
Bidirectional parsing
a functional/logic perspective

Peter Kourzanov
NXP Eindhoven/TU Delft, Netherlands

kourzanov@acm.org

Abstract
We introduce PURE3, a pure declarative approach to implementing
declarative transformations with declarative tools. This Domain-
Specific Language (DSL), inspired by the Definite Clause Gram-
mar (DCG) and Parsing Expression Grammar (PEG) formalisms,
is implemented using the Revised5 Report on the Algorithmic Lan-
guage Scheme (R5RS). Thanks to its use of the MINIKANREN logic
programming system it supports fully reversible and extensible
syntax-semantics relations. In this paper we highlight the usability
and simplicity of PURE3’s approach, address the problem of left-
recursion and show how its features help in defining custom and
extensible typing systems for JavaScript Object Notation (JSON).

Categories and Subject Descriptors D.1.6 [Programming tech-
niques]: Logic programming; D.3.2 [Language Classifications]:
Applicative (Functional) languages; D.3.4 [Processors]: Parsing

General Terms (embedded) domain specific languages, auto-
matic program generation, type systems/checking/inferencing

1. Introduction
The declarative approach to programming unifies logic/relational
and functional communities in the shared vision of tools that need
only be told what should be done rather than how that must be
accomplished.1 Ideally, these tools should (inter)actively partici-
pate in the creative process, i.e., art of computer programming by
performing parsing of the human input, checking and inference
[DM82] of the various properties of such inputs,2 manipulation,
refactoring and optimization of programs [BD77], compilation to
machine code [App06] and last but not least, should provide feed-
back to the user.

Because humans inevitably are still in the loop of this develop-
ment cycle, it is important that each stage remains palpable - that
is, can be understood semantically and manipulated using syntac-
tically simple terms. First and foremost this concerns parsing, a
well-researched domain where many well-established methods ex-

1 we set machine learning community aside for now
2 this is commonly known as type-checking and type-inference

[Copyright notice will appear here once ’preprint’ option is removed.]

ist [ALSU06] and [GBJL02], and yet, very few practical tools pos-
sess that elusive mathematical elegance that can immediately ap-
peal to practitioners. Further down the transformation chain, com-
plexity quickly rises and at the level of inference already presents
formidable challenges [Wel94] to human understanding.

In this paper we present PURE3 as a declarative approach to
declarative transformations using declarative tools. The focus is on
parsing as a particular kind of transformation of a linear stream
of tokens into a set of Abstract Syntax Tree (AST) instances con-
taining terminals (literal values), non-terminals (expressions, state-
ments), types, assembly etc.

The approach is declarative in that we take the Backus-Naur
Formalism (BNF) as a starting point and do not restrict ourselves to
a specific way of codifying it. The transformations are declarative
because they stay largely independent from the evaluation strategy.
The tools are declarative in that we take MINIKANREN [FBK],
a logic programming system embedded in R5RS [ABB+98] and
abstain from overusing the extra-logical features that are available.

We shall first use a running example of an expression gram-
mar/parser to explain our technical contributions and then switch
to an extensible JSON grammar/parser to successively illustrate
parsing, type checking, type inference and generation of syntax-
semantics pairs constrained by types, all within a single framework.

Our main contributions are: the clean-room declarative imple-
mentation of PURE3 (using the hygienic syntax-rules macro sys-
tem and MINIKANREN) relying on naturally declarative semantics:

• featuring logical laziness,
• (full) reversibility-by-default,
• on-line behavior for left-recursion, and
• binding schemes for controlled (weak) hygiene “breaking”

This paper is structured as a flow that first addresses the back-
ground aspects in the introduction, explains the ideas and the imple-
mentation of the new formalism in section 2 and then highlights the
use of the formalism by specifying an admittedly simple, yet con-
cise and flexible typing system in section 3. The problems in im-
plementing and using extensible transformations are addressed in
section 4. Related work is reviewed in section 5, while the conclu-
sions can be found in section 6. Full implementation using BIGLOO
and conforming to R5RS plus two relevant SRFI libraries is avail-
able at github [Kou].3

1.1 Definite Clause Grammars
DCG is a technique originating in Prolog that allows one to embed
a parser for a context-sensitive language into logic programming,

3 note that our use of R5RS is flavored by macro-expressible pattern-
matching as well as a few syntactic liberties for recursive (def) and non-
recursive (defn) bindings, brackets and lexical syntax (viz. reader-macros)

draft 1 2014/9/24

via Horn clauses. Logic programming languages such as Prolog
and MINIKANREN also support relational programming. Instead of
functions and procedures there are predicates that specify relations
between terms. Rather than enforcing a particular way of evalua-
tion, these languages specify a resolution (i.e., a search) procedure
that can be applied and controlled in many ways. We explain the
way how this is done in MINIKANREN in section 2.1. These fea-
tures imply that a carefully designed grammar/parser can be run
forwards (i.e., generating semantics from syntax), backwards (i.e.,
generating syntax from semantics) and sideways (e.g., constrained
generation of syntax-semantics pairs).

A particularly nice feature of DCGs is its declarative nature and
yet executable semantics [PW80]. This can be seen in the BNF
specification as well as in the following Prolog code for a trivial
context-free grammar/recognizer with precedence below.

<factor> ::= <literal> | <factor> ’^’ <literal>
<term> ::= <factor> | <term> ’*’ <factor>

| <term> ’/’ <factor>
<expr> ::= <term> | <expr> ’+’ <term>

| <expr> ’-’ <term>

Assuming a suitable definition of the literal predicate, the
BNF can be automatically converted to the corresponding Prolog
DCG rules, or, as shall be shown in section 2.2, to R5RS and
MINIKANREN using the syntax-rules. Both kinds of encodings
are “almost” directly executable, modulo left-recursion - a problem
that plagues many recursive descent systems, and which we address
by a novel technique of logical laziness in section 2.4.

%% An ideal Prolog DCG for a trivial expression grammar
factor --> factor, [^], literal.
factor --> literal.
term --> term, [*], factor.
term --> term, [/], factor.
term --> factor.
expr --> expr, [+], term.
expr --> expr, [-], term.
expr --> term.

As shall be become apparent shortly, the DCGs are more pow-
erful than just Chomsky Type-2 systems (context-free grammars,
or non-deterministic push-down automata) and in fact can express
attribute grammars by allowing the predicates to take arguments
that are used to compute variables bottom-up (i.e., a feature iden-
tical to synthesized attributes) or to generate and pass around
non-instantiated variables (i.e., a feature identical to inherited at-
tributes). This opens the door to concise [FBK05], declarative spec-
ification of typing systems, relational interpreters [Byr10] as well
as a way towards a practical DSL for bidirectional transformations.

1.2 Parsing Expression Grammars
This grammar formalism [For04] dispenses with complexities of
LL/LR grammars, takes a step back to recursive descent, and then
extends it with a few combinators inspired by Type-3, regular lan-
guages. In addition, the PEG formalism introduces syntactic and-
and not-predicates as well as prioritized choice (used for grammar
disambiguation). This is an improvement over plain recursive de-
scent because explicit recursion is often avoided (by turning it into
primitive recursion via the Kleene-∗ and + operators).

One nice aspect of PEGs is better surface syntax for common
patterns of programming parsers and transformations. For exam-
ple, the expr predicate from the section above can be concisely
specified as the following recognizer.

(pcg expr ([] ⇔ [term] [([’+ / ’-] : [term]) *]))

Looking ahead, we might define a recognizer for a context-
sensitive language (using our pcg rules introduced in the next
section) with PEG combinators and syntactic predicates as follows:

;; A context-sensitive grammar with PEG combinators
(defn anbnan (pcg ⇔ S

(S ([] ⇔ when([A] ’a) (’a +) [B] unless([’a / ’b])))
(A ([] ⇔ ’a ([A] ?) ’b))
(B ([] ⇔ ’b ([B] ?) ’a))
))

It is apparent that PEGs and DCGs share many of the same ben-
efits and shortcomings. Syntactic predicates as well as the priori-
tized/ordered choice of PEG are naturally expressible as committed
choice in logic programming. Left-recursion, however, is still trou-
blesome and has to be either avoided, eliminated or solved by ad-
hoc methods such as cancellation tokens, curtailment or memoing
(see section 5).

2. Parsing Clause Grammars
In this chapter we introduce our implementation of DCGs which
we dub the Parsing Clause Grammar (PCG) as a tribute to the other
source of inspiration, the PEG. First, we introduce MINIKANREN
and provide a way to specify first-order predicates concisely us-
ing only the syntax-rules of R5RS. Then we show a few ex-
amples of the usefulness of higher-order predicates. Controlled ac-
cess to hygiene (i.e., weak hygiene “breaking”) is then used to let
syntax-rules implement an equational theory for name bindings
across disparate code fragments. Finally, we highlight PCG’s sup-
port for left-recursion in a pure, on-line fashion.

We make use of the macro-expressible pattern-matching (intro-
duced in [KS13]) in BIGLOO - a practical implementation of R5RS
[SW95]. The Scheme reader is extended with reader macros via
set-sharp-read-syntax! (see the Chicken Scheme wiki: Unit
library [Sch]) and provides a handler for #h form (see section 4
for a few examples) in order to obtain a stream of lexical tokens
unconstrained by the conventional Scheme syntax.

;; A recognizer, each clause a separate predicate
(pcg Factor

([] ⇔ [Factor] ˆ [literal])
([] ⇔ [literal]))

(pcg Term
([] ⇔ [Term] * [Factor])
([] ⇔ [Term] / [Factor])
([] ⇔ [Factor]))

(pcg Expr
([] ⇔ [Expr] + [Term])
([] ⇔ [Expr] - [Term])
([] ⇔ [Term]))

The translation of the expression grammar from the previous
section is straightforward with the pcg macro and is given above.
It defines several clause groups and binds a given name to the pred-
icate/function implementing a disjunction for each group. Please
see the code in section 2.4 for an illustration of MINIKANREN code
that is automatically generated for the Expr part of this recognizer.

• we assume that the Scheme read procedure has performed
lexical analysis on the input, that is, we deal only with syntactic
and semantic analysis of tokens produced by the reader
• BNF terminals are assumed to be interned Scheme atoms

such as literals (#true and #false), numbers, “strings” and
’symbols, which might include characters such as ([,]{.})
when wrapped in |vertical bars|. Terminals are auto-quoted.
• BNF non-terminals are translated to MINIKANREN predicates

(which are just regular, pure Scheme functions), where the first

draft 2 2014/9/24

two arguments represent PCG monadic state, the difference-
list. Note that unlike original DCGs we prepend the pair of
Lin/Lout variables comprising the diff-list at the beginning of
the argument list because our predicates are possibly variadic

2.1 Declarative logic programming with MINIKANREN

In this section we briefly introduce the way in which we use
MINIKANREN’s primitives [FBK05] such as success and failure
(#s and #u), binding of logic variables (fresh), unification (≡),
disjunctions (fair choice conde, soft-cutting conda, committed
choice condu), conjunctions (all), impure predicates (project
for reifying variables) and finally run/run* that provide the inter-
face between Scheme and the non-determinism monad that lies at
the heart of MINIKANREN.

;; the swiss army knife of logic programming

(def append0 (predicate
([‘() b b])

([‘(,x . ,a1) b ‘(,x . ,c1)] :- [append0 a1 b c1])
))

Predicates are introduced by either predicate or pcg macros
(these share many design aspects), and may have many clauses
inside. Each clause contains a head followed by an optional body.
We borrow the syntax from Prolog, separate the head from the body
by a (:-) form and introduce an implicit disjunction between all
clauses. By convention shared with syntax-rules, predicate
clause heads may begin with any tag identifying the clause or with
just a wildcard [] while pcg clause heads (e.g., for recognizers)
may be empty [], in which case they don’t unify any passed
arguments. If the pcg head is not empty but contains only the
[] tag then the (thus variadic) predicate will unify exactly one
argument with each consumed token in the input, point-wise.

;; e is somewhere in t ;; using explicit disjunction

(def member0 (predicate (def member0 (predicate
([e ‘()] :- #u) ([e ‘()] :- #u)
([e ‘(,e . ,t)]) ([e ‘(,h . ,t)] :-
([e ‘(,h . ,t)] :- ([≡ e h] / [member0 e t]))

[member0 e t])))))

By design shared with MINIKANREN, juxtaposition of goals
(in the body) and clause attributes (in the head) corresponds to
the conjunction. As is observed from 2 versions of the member0

predicate above, explicit PEG-style disjunction in clause bodies is
often essential,4 avoiding duplication of clause bodies and heads.

In contrast to MINIKANREN, PURE3 advocates Prolog-style
automatic inference of bindings. Unlike Prolog, however, in all
predicate examples, variable names are extracted from clause
heads and then are equated with the corresponding bindings from
clause bodies using the Term-Rewriting System (TRS) equational
theory that is explained in section 2.3.

Because of this, no binding can be used in a clause body without
it being mentioned first in the clause head, which enforces fully re-
versible predicates which are “correct-by-construction”. For some
predicates, there may be fresh bindings introduced in the head but
not used in the body (e.g., fresh0 in section 2.4) or there may be
bindings (see locals: spec) that are not explicitly named in the
head but used in the body to build some synthesized attribute that
is mentioned in the head (e.g., the prefix0 in section 2.4)

2.2 Macro-expressibility of PCG rules
The pcg macro builds upon the structure introduced in the previous
section and provides (1) natural representation of the syntax for
terms of the expression grammar - to the right of ⇔, (2) natural

4 note that our disjunction is pure (conde) by default. Soft-cut resp. commit-
ted/ordered choice are introduced explicitly by *-> resp. -> combinators

representation of semantics, i.e., an AST - to the left of ⇔, (3)
direct-style operator associativity and precedence and (4) inverse
for free (note that we separate the clause head from the clause body
by⇔ to indicate full reversibility). Our final version of a reversible
syntax-semantics relation for expressions is given in figure 1.

(pcg
(Factor
([‘(ˆ ,x ,y)] ⇔ [Factor x] ˆ [literal y])
([x] ⇔ [literal x]))

(Term
([‘(* ,x ,y)] ⇔ [Term x] * [Factor y])
([‘(/ ,x ,y)] ⇔ [Term x] / [Factor y])
([x] ⇔ [Factor x]))

(Expr
([‘(+ ,x ,y)] ⇔ [Expr x] + [Term y])
([‘(- ,x ,y)] ⇔ [Expr x] - [Term y])
([x] ⇔ [Term x])

))

Figure 1. Pure, declarative PCG parser analyzer

The design of PCG (see figure 2) is centered around a set
of syntax-rules macros: seq for processing clause bodies,
process-args for clause heads, predicate and pcg that glue
everything together.5

miniKanren

Parsing

Clause

Grammar

R5RS Scheme

PCG

standard library

unify+projectfresh+cond*

syntax−rules

PCG

Figure 2. PURE3 DSL architecture

The seq macro (see figure 5) implements the threading of
a difference-list, per-clause sub-goal sequencing, introduction of
a new logical temporary for each step and dispatching on the
shape of forms encountered as sub-goals (non-terminals, quasi-
data, atoms, escapes, ε, PEG combinators). By the very nature of
hygienic syntax-rules, both components of the difference list
(i.e., monadic state bindings) as well as all logical temporaries can
not leak to user code, making the PCG formalism safe. This macro
also performs a few optimizations such as skipping the introduction
of a new logical temporary at the end of the sub-goal list.

Since each temporary is introduced by a different invocation
of the seq macro, and yet 2 bindings get referred to by the gen-
erated code at each step (see section 2.4 for an example), an ex-
pander6 compatible with the Scheme Request for Implementation
(SRFI)#46: “Basic Syntax-rules Extensions” [Cam05] shall au-
tomatically rename it, while gratuitous bindings thus introduced
shall be removed by the BIGLOO compiler’s constant β-reduction
pass, as they are immediately shadowed by the fresh binder. The
syntax-rules therefore give us gratis, pure, declarative gensym!

Both predicate and pcg flavors of our syntax-rules macros
support named (see the pcg expr from section 1.2) as well as

5 due to space limits we can only refer to snippets of these in the appendix
6 we use the ALEXPANDER library ported to, and integrated with BIGLOO
as it still lacks a native and compatible syntax-rules expander

draft 3 2014/9/24

anonymous (see e.g., section 2.1) predicate abstractions. In addi-
tion, pcg macros allow specification of a group of possibly mutu-
ally recursive predicates where each is named and visible from the
top-level (see figure 1), as well as a group where a distinguished
predicate is selected as a start predicate (see the anbnan recog-
nizer from section 1.2) with the rest hidden from the top-level.

2.2.1 Higher-order rules
Since MINIKANREN predicates are represented by normal Scheme
functions, all the benefits of working in a Functional Programming
(FP) language are retained. The ne-list predicate shown below
supports repeated matching of the user-supplied elem predicate,
with the literal represented by the value of the comma argument
matched as a list separator.7

;; ... Passing functions into predicates ...
;; Monomorphic lists (for JSON), used in section 3.1
(defn [ne-list comma elem] (pcg ⇔ s
(s ([‘(,v)] ⇔ [elem v])

([‘(,v . ,vs)] ⇔
[elem v] [idem comma] [s vs])

)))

The recursion works out of the box for predicates such as
ne-list, which employ right-recursion. However, some gram-
mars such as the one from the notorious expression parser of figure
1, need to use left-recursion if the associativity of operators and the
naturality of the parser representation is to be maintained. We shall
present a “logical” solution for this problem in section 2.4.

;; ... Returning functions from predicates ...
;; Left-recursion avoidance (higher-order patching)
(pcg Factor
([π(λ (z) (y (if [null? z] x ‘[ˆ ,z ,x])))]
⇔ [literal x] ˆ [Factor y])

([π(λ (z) (if [null? z] x ‘[ˆ ,z ,x]))]
⇔ [literal x])

)

An example of a “functional” solution would be left-recursion
avoidance by returning functions from higher-order predicates
[For02]. A pcg representation of the Factor fragment of the
expression grammar illustrating this technique is shown above.
Note the similarity of this to the emulation of fold-left by
fold-right (see e.g., [Hut99]) and the technique introduced in
[DG05]. The use of the impure project (π) form,8 which requires
that variables are grounded (i.e., instantiated), precludes the use of
this predicate in reverse.

2.3 Breaking hygiene (look ma, no gensym)
In section 2.1 we explained why PURE3 uses inference of logic
variable bindings in order to promote (full) reversibility and to
avoid code clutter by explicit fresh introductions (see section 2.4
for a convincing case). In this section we show how inference can
be implemented in our process-args macro by “breaking” the
weak hygiene of syntax-rules.

It is well known that the promise of syntax-rules never to
cause the capturing of bindings (hygiene) can be subverted [Kis02].
The extract and extract* macros implementing the so-called
Petrofsky’s extraction are typically used to capture the bindings
regardless of their color (scope information) and pass them further
to the other macros. The feature of syntax-rules that makes this
possible is the semantics of macro literals [ABB+98].

A first step towards an equational theory of name binding across
disparate code fragments using a TRS consists of extracting the

7 via explicit lifting using the idem predicate, defined in the appendix
8 the straightforward implementation of π is elided in this paper

free variables from a tree of terms (w syntax-rules macro). We
assume the weak hygiene where all bindings are intended to be
local and are not redefined outside of the terms being processed.
This is exactly the same assumption that extract macro makes
(see [Kis02] for further details).

;; Ignoring (some) Scheme primitives
(def-syntax (scheme-bindings (k a b [s ...] . d))

(k a b [s ... if cond begin null? list first second
pair? car cdr + - * / ˆ = ≡ : ...] . d))

Of course, all binders must be known to this macro (and names
thus introduced must be skipped in appropriate scopes), in addition
to all of the eigen primitives that must not be considered free in
given terms. This is accomplished using the macro given above,
which employs the macro-level Continuation Passing Style (CPS)
[HF00] to bootstrap the w macro by including common Scheme
primitives in a list of bindings already processed.

2.3.1 Handling attributes
In the process of generating fresh and projected predicate ar-
guments for the inferred attribute bindings we need to make sure
that the bindings given to the binder correspond to the bindings
captured from the body. If there are no bindings then we default to
some construct like begin or all. For project, we verify that all
attributes are grounded and vacuously succeed otherwise.

;; Introducing the fresh and project binders
(def-syntax make-scopes (syntax-rules (project)

([] #s) ;; nothing to do - just succeed
([() default . body] (default . body))
([project (var ...) . body]

(project (var ...)
(or (and (ground? var) body) #s)

))
([binder vars . body]
(let-syntax-rule ([K args terms]

(binder args . terms))
(extract* vars body (K [] body))

))
))

Now we’re ready to complete the third step: attacking the
process-args macro, which makes sure that the resolution of
the synthesized attributes in the clause head, the clause body, log-
ical actions, and finally - evaluation of projected code - are all
scheduled appropriately. Correct sequencing is essential for re-
versibility - when run in reverse the synthesized attributes actually
provide the inputs, and hence must resolve first. When running
forwards, resolving them first does no harm, since clause heads
can only indirectly employ constructs made available through the
process-args implementation - unification using quasi-data and
conjunction using all (disjunctions and recursion are not available
inside clause heads). Projections (π) can only run in forward mode
and always after resolving the clause body.

Reversible logical actions (not explained in this paper in detail,
but see section 3.2 for a use-case) have to run after clause body
terms when running forwards but before when run in reverse. Non-
reversible actions, as implemented by escapes in the seq macro,
are left to be explicitly scheduled by the user in clause bodies.

We ignore (inherited) attributes that are explicitly bound from
outside when looking for free bindings, but do include them into
the list of attributes to generate using the make-scopes macro.
Each attribute in the clause head gets unified with the respective
argument of the clause function,9 while the final void attribute tail
gets syntax-bound (i.e., renamed) to ’() as is customary in Scheme
variadic functions.

9 using a technique similar to the seq macro described above

draft 4 2014/9/24

Now we can bring together the full reversibility-by-default
and attribute bindings inference (as implemented by the seq and
process-args macros), and actually complete our TRS for the
predicate clause forms as it is implemented by the pcg/predicate
macro. Each clause is translated to a separate R5RS function which
implements all aforementioned aspects of the corresponding pred-
icate logic. Despite the seeming restriction that each clause is vis-
ible from the top-level, Scheme’s define form actually is macro-
expressible by the letrec binder when it precedes all other forms
in a block. This is useful for implementing the pcg variants that
hide internal predicates and expose a single starting predicate func-
tion to the top-level.10

Synthesized attributes Similar to the S-attributed grammars,
where inherited attributes are not allowed, PURE3 also is tuned for
seamless expression of grammars with only synthesized attributes.
In fact, all examples introduced so far used no local: attribute
specifications, inferring the attributes in clause bodies from clause
heads. Together with the ban on project (π), this enforces the
fully reversible behavior in a “correct-by-construction” way.

Inherited attributes Having no possibility of generating and
passing non-instantiated logic variables severely restricts the ex-
pressiveness of the formalism. There are examples of when such
a strategy for implementing semantics is essential, e.g., predicates
from section 3.2. Here we illustrate PURE3’s implementation of
inherited attributes using a particular way of solving left-recursion
by left-factoring that is commonly used in e.g., Prolog community.

;; Left-recursion elimination by left-factoring
(defn exprs (pcg ⇔ expr
(factor locals: (x)
([y] ⇔ [literal x] [factor’ x y]))

(factor’ locals: (y)
([x z] ⇔ ˆ [literal y] [factor’ ‘(ˆ ,x ,y) z])
([x x] ⇔ ε))

(term locals: (x)
([y] ⇔ [factor x] [term’ x y]))

(term’ locals: (y)
([x z] ⇔ * [factor y] [term’ ‘(* ,x ,y) z])
([x z] ⇔ / [factor y] [term’ ‘(/ ,x ,y) z])
([x x] ⇔ ε))

(expr locals: (x)
([y] ⇔ [term x] [expr’ x y]))

(expr’ locals: (y)
([x z] ⇔ + [term y] [expr’ ‘(+ ,x ,y) z])
([x z] ⇔ - [term y] [expr’ ‘(- ,x ,y) z])
([x x] ⇔ ε))

))

Left-factoring is usually understood as the process of introduc-
ing additional predicates for matching common prefix terms of
a number of clauses and then factoring them out from the orig-
inal predicates. Although most often used for optimization, this
technique proves helpful in converting left-recursion into right-
recursion. One has to be careful, however, not to change the as-
sociativity of the operators when applying left-factoring.

Let us implement left-recursion elimination using PCG. Here,
the parent predicate (e.g., expr’) binds a fresh variable for the
inherited attribute using the locals: spec and then passes it to
the child predicate (e.g., term) which resolves the attribute and
communicates it to its sibling. The recursive call then unifies the
semantics with a newly formed AST node upon completion. Note
that this bears strong resemblance to the L-attributed grammars.

Although PURE3 definitely supports it, this approach does not
possess naturally declarative semantics, since the semantic ac-
tions are now interwoven with the syntax. Also, similarly to left-

10 we refer to our github for further details about select and pcg

recursion avoidance in section 2.2.1, the attribute resolution is de-
layed until the end of the input, which prohibits on-line, incremen-
tal parsing. Section 2.4 presents a better approach to left-recursion.

2.3.2 Handling binding in combinators
Consider the semantics of Scheme’s (-) function: it is left-
associative and accepts non-zero number of arguments. One might
define both the syntax and semantics of (-) using the PEG’s ∗
combinator as follows, assuming the variadic handling of the oper-
ator in the AST:

;; Minus in Scheme has arity >= 1
(pcg -’ ([‘(- ,t . ,ts)]⇔[term t] [(’- : [term ts])*]))

Note that this avoids explicit recursion. However, now the ∗
combinator has to collect all elements of the input matching the
term ts predicate invocation into a list, while each invocation of
the term predicate still unifies with a single term only. This implies
that representing each attribute as it is being synthesized with a
single logical variable is not sufficient. In fact, we need 4 logical
variables for each attribute: one for returning the final result, one
when matching on each term, one for the accumulator and another
one for the intermediate results as needed for looping in the seq
rule that implements the Kleene-∗ operator.

2.4 Pure, on-line left-recursion
Now we’re well-equipped to attack left-recursion in PCG rules by
applying the technique of logical laziness. This problem arises due
to the infinite regress when a predicate recurses while not having
consumed anything from the input. Still, direct-style associativity
prevents us from applying left-recursion elimination or avoidance
while the need to support left-recursion in a pure, on-line and fully
reversible fashion precludes usage of impure techniques such as
curtailment or memoing. Looks like we’re stuck.

;; Diverging R5RS code generated for Expr (+) clause:
(define head 422 (λ (Lin Lout . vars)

(fresh (y x) (≡ vars (cons (list ’+ x y) ’()))
(fresh (temp 505 temp)

(Expr Lin temp x)
(≡ temp (cons ’+ temp 505))
(Term temp 505 Lout y)

))))
;; ... head 424 and head 426 elided ...
(def Expr (λ vs (conde ((apply ([extend] ’Expr) vs))
((apply head 422 vs)) ;; ([‘(+ ,x ,y)] ⇔ ...)
((apply head 424 vs)) ;; ([‘(- ,x ,y)] ⇔ ...)
((apply head 426 vs)) ;; ([x] ⇔ ...)

)))

Looking at the diverging generated code for the Expr gram-
mar fragment from figure 1 (see above) we immediately observe
the problem: the base case of this non-well-founded recursion
(head 426) is never reached. Fortunately, the problem has a sur-
prisingly simple solution which we dub “logical laziness”. It com-
prises several steps all of which are automated using the pcg and
the seq - both pure and declarative syntax-rules macros.

1. identifying (mutually) recursive clauses (section 2.2)

2. marking of such clauses using the lift form (can also be explic-
itly marked by the user if needed, as e.g., in section 4.3)

3. untying the recursive knot and insertion of replacement calls to
append0 (section 2.1) with dummies (variable d below)

4. delaying of the resolution and subsequent dropping of recursive
calls at the very end (or very beginning) of a clause body

5. tying the knot by unifying the difference list with [d ’()]

draft 5 2014/9/24

In essence, here we apply a predicate transformation where the
order of predicate resolution is adapted to suit the resolution proce-
dure. The grammar designer is not required to apply workarounds
for left-recursion and can regain a high-level view as in figure 1,
as long as the set of mutually recursive predicate clauses can be
automatically identified by our pcg macro. The code below that is
generated for the same grammar fragment exhibits the technique.

;; Reversible R5RS code generated for Expr clause:
;; ([‘(+ ,x ,y)] ⇔ [Expr x] + [Term y])
(define head 422 (λ (Lin Lout . vars)
(fresh (y x) (≡ vars (cons (list ’+ x y) ’()))

(fresh (temp 505 temp d)
(project (Lin) (if (ground? Lin) #s (Expr d ’() x)))

(append0 d temp Lin)
(≡ temp (cons ’+ temp 505))
(Term temp 505 Lout y)
(project (Lin) (if (ground? Lin) (Expr d ’() x) #s))

))))

This technique has the advantage of maintaining both naturality
of the grammar as well as full reversibility of the resulting parser.
When the input Lin is grounded (i.e., the parser is running for-
wards), the recursive call is delayed to the very end of the clause, ef-
fectively making it tail-recursive. When the parser is running back-
wards (i.e., the input Lin is fresh), the recursive call has to run first
in the clause, because otherwise the recursion becomes non-well-
founded, this time due to semantic destructuring of the vars.

;; (prefixed) infinite streams of logic variables

(def (fresh0 x) (def fresh0 (predicate
(conde ([≡ x ’()]) ([’()])

(else (fresh (y z) ([‘(,y . ,z)] :-
(fresh0 z) (fresh0 z)
(≡ x ‘(,y . ,z)))))

))))

(defn (prefix0 a b) (defn prefix0

(fresh (x) (predicate locals: (x)

(fresh0 x) ([a b] :- (fresh0 x)

(append0 a x b) (append0 a x b)
)))))

Does this work as promised, in an on-line fashion? Lets generate
an infinite input using predicates above (where both MINIKANREN
and PURE3 versions are given) and verify by running!

;; Parsing prefixed infinite input stream
(verify Expr (run 1 (q)

(fresh (l)

(prefix0 ’(1 * 2 + 3 * 5) l)
(Expr l ’() q)))

===> (+ (* 1 2) (* 3 5)))

One disadvantage of this technique is the non-determinism (and
thus a quadratic-time slowdown) introduced by the append0. In
practice, however, this is not problematic because non-determinism
often is and/or can be easily constrained by putting the limit to the
lookahead by tokens that immediately follow the recursive call.

3. Type systems a la carte
Having introduced all the tools necessary to attack a more practical
problem of adding types to a fully reversible JSON parser, we now
turn to figure 3, which depicts a type-free implementation of the
JSON syntax.11 This PCG is our starting point for this section.

The semantics is represented by the AST where JSON literals
remain strings, symbols and numbers. Name-value pairs become
List Processing (LISP) pairs, while arrays and objects turn into

11 we rely on BIGLOO reader for symbol, string and number parsing

(pcg
(json-symbol ([x] ⇔ [strings x]))
(json-key = json-symbol)
(json-number = number)
(json-bool ([] ⇔ (’true / ’false)))
(json-value ([] ⇔ ’null)
([x] ⇔ [json-bool x])
([x] ⇔ ([json-symbol x] / [json-number x]))
([x] ⇔ ([json-object x] / [json-array x])))

(json-pair ([‘(,n . ,v)] ⇔
[json-key n] |:| [json-value v]))

(json-value-list ([’()] ⇔ ε)
([l] ⇔ [(ne-list |,| json-value) l]))

(json-pair-list ([’()] ⇔ ε)
([l] ⇔ [(ne-list |,| json-pair) l]))

(json-array
([‘(arr . ,es)] ⇔ |[| [json-value-list es] |]|))

(json-object
([‘(obj . ,es)] ⇔ |{| [json-pair-list es] |}|))

)

Figure 3. Type-free JSON

explicitly tagged lists of JSON values. This grammar is interesting
because of this recursion and the presence of various data-types.

3.1 Type checking

Base Types Pairs, Lists

Γ`null:U
(UNIT) T0={U,B,S,N},S×T1

T1=T0∪{A(T1),O(S,T1)}
x∈{true,false}

Γ`x:B
(BOOL) ∀t:T1,Γ`v1,...vn:t

Γ`[v1,...vn]:A(t)
(ARRI)

x∈Strings
Γ`x:S

(STR) ∀t:T1,Γ`k:S,Γ`v:t
Γ`(k,v):S×t

(PAIRI)

x∈R
Γ`x:N

(NUM) ∀t:T1,Γ`v1,...vn:S×t
Γ`{v1,...vn}:O(S,t)

(OBJI)

Table 1. Typing rules for monomorphic JSON

Thanks to the availability of unification, addition of types to the
grammars using PURE3 is easy. In figure 4 on the left-hand side
(i.e., the semantics), each clause is extended with an additional
attribute, while the right-hand side (i.e., the syntax) is essentially
not modified. The higher-order ne-list predicate (section 2.2.1)
is not touched for the monomorphic lists, a variant for introducing
types in JSON that ensures homogeneity of objects and arrays
through static typing.

;; Monomorphic JSON lists (i.e., arrays and objects)
(pcg ;; replace these in Figure 4. below
(json-value-list

([’() ‘(List ,t)] ⇔ ε)
([l ‘(List ,t)] ⇔
[(ne-list |,| (json-value t)) l]))

(json-pair-list
([’() ‘(PList (,t1 ,t2))] ⇔ ε)
([l ‘(PList (,t1 ,t2))] ⇔
[(ne-list |,| (json-pair ‘[Pair ,t1 ,t2])) l])

))

Conventional typing rules are given in table 1 while their trans-
lation to PURE3 is a straightforward extension of rules from figure 3
with typed versions of json-value-list and json-pair-list
predicates. The code above implements the ARRI, PAIRI and OBJI
typing rules (the rest of the rules can be found in figure 4). We rely
on sectioning to partially apply the json-value and json-pair
predicates to known types, and to introduce type schemes (con-
taining “fresh” types) for empty containers. The logical unification
ensures type correctness by applying the same types throughout the
lists once they are instantiated, leading to monomorphic containers.

draft 6 2014/9/24

(defn tjson-value (pcg ⇔ json-value
(json-symbol extend: extend ([x ’Str] ⇔
[strings x]))

(json-key extend: extend ([x t] ⇔
[json-symbol x t]))

(json-number ([x ’Num] ⇔ [number x]))
(json-value ([’null ’Unit] ⇔ ’null)
([x ’Bool] ⇔ [json-bool x])
([x t] ⇔ ([json-symbol x t] / [json-number x t]))
([x t] ⇔ ([json-object x t] / [json-array x t])))

(json-pair ([‘(,n . ,v) ‘(Pair ,tn ,tv)] ⇔
[json-key n tn] |:| [json-value v tv]))

(json-value-list ([’() ‘(List ,t)] ⇔ ε)
([l ‘(List ,ts)] ⇔
[(poly-ne-list |,| json-value) l ts]))

(json-pair-list ([’() ‘(PList (,t1 ,t2))] ⇔ ε)
([l ‘(PList . ,ts)] ⇔
[(poly-ne-list |,| json-pair) l ts]))

(json-array ;; promote List to an Array
([‘(arr . ,es) ‘(Array ,t)] ⇔
|[| [json-value-list es ‘(List ,t)] |]|))

(json-object ;; promote List to an Object
([‘(obj . ,es) ‘(Object ,ts)] ⇔
|{| [json-pair-list es ‘(PList . ,ts)] |}|))

))

Figure 4. Typed, extensible JSON

Note that we are making the json-symbol and json-key pred-
icates extensible via extend: spec. This shall prove its usefulness
in section 4 where we extend the set of JSON values by proper sym-
bols and JSON keys by numbers and booleans while preserving the
modularity and compositionality of the grammar above.

3.2 Type inference
The previous section has introduced type-checking to JSON for
monomorphic containers denoting objects such as arrays of num-
bers or objects of pairs of strings. Such types can be either
checked (provided they are given as instantiated attributes to the
tjson-value predicate), or inferred (provided they are given as
free logic variables). However, for homogeneous arrays and ob-
jects, inference in this context will typically mean that the type
shall be derived using the first element (pair), with the rest of the
elements simply checked against the already instantiated type.

T2=T1∪{
∑

(T2,T2)} ∃i:t=ti∑
(t,

∑
ti)=

∑
ti

(SUM1)

T3=T1∪{A(T2),O(S,T2)} ∀i:t6=ti∑
(t,

∑
ti)=

∑
ti+1

(SUM2)

T2∼=
∑

(T2) (VACU)

∀t∈T2

Γ`[]:A(t)
(ARR0) ∀t∈T3,Γ`x:t,y:A(

∑
ti)

Γ`[x]⊕y:A(
∑

(t,
∑

ti))
(ARR*)

∀t∈T2

Γ`{}:O(S,t)
(OBJ0) ∀t∈T3,Γ`x:t,y:O(S,

∑
ti)

Γ`(s,x)⊗y:O(S,
∑

(t,
∑

ti))
(OBJ*)

Table 2. Typing rules for polymorphic JSON

In this section we develop a more general notion of type in-
ference for JSON. Rather than insisting on monomorphic lists, we
allow polymorphism. The mechanisms included in PURE3 support
the declarative specification of a larger class of polymorphic typ-
ing rules. With such rules, a sum-type can appear in type terms,
expressing the set of possible value-types that might appear in a
given JSON list. The polymorphic typing rules are given in table 2.

To implement the SUM1 and SUM2 rules we introduce the
following predicate, which handles injection and insertion of types
into a set of types. This is easily accomplished using the soft-cut, or
logical “if-then-else” construction (also available in many Prolog
implementations). In the sigma predicate below, the type is first

checked for membership in a given union representing a set of
types. If found, the set is unified with the result. Otherwise, a new
set that is formed by insertion of the new type is returned.

;; Working with types
(defn sigma (predicate locals: (ts’)
([t ‘(Union . ,ts’) ‘(Union . ,ts)] :-
([member0 t ts’] *-> [≡ ts’ ts]

/ [insert0 t ts’ ts]))
([t t’ ts] :-
([≡ t t’] *-> [≡ t’ ts]

/ ([! car0 t’ ’Union]
:[≡ ts ‘(Union . ,ts’)]

:[insert0 t ‘(,t’) ts’])))
))

This predicate also keeps unions non-vacuous by collapsing
singleton sets to their isomorphic member (VACU rule) using “soft-
cuts” (*->) and enforces flat unions via “negation-as-failure” (!).

;; Polymorphic lists
(defn [poly-ne-list comma elem] (pcg ⇔ s
(s locals: (t ts’)
([‘(,v) t] ⇔ [elem v t])
([‘(,v . ,vs) ts] <=[(sigma t ts’ ts)]=>
[elem v t] [idem comma] [s vs ts’])

)))

Because the PCG predicate that matches a list of JSON values
is required to compute new types as it parses the input terms, it can
not remain homomorphic in the presence of polymorphic types, as
the ne-list predicate. A straightforward extension that uses the
sigma predicate above, and which implements the ARR* and OBJ*
rules from table 2 is shown above (poly-ne-list predicate). It
utilizes a reversible logical action (using the <=[actions ...]=>
syntax) to make sure that the type inference of the JSON values is
performed in a fully reversible way (see section 2.3.1 above).

3.3 Term generation
We make no distinction between the parsing and the typing phases
- both kinds of semantic attributes are computed together. Looking
at the figure 4, we observe that types are just like other semantic
attributes, obtained by removing some details from semantic terms
(the AST), in a way that parallels abstract interpretation [CC77].
Using PURE3, one might even compute a number of different types
or kinds of semantics via unification of PCG attributes in parallel.

;; Constrained generation of syntax-semantics pairs
(verify enum1 (run* (q) (fresh (x) (tjson-value

x ’() q ‘(Object (Pair Bool Num)))))
=>) ;; there are no terms of this type (yet)

;; there are infinitely many terms of this type
(verify enum2 (run 5 (q) (fresh (x) (tjson-value

x ’() q ‘(Object (Pair Str Num)))))
---> (obj ("a" . 0)) (obj ("b" . 0)) (obj ("a" . 1))

(obj ("a" . 0) ("a" . 0)) (obj ("a" . 2)))

Because of this, the constrained generation of syntax-semantics
pairs based on types is just a mode of running PCG predicates.

4. Extensibility
For JSON, one of common objections is the lack of human-friendly
surface syntax. CSON [Lup], for example, dispenses with the need
to quote all symbols as JSON strings. It is therefore useful to allow
contained extensibility for the specification of DSL families.

The PCG formalism as introduced so far supports a rather rigid
specification of syntax and semantics. Referential transparency of
the pure predicates implies that any local change done to a grammar
requires redefinition of all dependent predicates. Relying on im-
plicit reference cells as used by Scheme’s define primitive would

draft 7 2014/9/24

not work with pcg rules that hide internals. Also, there are difficul-
ties with this approach when running it on the BIGLOO interpreter
as well as with BIGLOO’s native, and Java Virtual Machine (JVM)
back-ends, which disallow redefinition of procedures [Se].

In PURE3 we would like to be able to introduce orthogonal (i.e.,
homomorphic) extensions to both syntax and semantics, in a com-
positional and modular fashion. For example, a natural extension
of the json-symbol predicate to include proper symbols as JSON
values should not require a reiteration of the full grammar from
figure 4. Also, some DSLs would benefit from an external JSON-
like representation of sparse arrays, i.e., maps where the object key
(json-key clause) can be numeric rather than always only a string.

;; Allow symbols as values
(defn [tjson-ext-sym] (let ([extend’ (extend)])

(fn-with [apply extend’] | ’json-symbol =>
(pcg ([x ’Sym] ⇔ [symbol x]))

)))
;; Allow numbers and booleans as keys
(defn [tjson-ext-key] (let ([extend’ (extend)])

(fn-with [apply extend’] | ’json-key =>
(pcg ([x ’Num] ⇔ [number x])

([x ’Bool] ⇔ [json-bool x]))
)))

Using the anonymous functions with pattern-matching (as de-
scribed in [KS13]), we can define extensions in a straightforward
fashion, as shown above. Here we make use of dynamic bind-
ing mechanism implemented by the SRFI#39: “Parameter objects”
[Fee03]. The current value of the extend parameter object is saved,
and the tag passed to the extension call is checked. If it matches the
extended predicate’s name, then new clause(s) generated by the pcg
macro are returned as the predicate extension. Otherwise, saved ex-
tension is invoked (via the [apply extend’] handler).

This way, the predicates can be row-extended seamlessly. The
Expr predicate function in the generated code from section 2.4
exposes the internals. As a first choice point introduced with
MINIKANREN’s conde, we invoke the extend parameter. By de-
fault, predicates returned by parameter objects fail, as below:

;; Implementing extensibility
(defn *def-extend* (λ (head) (λ (in out . results) #u)))
(defn extend [make-parameter *def-extend*])

In addition to the destructive updates expressed by calling the
parameter object with a single argument, the SRFI#39 supports
modifying dynamically scoped bindings with new values in a stati-
cally defined scope, specified via the parameterize form. This is
useful for expressing local, contained changes to PCG grammars.

;; Using extensible syntax
(parameterize ([extend (tjson-ext-sym)])
;; forwards
(verify test15.1 (run 1 (q) (fresh (x t) (tjson-value

’#h: [{foo:quux},{bar:snarf},1] ˆL ’() x t)
[≡ q ‘(,t ,x)]))

===> [(Array (Union (Object (Pair Sym Sym)) Num))
(arr (obj (foo . quux)) (obj (bar . snarf)) 1)])

;; backwards
(verify test15.2 (run* (q) (tjson-value

q ’() ’[obj (a . (arr "b" "2.3"))]
‘(Object (Pair Sym (Array Str)))))

===> (|{| a |:| |[| "b" |,| "2.3" |]| |}|)
))
(parameterize ([extend (tjson-ext-key)])
(verify test15.3 (run* (q) (fresh (x t) (tjson-value

’#h: [{12: "quux"},{42: "snarf"}] ˆL ’() x t)
[≡ q ‘(,t ,x)]))

===> [(Array (Object (Pair Num Str)))
(arr (obj (12 . "quux")) (obj (42 . "snarf")))]

))

4.1 Chaining extensions
Often, extensions make sense only when applied together, as a
group. PURE3 supports expression of extension dependencies by
static chaining of corresponding extension functions. This can be
achieved by simply capturing the dependent extension rather than
the current value of the parameter object in dependee’s definition:

;; A contrived example of chaining ext-key to ext-sym
(defn [ext-key] (let ([extend’ (ext-sym)]) ...))

4.2 Composing extensions
Because each extension hooks onto the current value of the extend
parameter object, we can also compose such extensions in a natural
way - simply by nesting appropriate parameterize scopes.

;; Composing JSON extensions
(parameterize ([extend (tjson-ext-sym)])
(parameterize ([extend (tjson-ext-key)])
(verify test16 (run* (q) (fresh (x t) (tjson-value

’#h: [{12:quux},{42:snarf}] ˆL ’() x t)
[≡ q ‘(,t ,x)]))

===> [(Array (Object (Pair Num Sym)))
(arr (obj (12 . quux)) (obj (42 . snarf)))])

))

While in section 4.1 the composition is static, here we apply
dynamic resolution and chaining of extensions referenced by the
extend parameter object. This improves the modularity for library-
based implementation of DSL families that support localization,
such as the JSON extensible parser grammar described here.

4.3 Power and danger
Combining extensions with committed choice (which can be forced
by the condo: PCG modifier), one can use extensions to sub-
vert existing grammar in a non-monotonic fashion. Although PCGs
only seem to support row-extensibility, addition of new clauses that
may take precedence over previous clauses is definitely possible.
The ability to recursively refer to previously defined clauses en-
ables extensions to the rows themselves. For example, the expres-
sion grammar can be extended with new operators as follows:12

;; Extending Term predicate
(defn Term+ (let ([extend’ (extend)][T’ Term])
(fn-with [apply extend’] | ’Term =>
(pcg ([π(@ x y)] ⇔ [lift T’ x] @ [Factor y]))

)))

Because we allow impure logical code here, and because the
escape to the Scheme level is made possible via MINIKANREN’s
run and project (π) primitives, the PCG predicates can be ex-
tended while parsing. For example, the @ in the clause head above
can be referring to any Scheme function or procedure, and that may
perform any (effectful) computation. Since the SRFI#39 allows de-
structive/imperative update to the extend reference cell, this alone
effectively makes the formalism Turing-complete (i.e., Chomsky
Type-0). This can be easily seen by translation to vW-grammars, or
2-level grammars whereby infinite context-free grammars can be
generated from a finite set of (Type-3, even) meta-rules [vW74].

5. Related work
A traditional approach to the problem of left-recursion is its effec-
tive elimination [HMU03]. The work that formalized PEGs avoids
left-recursion by putting it outside of the set of well-formed gram-
mars [For04]. With Prolog DCGs the problem is typically solved
via ad-hoc methods such as cancellation tokens [NK93], memoing

12 note that we need to explicitly lift the left-recursive call in this case

draft 8 2014/9/24

[BS08] or through elimination (see section 2.3.1 for a PCG ren-
dering of this). Parser combinators are often applying curtailment
[FH06] and [FHC08], an old idea to limit matches by the input
length [Kun65]. The work on OMETA has also advocated memo-
ing for solving left-recursion [WDM08].

Unlike prior art where programming was constrained to use
only reversible compositions of bijections [RO10] or where the re-
verse transformations are derived from the forward transformations
[Vis01] and OMETA [WP07], we maintain a single grammar/parser
that can be used in different modes: forwards, backwards, sideways
etc. Unlike the more restrictive formalism of lenses [FGM+05] and
[BFP+08] we do not rely on carrying the original sources along but
allow structural changes within the limits of the information theory.

Mode analysis, inference and scheduling of predicate resolu-
tions has been addressed, e.g., in Prolog [DW88] and in Mercury
[OSS02]. Our approach differs from those as it seamlessly inte-
grates with an existing FP language rather than relies on an abstract
interpretation framework implemented inside a dedicated compiler.

Of all proposals to improve the syntax of LISP going back
to “M-expressions”, “I-expressions” [M0̈5], sweet “t-expressions”
[DAW13] and CGOL [Pra73] the method of “enforestation”
[RF12] seems to be the closest to our approach. This work uti-
lizes the Pratt operator precedence parsing (which is less general
than PCG) that avoids rather than addresses issue of left-recursion.

6. Conclusions
Fully reversible syntax-semantics relations are enforced by a
“correct-by-construction” inference of logical variable bindings
from clause heads and equation of those with the bindings from
clause bodies. The information is not dissipated by default, so the
transformations remain reversible and in fact, might become very
inexpensive to run [Lan00] in the future. Parts of the information
may be hidden, which is useful for e.g., implementing updatable
views or for keeping programs invisibly statically typed.

The novel technique of logical laziness allows us to retain the
purely declarative style of on-line, left-recursive grammar specifi-
cations, without sacrificing either the direct-style associativity or
the naturality of the syntax, semantics and typing specifications.

We offer one possible answer to the question about what hy-
giene of syntax-rules actually means [Kis02]: it implements the
access to the name and binding in Scheme (i.e., scoping rules),
whereby hygiene is maintained by default while still supporting
equational theory of bindings across disparate code fragments. In
effect, (weak) hygiene breaking syntax-rules should be seen as
specifications of such theories [Her10] and not just as cool hacks.

PCGs are “macros no more”: we see no need to use arcane,
albeit elegant rewriting systems such as syntax-rules for pro-
gramming in a homoiconic language such as Scheme. The syn-
tax and the semantics are better specified using pure declarative
methods of PURE3, naturally expressing reversible (i.e., inferrable)
types, providing declarative disambiguation operators, enabling on-
line/incremental processing as well as providing support for essen-
tial error reporting and debugging interfaces for practical DSLs.

Acknowledgments
We would like to thank Oleg Kiselyov for noting the problem of
left-recursion in on-line parsers. This paper has benefited from the
discussions with Willam Byrd, Ralf Lämmel and Vadim Zaytsev.

References
[ABB+98] N. I. Adams, IV, D. H. Bartley, G. Brooks, R. K. Dyb-

vig, D. P. Friedman, R. Halstead, C. Hanson, C. T. Haynes,
E. Kohlbecker, D. Oxley, K. M. Pitman, G. J. Rozas, G. L.
Steele, Jr., G. J. Sussman, M. Wand, and H. Abelson. Revised5

report on the algorithmic language scheme. SIGPLAN Not.,
33(9):26–76, 1998. URL: http://doi.acm.org/10.1145/
290229.290234.

[ALSU06] Alfred V. Aho, Monica Lam, Ravi Sethi, and Jeffrey D. Ull-
man. Compilers: principles, techniques, and tools. Addison-
Wesley Longman Publishing Co., Inc., 2006.

[App06] Andrew W. Appel. Compiling with Continuations (corr. ver-
sion). Cambridge University Press, 2006.

[BD77] Rod M. Burstall and John Darlington. A transformation sys-
tem for developing recursive programs. J. ACM, 24(1):44–
67, 1977. URL: http://doi.acm.org/10.1145/321992.
321996.

[BFP+08] Aaron Bohannon, J. Nathan Foster, Benjamin C. Pierce,
Alexandre Pilkiewicz, and Alan Schmitt. Boomerang: re-
sourceful lenses for string data. In POPL, pages 407–419,
2008. URL: http://doi.acm.org/10.1145/1328438.
1328487.

[BS08] Ralph Becket and Zoltan Somogyi. Dcgs + memoing
= packrat parsing but is it worth it? In PADL, pages
182–196, 2008. URL: http://dx.doi.org/10.1007/
978-3-540-77442-6_13.

[Byr10] William E Byrd. Relational programming in miniKanren:
techniques, applications, and implementations. PhD thesis,
Department of Computer Science, Indiana University, 2010.

[Cam05] Taylor Campbell. Srfi 46: Basic syntax-rules extensions. Inter-
net, 2005. URL: http://srfi.schemers.org/srfi-46.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs by con-
struction or approximation of fixpoints. In Proceedings of the
4th ACM SIGACT-SIGPLAN symposium on Principles of pro-
gramming languages, POPL ’77, pages 238–252. ACM, 1977.
URL: http://doi.acm.org/10.1145/512950.512973.

[DAW13] Alan Manuel K. Gloria David A. Wheeler. Srfi 49: Sweet-
expressions (t-expressions). Internet, 2013. URL: http:
//srfi.schemers.org/srfi-110.

[DG05] Olivier Danvy and Mayer Goldberg. There and back again.
Fundam. Inform., 66(4):397–413, 2005.

[DM82] Luı́s Damas and Robin Milner. Principal type-schemes for
functional programs. In POPL, pages 207–212, 1982. URL:
http://doi.acm.org/10.1145/582153.582176.

[DW88] Saumya K. Debray and David Scott Warren. Automatic mode
inference for logic programs. J. Log. Program., 5(3):207–229,
1988.

[FBK] Daniel P. Friedman, William E. Byrd, and Oleg Kiselyov.
minikanren homepage. URL: http://minikanren.org.

[FBK05] Daniel P. Friedman, William E. Byrd, and Oleg Kiselyov. The
reasoned schemer. MIT Press, 2005.

[Fee03] Marc Feeley. Srfi 39: Parameter objects. Internet, 2003. URL:
http://srfi.schemers.org/srfi-39.

[FGM+05] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore,
Benjamin C. Pierce, and Alan Schmitt. Combinators for bi-
directional tree transformations: a linguistic approach to the
view update problem. In POPL, pages 233–246, 2005. URL:
http://doi.acm.org/10.1145/1040305.1040325.

[FH06] Richard A. Frost and Rahmatullah Hafiz. A new top-down
parsing algorithm to accommodate ambiguity and left recur-
sion in polynomial time. SIGPLAN Notices, 41(5):46–54,
2006. URL: http://doi.acm.org/10.1145/1149982.
1149988.

[FHC08] Richard A. Frost, Rahmatullah Hafiz, and Paul Callaghan.
Parser combinators for ambiguous left-recursive grammars. In
PADL, pages 167–181, 2008. URL: http://dx.doi.org/
10.1007/978-3-540-77442-6_12.

[For02] Bryan Ford. Packrat parsing: : simple, powerful, lazy, linear
time, functional pearl. In ICFP, pages 36–47, 2002. URL:
http://doi.acm.org/10.1145/581478.581483.

draft 9 2014/9/24

http://doi.acm.org/10.1145/290229.290234
http://doi.acm.org/10.1145/290229.290234
http://doi.acm.org/10.1145/321992.321996
http://doi.acm.org/10.1145/321992.321996
http://doi.acm.org/10.1145/1328438.1328487
http://doi.acm.org/10.1145/1328438.1328487
http://dx.doi.org/10.1007/978-3-540-77442-6_13
http://dx.doi.org/10.1007/978-3-540-77442-6_13
http://srfi.schemers.org/srfi-46
http://doi.acm.org/10.1145/512950.512973
http://srfi.schemers.org/srfi-110
http://srfi.schemers.org/srfi-110
http://doi.acm.org/10.1145/582153.582176
http://minikanren.org
http://srfi.schemers.org/srfi-39
http://doi.acm.org/10.1145/1040305.1040325
http://doi.acm.org/10.1145/1149982.1149988
http://doi.acm.org/10.1145/1149982.1149988
http://dx.doi.org/10.1007/978-3-540-77442-6_12
http://dx.doi.org/10.1007/978-3-540-77442-6_12
http://doi.acm.org/10.1145/581478.581483

[For04] Bryan Ford. Parsing expression grammars: a recognition-based
syntactic foundation. In POPL, pages 111–122, 2004. URL:
http://doi.acm.org/10.1145/964001.964011.

[GBJL02] Dick Grune, Henri E. Bal, Ceriel J. H. Jacobs, and Koen Lan-
gendoen. Modern Compiler Design. John Wiley, 2002.

[Her10] David Herman. A theory of typed hygienic macros. PhD thesis,
Northeastern University Boston, 2010.

[HF00] Erik Hilsdale and Daniel P. Friedman. Writing macros in
continuation-passing style. In Scheme Workshop, 2000.

[HMU03] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman.
Introduction to automata theory, languages, and computation
- international edition (2. ed). Addison-Wesley, 2003.

[Hut99] Graham Hutton. A tutorial on the universality and ex-
pressiveness of fold. J. Funct. Program., 9(4):355–372,
1999. URL: http://journals.cambridge.org/action/
displayAbstract?aid=44275.

[Kis02] Oleg Kiselyov. How to write seemingly unhygienic and ref-
erentially opaque macros with syntax-rules. In Scheme Work-
shop, 2002.

[Kou] Peter Kourzanov. purecube. Internet. URL: https://
github.com/kourzanov/purecube.

[KS13] Peter Kourzanov and Henk Sips. Lingua franca of functional
programming (fp). In Hans-Wolfgang Loidl and Ricardo Pena,
editors, Trends in Functional Programming, volume 7829 of
Lecture Notes in Computer Science, pages 198–214. Springer
Berlin Heidelberg, 2013. URL: http://dx.doi.org/10.
1007/978-3-642-40447-4_13.

[Kun65] Susumu Kuno. The predictive analyzer and a path elimination
technique. Commun. ACM, 8(7):453–462, 1965. URL: http:
//doi.acm.org/10.1145/364995.365689.

[Lan00] R. Landauer. Irreversibility and heat generation in the com-
puting process. IBM Journal of Research and Develop-
ment, 44(1):261–269, 2000. URL: http://dx.doi.org/10.
1147/rd.441.0261.

[Lup] Benjamin Lupton. Coffeescript-object-notation parser. Inter-
net. URL: https://github.com/bevry/cson.

[M0̈5] Egil Möller. Srfi 49: Indentation-sensitive syntax. Internet,
2005. URL: http://srfi.schemers.org/srfi-49.

[NK93] M.-J. Nederhof and Cornelis H.A. Koster. Top-down parsing
for left-recursive grammars. Technical Report 93-10, Univer-
sity of Nijmegen, Department of Computer Science, 1993.

[OSS02] David Overton, Zoltan Somogyi, and Peter J. Stuckey.
Constraint-based mode analysis of mercury. In PPDP, pages
109–120, 2002.

[Pra73] Vaughan R. Pratt. Top down operator precedence. In POPL,
pages 41–51, 1973. URL: http://doi.acm.org/10.1145/
512927.512931.

[PW80] Fernando C. N. Pereira and David H. D. Warren. Definite
clause grammars for language analysis - a survey of the for-
malism and a comparison with augmented transition networks.
Artif. Intell., 13(3):231–278, 1980. URL: http://dx.doi.
org/10.1016/0004-3702(80)90003-X.

[RF12] Jon Rafkind and Matthew Flatt. Honu: syntactic extension
for algebraic notation through enforestation. In GPCE, pages
122–131, 2012. URL: http://doi.acm.org/10.1145/
2371401.2371420.

[RO10] Tillmann Rendel and Klaus Ostermann. Invertible syntax de-
scriptions: unifying parsing and pretty printing. In Haskell,
pages 1–12, 2010. URL: http://doi.acm.org/10.1145/
1863523.1863525.

[Sch] Chicken Scheme. Unit library. Internet. URL:
http://wiki.call-cc.org/man/4/Unit%20library#
set-sharp-read-syntax.

[Se] Manuel Serrano and et.al. Bigloo homepage. URL: http:
//www-sop.inria.fr/indes/fp/Bigloo.

[SW95] Manuel Serrano and Pierre Weis. Bigloo: A portable and
optimizing compiler for strict functional languages. In SAS,
pages 366–381, 1995. URL: http://dx.doi.org/10.
1007/3-540-60360-3_50.

[Vis01] Eelco Visser. Stratego: A language for program trans-
formation based on rewriting strategies. In RTA, pages
357–362, 2001. URL: http://dx.doi.org/10.1007/
3-540-45127-7_27.

[vW74] Adriaan van Wijngaarden. The generative power of two-level
grammars. In ICALP, pages 9–16, 1974. URL: http://dx.
doi.org/10.1007/3-540-06841-4_48.

[WDM08] Alessandro Warth, James R. Douglass, and Todd D. Millstein.
Packrat parsers can support left recursion. In PEPM, pages
103–110, 2008. URL: http://doi.acm.org/10.1145/
1328408.1328424.

[Wel94] J. B. Wells. Typability and type-checking in the second-
order lambda-calculus are equivalent and undecidable. In
LICS, pages 176–185, 1994. URL: http://dx.doi.org/
10.1109/LICS.1994.316068.

[WP07] Alessandro Warth and Ian Piumarta. Ometa: an object-
oriented language for pattern matching. In DLS, pages 11–19,
2007. URL: http://doi.acm.org/10.1145/1297081.
1297086.

A. PCG syntax-rules

(def-syntax seq (syntax-rules (qq skip quote unquote
quasiquote unquote-splicing do ε when unless

? + * / : lift unlift)
;; handling escapes
([in out c acc ts hs do[acts ...] . rest]

(seq in out c (acts acc) ts hs . rest))
;; handling ε
([in out c acc tmps hs ε . rest]

(seq in out c ([≡ in out] . acc) tmps hs . rest))
;; handling sequencing (recursively)
([in out c acc temps [h(ac...)] (: . goals) . rest]

(let ([temp #false]);; generate a new temporary
(seq temp out c ((all

(seq in temp c () () [h(ac... . acc)]
. goals)) . acc)

(temp . temps) [h (ac ...)] . rest)
))

;; handling quasi-data (one-level only)
([in out c acc tmps heads (qq d) . rest]

(seq in out c acc tmps heads ‘d . rest))
([in out c acc tmps [h(ac ...)] ‘d . rest]

(let ([temp #false][data #false]);; new temporaries
(seq temp out c ((qs [] ;; remove quasi-quotation

(seq data ’() c () () [h(ac acc)]) ‘d)
[≡ in ‘(,data . ,temp)] . acc)

(temp data . tmps) [h (ac ...)] . rest)
))

;; handling non-terminals
([in out c acc temps heads [goal . args] . rest]

(let ([temp #false]);; generate a new temporary
(seq temp out c ([goal in temp . args] . acc)

(temp . temps) heads . rest)
))

;; handling atoms (this rule has to be the last one)
([in out c acc tmps heads datum . rest]
(let ([temp #false]);; generate a new temporary

(seq temp out c ([≡ in ‘(datum . ,temp)] . acc)
(temp . tmps) heads . rest)

))
))

Figure 5. TRS for threading PCG monadic state (abridged)

draft 10 2014/9/24

http://doi.acm.org/10.1145/964001.964011
http://journals.cambridge.org/action/displayAbstract?aid=44275
http://journals.cambridge.org/action/displayAbstract?aid=44275
https://github.com/kourzanov/purecube
https://github.com/kourzanov/purecube
http://dx.doi.org/10.1007/978-3-642-40447-4_13
http://dx.doi.org/10.1007/978-3-642-40447-4_13
http://doi.acm.org/10.1145/364995.365689
http://doi.acm.org/10.1145/364995.365689
http://dx.doi.org/10.1147/rd.441.0261
http://dx.doi.org/10.1147/rd.441.0261
https://github.com/bevry/cson
http://srfi.schemers.org/srfi-49
http://doi.acm.org/10.1145/512927.512931
http://doi.acm.org/10.1145/512927.512931
http://dx.doi.org/10.1016/0004-3702(80)90003-X
http://dx.doi.org/10.1016/0004-3702(80)90003-X
http://doi.acm.org/10.1145/2371401.2371420
http://doi.acm.org/10.1145/2371401.2371420
http://doi.acm.org/10.1145/1863523.1863525
http://doi.acm.org/10.1145/1863523.1863525
http://wiki.call-cc.org/man/4/Unit%20library#set-sharp-read-syntax
http://wiki.call-cc.org/man/4/Unit%20library#set-sharp-read-syntax
http://www-sop.inria.fr/indes/fp/Bigloo
http://www-sop.inria.fr/indes/fp/Bigloo
http://dx.doi.org/10.1007/3-540-60360-3_50
http://dx.doi.org/10.1007/3-540-60360-3_50
http://dx.doi.org/10.1007/3-540-45127-7_27
http://dx.doi.org/10.1007/3-540-45127-7_27
http://dx.doi.org/10.1007/3-540-06841-4_48
http://dx.doi.org/10.1007/3-540-06841-4_48
http://doi.acm.org/10.1145/1328408.1328424
http://doi.acm.org/10.1145/1328408.1328424
http://dx.doi.org/10.1109/LICS.1994.316068
http://dx.doi.org/10.1109/LICS.1994.316068
http://doi.acm.org/10.1145/1297081.1297086
http://doi.acm.org/10.1145/1297081.1297086

;; A snippet from the process-args macro implementation
;; base-case (generate code for args, terms and project)
([process-args k acc [] goals rest (e es ...)

aa res ps (locals ...)]
(let-syntax-rule ([K . vars] ;; collect the free vars
(let-syntax-rule ([K wv wp wt ws] ;; use extracted vars
(let-syntax ([K (syntax-rules () ;; use extracted pvars

;; ... other special cases elided ...
([pvars (ee . bis) pats (terms []) hots]
(make-scopes fresh bis all ;; schedule clause terms

(let-syntax ([ee ‘()]);; last ee=e must be empty
(all . pats)) ;; when resolving arguments,

terms ;; clause body in the middle,
(make-scopes project ;; projected terms delayed

pvars all . hots) ;; to the end of the clause
))
;; ... handlers for clauses with actions elided ...
)])
(extract* vars (wp wt) ;; extract all bindings

(K () wv wp wt ws)) ;; in projected terms
))
(extract* (e es ... locals vars) ;; extract all

(res goals) (K () res goals ps)) ;; fresh bindings
))
(scheme-bindings (w [] (K) (locals ...) aa))

))
;; recursive case: collect unifiers and attributes (e’s)
([process-args k acc [v . vs] goals rest (ee . es)

aa (res ...) ps locals]
(let ([e #false]) ;; generate a new temporary

(process-args k acc vs goals rest (e ee . es)
(v . aa)
(res ... [≡ ee ‘(,v . ,e)])
ps
locals)

))

Figure 6. TRS equational theory for name binding

;; A snippet from the predicate (pred) macro
;; ... top-level predicate generation elided ...
([(begin ks ..) params ([. args] ⇔ . body) . rest]

(let-syntax ([head #false]) ;; generate a new head
(let-syntax-rule ([K heads condo locals]
(pred (begin ks .. ;; collect all clause heads and
(define head (λ (Lin Lout . vars) ;; deliver to the

(process-args condo (ks ..) args ;; top-level
([seq Lin Lout condo () () [heads (ks ..)]

. body] [])
vars
locals)

))
) params . rest))
(select (K) (0 0 1 1 1) . params)

)))
;; ... elided combing params to order specifiers
;; ... such as condo:, locals: and extend: ...

Figure 7. Implementing PCG predicates

(def-syntax w (syntax-rules
(qq quote unquote quasiquote unquote-splicing λ)

([q (k ...) b [] . a] (k a))
([q k b ‘t . a] (w [qq . q] k b t . a))
([[qq . q] k b ,t . a] (w q k b t . a))
([[] k b ,t . a] (bad-unquote k b ,t))
([q k b ’t . a] (w q k b [] . a))
([[] k b [λ (var ...) . body] . a]
(w [] k (var b) body . a))

;; ... other binders such as let, do and project elided
([q k b [t . ts] . a] (w q (w q k b t) b ts . a))
([[] k b t a ...]

(symbol?? t
(member?? t (a b)

(w [] k b [] a ...)
(w [] k b [] a ... t))
(w [] k b [] a ...)
))

([[qq . q] k b t . a] (w q k b [] . a))
))

Figure 8. Extracting free variables from Scheme terms

...
([in out condo acc temps

[(r . heads) (ac ...)] (goals ... *)]
(let-syntax ([K (syntax-rules .. ()
([in out vars ..]
(let loop ([lin in][lout out] [vars ’()] ..)

(let-syntax ([K (syntax-rules ... ()
([res ...]
(let ([res #false] ...)

(make-scopes (res ...) begin
(letrec-syntax ([K (syntax-rules ()
([gls (v v1 v2 v3)]
(condo ([≡ lin lout]

[≡ v1 v])
([let ([temp #false][v3 #false])
(fresh (temp v3)

(let-syntax ([v v3])
(seq lin temp condo () ()
[(r . heads) (ac acc)] . gls

))

(append0 v1 ‘(,v3) v2)
(loop temp lout v2))]))))]

[K1 (syntax-rules ()
([var gls . args]
(zip4 (K gls) var . args)

))]
[K0 (syntax-rules ()
([. vs]
(extract* vs (goals ...)

(K1 [] (goals ...) (vars ..) (res ...) vs)
)))])

(scheme-bindings (w [] (K0) heads (goals ...)))
)))))])

(scheme-bindings (w [] (K) heads (goals ...)))
))))])

(seq in out condo acc temps [(r . heads) (ac ...)]
do[(scheme-bindings (w [] (K in out) heads

(goals ...)))])
))

...

Figure 9. Implementing the Kleene-* combinator

draft 11 2014/9/24

B. PCG standard library
;; miniKanren examples
(def *digits* [make-parameter (list-tabulate 10 values)])
(def (range start end)

(unfold [char>? end]
values
(◦ integer->char

[+ 1]
char->integer)

start))
(def *letters* [make-parameter (range #a #z)])
(def [lifto pred stream] (λ (x)

(conda ([project (x)
(or (and (ground? x) (pred x) #s) #u)])
([take-from (stream) x])
)))

(def numbers? [lifto number? *digits*])
(def symbols? [lifto symbol? (λ ()

(map (◦ string->symbol list->string list) [*letters*]))])
(def strings? [lifto string? (λ ()

(map (◦ list->string list) [*letters*]))])
(def (! p . args)

(condu ((apply p args) #u)
(else #s)))

(def (null0? x) [≡ x ’()])

(def (pair0? x) (fresh (x0 x1) [≡ x ‘(,x0 . ,x1)]))

(def (car0 x y) (fresh (t) [≡ x ‘(,y . ,t)]))

(def (cdr0 x y) (fresh (h) [≡ x ‘(,h . ,y)]))

(def (cons0 h t l) [≡ l ‘(,h . ,t)])

(def (number Lin Lout x) (all (cons0 x Lout Lin) (numbers? x)))

(def (symbol Lin Lout x) (all (cons0 x Lout Lin) (symbols? x)))

(def (strings Lin Lout x) (all (cons0 x Lout Lin) (strings? x)))
(def (literal Lin Lout x) (conde ([symbol Lin Lout x])

([number Lin Lout x])))

(def (idem Lin Lout v) (cons0 v Lout Lin))

C. Acronyms
AST Abstract Syntax Tree

BNF Backus-Naur Formalism

CPS Continuation Passing Style

DCG Definite Clause Grammar

DSL Domain-Specific Language

FP Functional Programming

JSON JavaScript Object Notation

JVM Java Virtual Machine

LISP List Processing

NXP Next Experience Semiconductors

PCG Parsing Clause Grammar

PEG Parsing Expression Grammar

R5RS Revised5 Report on the Algorithmic Language
Scheme

SRFI Scheme Request for Implementation

TRS Term-Rewriting System

TU Technical University

draft 12 2014/9/24

	Introduction
	Definite Clause Grammars
	Parsing Expression Grammars

	Parsing Clause Grammars
	Declarative logic programming with miniKanren
	Macro-expressibility of PCG rules
	Higher-order rules

	Breaking hygiene (look ma, no gensym)
	Handling attributes
	Handling binding in combinators

	Pure, on-line left-recursion

	Type systems a la carte
	Type checking
	Type inference
	Term generation

	Extensibility
	Chaining extensions
	Composing extensions
	Power and danger

	Related work
	Conclusions
	PCG syntax-rules
	PCG standard library
	Acronyms

