β-reduction. It has two subterms, the first the traversal to the
variable, the second to the substitute.

Example 4. The β-traversal to the head of the reduct of a reduc-
tion (λ0)K →∗β K is Σ(B(Λ(@l(>))),@r(>)). The β-traversal
Λ(@l(>)) represents the traversal down to the body of the lambda
on the left-hand side of the application at the top, i.e. (λ�)K, al-
though unlike Example 1 the right-hand side of that application is
not made explicit: (λ�) .

The B symbol then shows that there has been a β-reduction be-
tween the application and the lambda, similar to a proof term, e.g.
β((λ�) ). Finally, Σ(α, β) substitutes for the variable at traversal
α the value at β, in this case effectively β((λ�)K) ←Σ (λ0)�.
The complete traversal term thus describes the position of the head
‘through’ the reduction.

Definition 13. A β-traversal over t →∗β t′ may be converted into
a path, a list of symbols identifying a subterm. Two paths of a
traversal are particularly distinct: the dynamic path, the destination
of the traversal relative to t′; and the static path, that relative to t.
The dynamic path for a traversal αmay be obtained by path1(α, ε),
the static path path2(α, ε):

pathi(>, p) = p

pathi(@l(α), p) = pathi(α,@l :: p)

pathi(@r(α), p) = pathi(α,@r :: p)

pathi(Λ(α), p) = pathi(α,Λ :: p)

pathi(B(α), p) = pathi(α, p)

path1(Σ(α, β), p) = path1(α, p)

path2(Σ(α, β), p) = path2(β, p)

t|p represents the subterm of the term t reached via path p.

t|ε = t

(t1t2)|@l::p = t1|p
(t1t2)|@r ::p = t2|p

(λt)|Λ::p = t|p
We can also refer to a subterm reached modulo β-reduction,

t|p/β , which is the same as t|p except that β-redexes along the path
are reduced. This means that t →∗β t↓β [u]p ⇐⇒ t →∗β t[u]p/β .
Also note that t|p·q ≡ t|p|q .

In order for a pattern to match in a reduct of twe require that the
reductions necessary to assemble its (strict) subterms in the right
positions have all been performed. However, not all reductions that
can be done need be done, and if we identify the horizon of the
match — the outermost point at which a substitution contributes
to the atoms comprising the match — then we can ignore all
reductions beyond that point.

Definition 14. Two paths p and q are compatible if there exists a
third path r such that both p and q are prefixes of r. The horizon
of a β-traversal α is the supremum of the lengths of the paths
compatible with all elements of the set reach(α):

reach(>) = {path1(>, ε)}
reach(@l(α)) = {path1(@l(α), ε)} ∪ reach(α)

reach(@r(α)) = {path1(@r(α), ε)}
reach(Λ(α)) = {path1(Λ(α), ε)} ∪ reach(α)

reach(B(α)) = reach(α)

reach(Σ(α, β)) = reach(α) ∪ reach(β)

If all paths in the set are compatible with one another then the set
and the length will both be infinite. Thus the horizon is a member
of the set of “tropical natural numbers” N∞ = N ∪ {∞}.

The horizon for the match t[θ̂(u)]p/β of a pattern u is then
the minimal horizon of all β-traversals corresponding to non-free-
variable atoms in u, treating the head of the match as having the
horizon∞ (since it does not need to be in any particular position
for the pattern to match).

Theorem 1. If the β-traversal α over t →∗β t↓β [θ̂(u)]p·q has the
horizon |p|, and p̄ is the static path path2(α), then,

t→∗β t[θ̂(u)](p·q)/β =⇒ t→∗β t[θ̂′(u)]p̄·(q/β)

With this in mind, given a rewrite ruleR = 〈l, r〉, we see that,

t[θ̂(l)](p·q)/β →R t[θ̂(r)](p·q)/β

=⇒ t[θ̂′(l)]p̄·(q/β) →R t[θ̂′(r)]p̄·(q/β)

What is needed is a process by which to calculate the values of
p̄ and q for a given β-traversal, requiring an alteration to the Kσ-
machine. We then need to be able to, given these values, reveal the
match so that it may be rewritten; this requires one final alteration
to the machine.

4.2 Kσ`
⇑-machine

A variant of the Kσ-machine is the Kσ`⇑-machine, in which each
thunk is labelled with (an algebraic interpretation of) its β-traversal,
which is computed as the machine runs. As it stands, introducing
labels into the Kσ-machine reveals a potential problem in the σ-
calculus: when a substitution passes under a lambda, its variable
is not left untouched, but is rather replaced with a new variable
constructed from whole cloth and given the appropriate De Bruijn
index. Variables in the λσ-calculus are nothing but their index, so
no troubles arise, but if this is not the case — such as in our new
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Figure 3. Kσ`⇑-machine

〈(t1t2)[σ]α | C〉 → 〈t1[σ]@l(α) | �(t2[σ]@r(α)) ;C〉 Left

〈(λt)[σ]α | �(u[ρ]β) ;C〉 → 〈t[(u[ρ]β · σ) ; id]B(Λ(α)) | C〉 Beta

〈(λt)[σ]α | C〉 → 〈t[⇑(σ) ; id]Λ(α) | λ� ;C〉 Lambda

〈n[(π ; ρ) ;σ]α | C〉 → 〈n[π ; (ρ ;σ)]α | C〉 Associate

〈0[(u[π]β · ρ) ;σ]α | C〉 → 〈u[π ;σ]Σ(α,β) | C〉 Head

〈n+1[(u[π]β · ρ) ;σ]α | C〉 → 〈n[ρ ;σ]α | C〉 Tail

〈0[⇑(ρ) ;σ]α | C〉 → 〈0[σ]α | C〉 Naught

〈n+1[⇑(ρ) ;σ]α | C〉 → 〈n[(ρ ; ↑) ;σ]α | C〉 Lift

〈n[↑ ;σ]α | C〉 → 〈n+1[σ]α | C〉 Shift

〈n[id ;σ]α | C〉 → 〈n[σ]α | C〉 Id

machine, where a closure has a label — then a variable with one
label is replaced with one with another label, which is unsound.
In order to fix this, we will introduce the lift operator from the
λσ⇑-calculus of Hardin, et al. [4]. The σ⇑-substitution ⇑(σ) is
equivalent to the σ-substitution 0 · (σ ; ↑), except that it allows us
to genuinely not substitute the variable, and so its label is also left
unchanged.

The Kσ`⇑-machine is defined in Figure 3. If the term structure
may contain σ⇑-closures, those closures’ substitutions are unla-
belled and have to be mapped into the labelled term space; they
cannot just be composed with a labelled substitution. This process
is fairly straightforward, mirroring the standard traversal over the
term structure, but it is tedious so we shall not discuss it here.

Definition 15. A cord is a structure of type P × List(P) × N∞.
It acts as a map from steps along the path p · q of a β-traversal, to
their static path counterparts, together with the traversal’s horizon.
The cord may be split into a pair of paths corresponding to p̄ and q.

split(〈q, ps,∞〉) = 〈ε, q〉
split(〈q, p̄ :: ps, 0〉) = 〈p̄, ε〉

split(〈F :: q, :: ps, k+1〉) = 〈p̄, F :: q′〉
where 〈p̄, q′〉 = split(〈q, ps, k〉)

By running the Kσ`⇑-machine with the algebraic interpretation
of β-traversals described in Figure 4, when the machine halts we
are left with the cord belonging to an atom of the reduct. When
recursing over thunks in the context, we must re-initialise each cord
label 〈q, ps, k〉 to 〈q, ps,∞〉, as the horizon of an atom is always
relative to the head of the spine to which it belongs.

If in the reduct we find a match for a pattern l (the method for
which is outside the scope of this paper, though any higher-order
matching algorithm should do), we collect together the cords of all
atoms corresponding to non-free-variables in the matching pattern.
We can then calculate the cord for the whole match, 〈q, ps, k〉
where q and ps are from the cord for head of the match and k is
the horizon of the match, calculated as described in Definition 14.
By splitting this cord we get the paths p̄ and q for Theorem 1.

At this point we will not yet have modified the term structure
in any way, but rather ‘peeked’ into the term’s β-normal form in
order to find a term matching a pattern to reduce. What we need to
do now is to take the paths corresponding to that match and with
them compute t→∗β t[θ̂′(l)]p̄·(q/β).

4.3 Kσ]
⇑-machine

The final Kσ]⇑-machine is a simple extension of the Kσ-machine
(albeit with the lift operator to bring it in line with the calculus of
the Kσ`⇑-machine), taking a ‘track’ as an extra component. This
track is a path telling the machine the position of the subterm we
wish to evaluate to. The Kσ]⇑-machine is described in Figure 5. As
an example, we might initialise the machine with the configuration
〈t|p̄[id] | �〉q . Running this machine until it halts will result in a
configuration 〈t′[σ] | C〉ε, with the components t′[σ] ≡ t|p̄·(q/β)

and C ≡ t|p̄[�]q/β .
If we intend to perform a rewrite step we may now replace the

matching θ̂′(l) with its contractum θ̂′(r) at this location, as is con-
ventionally done at β-normal form. Assembling these components
into the term t[C[θ̂′(r)]]p̄ then completes the full rewrite step.

5. Conclusion
We have introduced an abstract machine, the Kσ-machine, for eval-
uating terms of the λ-calculus. Building on this, we have introduced
a pair of variants, Kσ`⇑ and Kσ]⇑, which together enable higher-
order term sharing by ‘peeking’ into a term’s normal form to find
a subterm matching a pattern, and then reducing enough of the
term to reveal the match for rewriting without fully normalising the
term. In this way the term sharing described by the simply-typed
λ-calculus is made use of, instead of being lost by normalisation,
or otherwise restricted to sharing with dags, which are equivalent
to first-order β-redexes alone.

The value of the machinery being used here is that, as it in no
way modifies the term structure itself, it does not reduce the term
as it travels, but instead navigates through the unmodified term
by building up a substitution environment. This parallels common
approaches to sharing first-order terms with dags, in which a redex
is found ‘modulo sharing’ and then the necessary components are
unshared to make the rewrite possible. However, the simply-typed
λ-calculus provides more sophisticated sharing than dags, and we
make steps towards its treatment as a mechanism for ‘higher-order
term sharing’.

The way we make use of the sharing of the λ-calculus here is,
however, relatively primitive. Although it is necessary to determine
the horizon of a match, as the Kσ`⇑-machine does, in order to
avoid rewriting in one location when it could be done in multiple,
sharing information is still lost when subsequent β-reductions are
performed by the Kσ]⇑-machine. This is not about optimality à la
Lévy [7], but about managing higher-order sharing in the same
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Figure 4. An algebraic interpretation of a β-traversal

> = 〈ε, ε :: ε,∞〉 Top

B(〈α, ps, k〉) = 〈α, ps, k〉 Beta

Σ(〈α, p :: ps, k〉, 〈@r :: β, q :: qs, k′〉) = 〈α, q :: ps,min(k, |qs|)〉 Substitute

@l(〈α, p :: ps, k〉) = 〈@l :: α, (@l :: p) :: p :: ps, k〉 Left

@r(〈α, p :: ps, k〉) = 〈@r :: α, (@r :: p) :: p :: ps, k〉 Right

Λ(〈α, p :: ps, k〉) = 〈Λ :: α, (Λ :: p) :: p :: ps, k〉 Lambda

Figure 5. Kσ]⇑-machine

〈(t1t2)[σ] | C〉@l::α → 〈t1[σ] | �(t2[σ]) ;C〉α Left

〈(t1t2)[σ] | C〉@r ::α → 〈t2[σ] | (t1[σ])� ;C〉α Right

〈(λt)[σ] | �(u[ρ]) ;C〉Λ::α → 〈t[(u[ρ] · σ) ; id] | C〉α Beta

〈(λt)[σ] | C〉Λ::α → 〈t[⇑(σ) ; id] | λ� ;C〉α Lambda

〈n[(π ; ρ) ;σ] | C〉α → 〈n[π ; (ρ ;σ)] | C〉α Associate

〈0[(u[π] · ρ) ;σ] | C〉α → 〈u[π ;σ] | C〉α Head

〈n+1[(u[π] · ρ) ;σ] | C〉α → 〈n[ρ ;σ] | C〉α Tail

〈0[⇑(ρ) ;σ] | C〉α → 〈0[σ] | C〉α Naught

〈n+1[⇑(ρ) ;σ] | C〉α → 〈n[(ρ ; ↑) ;σ] | C〉α Lift

〈n[↑ ;σ] | C〉α → 〈n+1[σ] | C〉α Shift

〈n[id ;σ] | C〉α → 〈n[σ] | C〉α Id

fashion as Wadsworth [11] does first-order sharing. By comparing
the behaviour of Wadsworth’s dags, and first-order β-redexes in our
sharing scheme, we can see that there is still work to be done on this
front. This is the subject of ongoing research.
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