
Towards a native higher-order RPC

Olle Fredriksson Dan R. Ghica Bertram Wheen
University of Birmingham, UK

Abstract
We present a new abstract machine, called DCESH, which mod-
els the execution of higher-order programs running in distributed
architectures. DCESH implements a native general remote higher-
order function call across node boundaries. It is a modernised ver-
sion of SECD enriched with specialised communication features
required for implementing the RPC mechanism. The key correct-
ness result is that the termination behaviour of the RPC is in-
distinguishable (bisimilar) to that of a local call. The correctness
proofs and the requisite definitions for DCESH and other related
abstract machines are formalised using Agda. We also formalise a
generic transactional mechanism for transparently handling failure
in DCESHs.

We use the DCESH as a target architecture for compiling a con-
ventional call-by-value functional language ("FLOSKEL") which
can be annotated with node information. Conventional benchmarks
show that the single-node performance of FLOSKEL is compara-
ble to that of OCAML, a semantically similar language, and that
distribution overheads are not excessive.

1. Native RPC and transparent distribution
Remote Procedure Call (RPC) [7] is a widely used mechanism
for higher-level inter-process communication. However, the RPC
mechanism tends to be bolted on top of a pre-existing language,
as a library for example, rather than be seamlessly integrated into
it. This leads to significant syntactic differences between calling a
local library function and a remote function. Even if these syntactic
differences can be smoothed using stubs that wrap remote calls into
local calls [6] important differences still persist, of which the most
important is that arguments must be of ground types.

Generalising RPC to all types and incorporating it seamlessly
in the language has been considered but dismissed on grounds of
potential inefficiencies [41]. However, considering that a number
of technologies that trade efficiency for convenience have been re-
jected on similar grounds (from machine independent languages to
functional programming, garbage collection or automated program
verification – to name only a few), we decided it is time to revisit
this issue. Because the execution of applications is increasingly and
rapidly moving from single devices to networks of (often heteroge-
neous) devices a case can be made that such revisiting is timely.

[Copyright notice will appear here once ’preprint’ option is removed.]

A native RPC system, offering as an immediate benefit transparent
and automated distribution, can be useful in domains where pro-
grammer effectiveness is more important than machine efficiency.

We attack this problem in a principled manner. We want the
seamless integration of the RPC in the language to be not merely
syntactic but semantic as well: the RPC is a native call of our lan-
guage, on the same level as a conventional local call. This is re-
alised by introducing a new kind of abstract machine which extends
the conventional SECD machine [26], or rather a modernised ver-
sion of it, with communication primitives. These are not general-
purpose low-level communication primitives but are especially de-
signed to support the implementation of RPCs. Even though we
aim for simplicity first, some of the technicalities, especially the
proofs of correctness, are quite intricate. For this reason the abstract
machine net framework and its correctness properties are fully for-
malised using the Agda language [34]. The technical challenge is
not just one of handling complicated formalisms but also mathe-
matical, the key correctness proof requiring the adaptation of the
step-index relations technique [2] to bisimulation

Note that we are language rather than system oriented. We
assume the existence of a run-time infrastructure to handle system-
level aspects associated with distribution such as failure detection,
load balancing, global reset and initialisation, and so on. From
a systems perspective we only deal with failure handling, which
is particularly important in a distributed setting, using a general
transactional approach.

The abstract machine nets can serve as a target for the compila-
tion of a conventional call-by-value language which we call FLOSKEL.
The interesting new thing about it is that there is almost noth-
ing new about it. It uses a HASKELL-like syntax but it has the
semantics of the pure fragment of OCAML. RPC calls are indis-
tinguishable from native calls except for an annotation, which can
be applied to any sub-term, indicating that it is to be executed on a
different node. From the point of view of the language, and of the
programmer, this annotation has no syntactic, semantic or typing
implication. It is a mere pragma-like directive.

Prior work on native RPCs and seamless distribution are spe-
cialised to web programming [11], thus domain-specific. We aim
to be as generic as possible in this context. Some existing work
uses as a starting point interaction-based semantic paradigms which
lend themselves naturally to a communication-centric implementa-
tion: Geometry of Interaction [17] and Game Semantics [18]. Such
approaches have two significant disadvantages. The exotic opera-
tional behaviour makes it impossible to apply known optimisation
techniques, and to interact with code compiled conventionally. This
can be seen in the low performance of single-node execution of
programs compiled using such techniques. On the other hand, the
single-node compilation of FLOSKEL is very similar to the conven-
tional compilation of a language such as OCAML, and the bench-
marks indicate that the overhead required by the RPC run-time is
not excessive.

1 2014/9/8

In a nutshell, we believe that this paper can help make the case
that functional languages with native RPCs could be a lot more
useful than presumed.

1.1 Technical outline and contributions
Our main contributions are in the following areas:

Compiler and run-time We describe the syntax (Sec. 2.1) and im-
plementation (Sec. 2.2) of FLOSKEL, a general-purpose functional
language with native RPCs. Our basis is a conventional compiler
for such a language, and we show how it is modified to support
RPCs and, additionally, ubiquitous functions, i.e. functions avail-
able on all nodes. Our benchmarks suggest that FLOSKEL’s per-
formance is comparable to the state of the art OCAML compiler
(Sec. 2.4) for single-node execution.

Abstract machines The semantics of a core of FLOSKEL has been
formalised in Agda (Sec. 3) in the form of an abstract machine
that can be used to guide an implementation. To achieve this we
make gradual refinements to a machine, based on Landin’s SECD
machine [26], that we call the CES machine (Sec. 3.1). First we
add heaps for dynamically allocating closures, forming the CESH
machine (Sec. 3.2); we show that the CES and CESH execution
is bisimilar. We then add communication primitives (synchronous
and asynchronous) by defining a general form of networks of nodes
that run an instance of an underlying abstract machine (Sec. 3.3).
Using these networks, we illustrate the idea of subsuming function
calls by communication protocols by constructing a degenerate
distributed machine, DCESH1 (Sec. 3.4), that decomposes some
machine instructions into message passing, but only runs on one
node. Execution on the fully distributed CESH machine called
DCESH (Sec. 3.5), is shown to be bisimilar to the CESH machine
— our main theoretical result. Finally, we model a general-purpose
fault-tolerant environment for DCESH-like machines (Sec. 4) by
layering a transactional abstract machine that provides a simple
commit-and-rollback mechanism for an abstract machine that may
unexpectedly fail.

Formalisation in Agda The theorems that we present in this
paper have been proved correct in Agda [34], an interactive proof
assistant and programming language based on intuitionistic type
theory. The definitions and proofs in this paper are intricate, so
carrying them out manually would be error-prone, arduous and
perhaps unconvincing. Agda has been a helpful tool in producing
these proofs, providing a pleasant interactive environment in which
to play with alternative definitions. To eliminate another source of
error, we do not present our results in informal mathematics; the
code blocks in Sec. 3 come directly from the formalisation.

The formalisation is organised as follows, where the arrows
denote dependence, the lines with ∼ symbols bisimulations, and
the parenthesised numerals section numbers:

CES
(3.1)

CESH
(3.2)

DCESH
(3.5)

Heaps Networks
(3.3)

DCESH1

(3.4)

∼
(3.2.1)

∼
(3.5.1)

2. FLOSKEL: a location-aware language
2.1 Syntax
At the core of the FLOSKEL language is a call-by-value func-
tional language with user-definable algebraic data types and pattern
matching. FLOSKEL is semantically similar to languages in the ML

family, and syntactically similar to HASKELL. The main syntactic
difference between FLOSKEL and HASKELL is that pattern match-
ing clauses are given without the leading function name and that
type annotations are given after a single colon, as in the following
example:

map : (a → b) → [a] → [b]
f [] = []
f (x::xs) = f x :: map f xs

Node annotations An ordinary function definition, like map, is a
ubiquitous function by default. This means that it is made available
on all nodes in the system, and a call to such a function is always
done locally – a plain old function call.

On the other hand, a function or sub-term defined with a node
annotation, such as

query@Database : Query → Response
x = ...,

is located and compiled only to the specified node (here Database).
In the rest of the program query can be used like any other function,
but the compiler and run-time system treat it differently. A call to
query from a node other than Database is a remote call.

Since the programmer can use located functions like any other
functions, and this is a functional language, it means that the lan-
guage has, by necessity, support for higher-order functions across
node boundaries. For instance the function

f@A : (Query → Response) → X
q = ... use q ...

can be applied to query yielding f query : X.
Node annotations can also be applied to sub-expressions, as in

the following example:

sum [] = 0
(x::xs) = x + sum xs

xs@A = ...
ys@B = ...
result@C = (sum xs) @A + (sum ys) @B

Here we want to calculate the sum, on node C, of the elements
of two lists located on nodes A and B. If the lists are lengthy, it is
better to calculate the sums on A and B, and to then send the final
sum to C, since this saves us having to send the full lists over the
network.

2.2 Compilation
The FLOSKEL compiler [1] currently targets C using the MPI
library for communication, though other targets are possible. Most
of the compiler’s pipeline is standard for a functional language
implementation. It works by applying a series of transformations
to the source program until reaching a level low enough to be
straightforwardly translated to C. Since the source language has
pattern matching, it first compiles the pattern matching to simple
case trees [4]. Local definitions are then lifted to the top-level using
lambda lifting [25], and lastly the program is closure converted [31]
to support partially applied functions.

Up until the lambda lifting, a node annotation is a construc-
tor in the abstract syntax tree of the language’s expressions. The
lambda lifter lifts such sub-expressions to the top-level such that
annotations are afterwards associated with definitions (and not ex-
pressions).

The main work specific to FLOSKEL is done in the closure
conversion and the run-time system that the compiled programs
make use of.

Closures For function applications, the closure converter distin-
guishes between known functions – those that are on the top-level

2 2014/9/8

and have a known arity, and unknown functions – those that are
provided e.g. as function arguments.

A known function f that is either ubiquitous or available on the
same node as the definition that is being compiled is compiled to
an ordinary function call if there are enough arguments. If there are
not, and the function is ubiquitous we have to construct a partial
application closure, which contains a pointer to the function and
the arguments so far. The compiler maintains the invariant that
unknown functions are always in the form of a closure, whose
general layout is:

gptr gid arity payload. . .

Since the function may require access to the payload of the
closure, gptr is a function of arity arity + 1: when applying a
closure cl as above to arguments x1, ..., xarity, the call becomes
gptr (cl, x1, ..., xarity) meaning that the function has access to the
payload through cl. To construct the initial closure for a partial
application of a function f of arity arity with nargs arguments,
we have to conform to this rule, so we construct the closure
(f ′ptr, f

′
id, n, y1, ..., ynargs) where n = arity - nargs and f ′ is a new

ubiquitous top-level function defined as follows:

f ′ cl x1 ... xn = case cl of
(, , , y1, ..., ynargs) → f (y1, ..., ynargs, x1, ..., xn)

A family of applyi functions handle, in a standard way, applica-
tions (of i arguments) of unknown functions by inspecting the arity
stored in the closure to decide whether to construct a new partial
application closure with the additional arguments or to apply the
function.

The field fid is an integer identifier assigned to every function
at compile-time used as a system-wide identifier if the function
is ubiquitous, or a node-specific identifier if not. If there are k
ubiquitous functions they are assigned the first k identifiers, and
the nodes of the system may use identifiers greater than k for
their respective located functions. Determining if a function is
ubiquitous is thus a simple comparison: fid < k. Additionally, every
node has a table of functions that maps ubiquitous or local located
function identifiers to local function pointers, which is used by the
deserialiser.

If we have a saturated call to a known remote function, we
make a call to the function rApplyarity, defined in the run-time
system (to be described). If we have a non-saturated call to
a known remote or located function, we construct the closure
(f ′ptr, f

′
id, arity, y1, ..., ynargs) where f ′ is a new ubiquitous top-level

function defined as follows:

f ′ cl x1 ... xn = case cl of
(, , , y1, ..., ynargs) →

if myNode ≡ fnode then
lookup (fid) (y1, ..., ynargs, x1, ..., xn,)

else
rApplyarity (fnode, fid, y1, ..., ynargs, x1, ..., xn)

Here myNode is the identifier of the node the code is currently
being run at. If it is the same node as the node of f , we can make
an ordinary function call by looking up the function corresponding
to fid in the function table. Otherwise we call the run-time system
function rApplyarity.

In this way, we construct a closure for located functions that
looks just like the closure of an ubiquitous function.

2.3 Run-time
The run-time system defines a family of ubiquitous functions
rApplyarity, that, as we saw above, are used for remote procedure
calls and to construct closures for located functions. The function
takes a function identifier, a node identifier, and arity arguments. It

serialises the arguments and sends them together with the function
identifier to the given node:

rApply fnode fid x1 ... xarity =
send (fid, serialise (x1), ..., serialise (xarity)) to fnode;
receive answer from fnode →
answer

When the node fnode receives this message, it looks the function
up in its function table, calls it with the deserialised arguments, and
sends back the result:

receive (fid, y1, ..., yarity) from remoteNode →
let result = lookup (fid) (deserialise (y1), ..., deserialise (yarity))
in send result to remoteNode

Serialisation In a remote function call the arguments may be
values from arbitrary algebraic data types (like lists and trees), in
addition to primitive types and functions.

The serialisation of a primitive type is the identity function,
while algebraic data-types require a traversal and flattening of the
heap structure. We use tags in the lower bits of a value’s field to
differentiate between pointers and non-pointers, which makes this
flattening straightforward. The interesting part of serialisation is
how to handle closures, both in the case of ubiquitous and located
functions.

For closures around ubiquitous functions, we serialise the clo-
sure almost as is, but use the function identifiers to resolve the func-
tion pointer on the receiving node, as it is not guaranteed to be the
same on each node.

To handle located functions, the most straightforward imple-
mentation is to use “mobilised” closures that work by exchanging
the located function with a ubiquitous function that calls rApply to
perform the remote procedure call. This is what our implementa-
tion currently does. Our formalisation will describe an optimised
variant of this scheme, which instead saves the closure on the send-
ing node and sends a pointer to that. The optimised scheme means
that we do not unnecessarily send closures containing (potentially
large) arguments that are going to end up on the node they origi-
nated from anyway. The cost of this optimisation, however, is that
it requires us to keep track of heap-allocated pointers across node
boundaries using distributed garbage collection. The serialisation
currently implemented does not require such garbage collection,
but may be slow when dealing with large data.

In detail, to serialise a closure

fptr fid arity payload. . .

we put a placeholder, CL, in the place of fptr:

CL fid arity payload’ . . .

where payload′ represents the serialised payload and CL is a tag that
can be used to identify that this is a closure. To deserialise this on
the receiving end, we look up the function pointer associated with
fid in the ubiquitous function table and substitute that for CL.

2.4 Performance benchmarks
Single-node Before we measure the performance of the imple-
mentation of the native RPC, we analyse how the single-node per-
formance is affected by the distribution overhead even if it is not
used — is it feasible for a general-purpose language to be based on
the DCESH?

Fig. 1 shows absolute and relative timings of a number of
small benchmarks using integers, lists, trees, recursion, and a small
amount of output for printing results. We compare the performance
of FLOSKEL programs compiled with our compiler, and equivalent
OCAML programs compiled using ocamlopt, a high-performance
native-code compiler. Since our compiler targets C, we further

3 2014/9/8

trees nqueens qsort primes tak fib
FLOSKEL 91.2s 12.2s 9.45s 19.3s 16.5s 10.0s
ocamlopt 43.0s 3.10s 3.21s 6.67s 2.85s 1.68s

relative 2.12 3.94 2.94 2.9 5.77 5.95

Figure 1. Single-node performance.

trees nqueens qsort primes tak fib
µs/remote call 618 382 4.77 13.4 6.94 6.87
B/remote call 1490 25.8 28.1 27.0 32.0 24.0

Figure 2. Distribution overheads.

compile the generated files to native code using gcc -O2. We can
see that the running time of programs compiled with our compiler
is between two and six times greater than that of those compiled
with ocamlopt. These results should be viewed in the light of the
fact that our compiler only does a minimal amount of optimisation,
whereas a considerable amount of time and effort has been put into
ocamlopt.

Moreover, our compiler only produces C code rather than as-
sembly. Compiling to C rather than assembly, especially in the style
we use, prevents the C compiler from using whole-program optimi-
sations and is, therefore, a serious source of inefficiencies.

Distribution overhead We measure the overhead of our imple-
mentation of native remote procedure calls by running the same
programs as above, but distributed to between two and nine nodes.
The distribution is done by adding node annotations in ways that
generate large amounts of communication. We run the benchmarks
on a single physical computer with local virtual nodes, which
means that the contributions of network latencies are factored out.
These measurements give the overhead of the other factors related
to remote calls, like serialisation and deserialisation. The results
are shown in Fig. 2. The first row, µs/remote call, is obtained by
running the same benchmark with and without node annotations,
taking the delta-time of those two, and then dividing by the number
of remote invocations in the distributed program. The second row
measures the amount of data transmitted per remote invocation, in
bytes.

It is expected that this benchmark depends largely on the kinds
of invocations that are done, since it is more costly to serialise and
send a long list or a big closure than an integer. The benchmark
hints at this; we appear to get a higher cost for remote calls that are
big.

An outlier is the nqueens benchmark, which does not do remote
invocations with large arguments, but still has a high overhead per
call, because it intentionally uses many localised functions.

3. Abstract machines and nets
Having introduced the programming language, its compiler and its
run-time system we now present the theoretical foundation for the
correctness of the compiler. We start with the standard abstract
machine model of CBV computation, which we refine, in several
steps, into increasingly expressive abstract machines with heap
and networking capabilities, while showing along the way that
correctness is preserved, via bisimulation results. All definitions
and theorems are formalised using the proof assistant Agda, the
syntax of which we will follow. We give some of the key definitions
and examples in Agda syntax, but most of the description of the
formalisation is intended as a high-level guide to the Agda code,
which is available online [1]. In order to help the reader navigate the
code when a significant theorem or lemma is mentioned the fully
qualified Agda name is given in a footnote. Note that we shall not

formalise the whole of FLOSKEL but only a core language which
coincides with Plotkin’s (untyped) call-by-value PCF [37].

3.1 The CES machine
The starting point is a variation of Landin’s SECD machine [26]
called Modern SECD [27], which can be traced to the SECD
machine variation of Henderson [22] and to the CEK machine of
Felleisen [15], which we call CES (Agda module CES). Just like the
machine of Henderson, it uses bytecode for the control component
of the machine, and just like the CEK it places the continuations
that originally resided in the dump directly on the stack, simplifying
the machine configurations.

A CES configuration (Config) is a tuple consisting of a fragment
of code (Code), an environment (Env), and a stack (Stack). Evalua-
tion begins with an empty stack and environment, and then follows
a stack discipline. Sub-terms push their result on the stack so that
their super-terms can consume them. When (and if) the evaluation
terminates, the program’s result is the sole stack element.

Source language The source language has constructors for
lambda abstractions (λ t), applications (t $ t’), and variables (var n),
represented using De Bruijn indices [13], so a variable is a natural
number. Additionally, we have natural number literals (lit n), bi-
nary operations (op f t t’), and a conditional (if0 t then t0 else t1).
Because the language is untyped, we can express a fixed-point
combinator without adding additional constructors.

The machine operates on bytecode and does not directly inter-
pret the source terms, so the terms need to be compiled before they
can be executed. The main work of compilation is done by the func-
tion compile’, which takes a term t and a fragment of code c used as
a postlude. The bold upper-case names (CLOS, VAR, and so on)
are the bytecode instructions, which are sequenced using _;_. In-
structions can be seen to correspond to the constructs of the source
language, sequentialised.

compile’ : Term→ Code→ Code
compile’ (λ t) c = CLOS (compile’ t RET) ; c
compile’ (t $ t’) c = compile’ t (compile’ t’ (APPL ; c))
compile’ (var x) c = VAR x ; c
compile’ (lit n) c = LIT n ; c
compile’ (op f t t’) c = compile’ t’ (compile’ t (OP f ; c))
compile’ (if0 b then t else f) c =

compile’ b (COND (compile’ t c) (compile’ f c))

Example 3.1 (codeExample). To compile a term t we supply END
as a postlude: compile t = compile’ t END. The term t =

(λx. x) (λx y. x) is compiled as follows:

compile ((λ var 0) $ (λ (λ var 1))) = CLOS (VAR 0 ; RET) ;
CLOS (CLOS (VAR 1 ; RET) ; RET) ; APPL ; END

Environments (Env) are lists of values (List Value), which are ei-
ther natural numbers (nat n) or closures (clos cl). A closure (Closure)
is a fragment of code paired with an environment (Code × Env).
Stacks (Stack) are lists of stack elements (List StackElem), which are
either values (val v) or continuations (cont cl), represented by clo-
sures.

Fig. 3 shows the definition of the transition relation for con-
figurations of the CES machine. A note on Agda syntax: The in-
struction constructor names are overloaded as constructors for the
relation; their usage is disambiguated by context. Arguments in
curly braces are implicit and can be automatically inferred. Equal-
ity (propositional) is written _≡_.

Stack discipline is clear in the definition of the transition rela-
tion. When e.g. VAR is executed, the CES machine looks up the
value of the variable in the environment and pushes it on the stack.
A somewhat subtle part of the relation is the interplay between the

4 2014/9/8

VAR : ∀ {n c e s v} → lookup n e ≡ just v→ (VAR n ; c, e, s) −−→
CES

(c, e, val v :: s)

CLOS : ∀ {c’ c e s} → (CLOS c’ ; c, e, s) −−→
CES

(c, e, val (clos (c’, e)) :: s)

APPL : ∀ {c e v c’ e’ s} → (APPL ; c, e, val v :: val (clos (c’, e’)) :: s) −−→
CES

(c’, v :: e’, cont (c, e) :: s)

RET : ∀ {e v c e’ s} → (RET, e, val v :: cont (c, e’) :: s) −−→
CES

(c, e’, val v :: s)

LIT : ∀ {n c e s} → (LIT n ; c, e, s) −−→
CES

(c, e, val (nat n) :: s)

OP : ∀ { f c e n1 n2 s} → (OP f ; c, e, val (nat n1) :: val (nat n2) :: s) −−→
CES

(c, e, val (nat (f n1 n2)) :: s)

COND-0 : ∀ {c c’ e s} → (COND c c’, e, val (nat 0) :: s) −−→
CES

(c, e, s)

COND-1+n : ∀ {c c’ e n s} → (COND c c’, e, val (nat (1 + n)) :: s) −−→
CES

(c’, e, s)

Figure 3. The definition of the transition relation of the CES machine.

APPL instruction and the RET instruction. When performing an ap-
plication, two values are required on the stack, one of which has
to be a closure. The machine enters the closure, adding the value
to the environment, and pushes a return continuation on the stack.
The code inside a closure will be terminated by a RET instruction,
so once the machine has finished executing the closure (and thus
produced a value on the stack), that value is returned to the contin-
uation. Note that it will be useful to establish that the CES machine
is deterministic.1

Example 3.2. We trace the execution of Ex. 3.1 defined above,
which exemplifies how returning from an application works. Here
we write a −−→

CES
〈 x 〉 b meaning that the machine uses rule x to

transition from a to b.

let c1 = VAR 0 ; RET
c2 = CLOS (VAR 1 ; RET) ; RET
cl1 = val (clos (c1, [])); cl2 = val (clos (c2, []))

in (CLOS c1 ; CLOS c2 ; APPL ; END, [], [])
−−→
CES
〈 CLOS 〉 (CLOS c2 ; APPL ; END, [], [cl1])

−−→
CES
〈 CLOS 〉 (APPL ; END, [], [cl2, cl1])

−−→
CES
〈 APPL 〉 (VAR 0 ; RET, [cl2], [cont (END, [])])

−−→
CES
〈 VAR refl 〉 (RET, [cl2], [cl2, cont (END, [])])

−−→
CES
〈 RET 〉 (END, [], [cl2])

The final result is therefore the second closure, cl2.

The CES machine terminates with a value v, written cfg ↓CES v
if it, through the reflexive transitive closure of −−→

CES
, reaches the

end of its code fragment with an empty environment, and v as its
sole stack element. It terminates, written cfg ↓CES if there exists a
value v such that it terminates with the value v. It diverges, written
cfg ↑CES if it is possible to take another step from any configuration
reachable from the reflexive transitive closure of −−→

CES
.

We do not prove formally that the compilation of CBV-PCF to
the CES machine is correct, as it is a standard result [12].

3.2 CESH: A heap machine
In a compiler implementation of the CES machine targeting a low-
level language, closures have to be dynamically allocated in a heap.
However, the CES machine does not make this dynamic allocation
explicit. Now we make it explicit in a new machine, called the
CESH, which is a CES machine with an extra heap component in
its configuration.

While heaps are not strictly necessary for a presentation of the
CES machine, they are of great importance to us. The distributed
machine that we will later define needs heaps for persistent storage
of data, and the CESH machine forms an intermediate step between
that and the CES machine. A CESH configuration is defined as

1 CES.Properties.determinism-CES

Config = Code × Env × Stack × Heap Closure

where Heap is a type constructor for heaps parameterised by the
type of its content. The only difference in the definition of the
configuration constituents, compared to the CES machine, is that
a closure value (the clos constructor of the Value type) does not
contain an actual closure, but just a pointer (Ptr). The stack is as
in the CES machine.

Fig. 4 shows those rules of the CESH machine that are signifi-
cantly different than the CES: CLOS and APPL. To build a closure,
the CESH allocates it in the heap, using the _I_ function, which,
given a heap and an element, gives back an updated heap and a
pointer to the element. When performing an application, the ma-
chine has a pointer to a closure, so it looks it up in the heap using
the _!_ function, which, given a heap and a pointer, gives back the
element that the pointer points to (if it exists).

A CESH configuration cfg can terminate with a value v, written
as cfg ↓CESH v, terminate (cfg ↓CESH), or diverge (cfg ↑CESH).
These are analogous to the definitions for the CES machine, except
that the CESH machine is allowed to terminate with any heap.

3.2.1 Correctness
To show that our definition of the machine is correct, we construct a
bisimulation between the CES and CESH, which given the similar-
ity between the two machines, is almost equality. The difference is
dealing with closure values, since the CESH stores pointers rather
than closures. The relation for closure values must be parameterised
by the heap of the CESH configuration, where the (dereferenced)
value of the closure pointer is related to the CES closure.

Formally, the relation is constructed separately for the differ-
ent components of the machine configurations. For bytecode it is
equality, and for closures it is defined component-wise. Values are
related only if they have the same head constructor and related con-
stituents: if the two values are number literals, they are related if
they are equal; a CES closure and a pointer are related only if the
pointer leads to a CESH closure that is in turn related to the CES
closure. Environments are related if they have the same list spine
and their values are pointwise related. The relation on stacks is de-
fined similarly, using the relation on values and continuations. Fi-
nally, two configurations are RCfg-related if their components are
related.

In the formalisation we define heaps and their properties ab-
stractly, rather than using a specific heap implementation. The first
key property we require is that dereferencing a pointer in a heap
where that pointer was just allocated with a value gives back the
same value:

∀ h x→ let (h’, ptr) = h I x in h’ ! ptr ≡ just x

We will require a preorder ⊆ for sub-heaps. The intuitive reading
for h ⊆ h’ is that h’ can be used where h can, i.e. that h’ contains at
least the allocations of h. The second key property that we require

5 2014/9/8

CLOS : ∀ {c’ c e s h} → let (h’, ptrcl) = h I (c’, e) in (CLOS c’ ; c, e, s, h) −−−→
CESH

(c, e, val (clos ptrcl) :: s, h’)

APPL : ∀ {c e v ptrcl c’ e’ s h} → h ! ptrcl ≡ just (c’, e’)→ (APPL ; c, e, val v :: val (clos ptrcl) :: s, h) −−−→
CESH

(c’, v :: e’, cont (c, e) :: s, h)

Figure 4. The definition of the transition relation of the CESH machine (excerpt).

of a heap implementation is that allocation does not overwrite any
previously allocated memory cells (proj1 means first projection):

∀ h x→ h ⊆ proj1 (h I x)

For any two heaps h and h’ such that h ⊆ h’, if RCfg cfg (c, e, s, h),
then RCfg cfg (c, e, s, h’).2

Our first correctness result is that RCfg is a simulation relation.3

The proof is by cases on the CES transition, and, in each case,
the CESH machine can make analogous transitions. The property
mentioned above is then used to show that RCfg is preserved.

It is helpful to introduce the notion of a presimulation relation,
defined as:

Presimulation _−→_ _−→’_ _R_ =
∀ a a’ b→ (a −→ a’)→ a R b→ ∃ λ b’→ (b −→’ b’)

Then, the inverse of RCfg is a presimulation.4 In general, if R is a
simulation between relations −→ and −→’, R -1 is a presimulation,
and −→’ is deterministic at states b related to some a, then R -1 is
a simulation,5 from which it follows that RCfg is a bisimulation, be-
cause we have already established that the CESH is deterministic.
In particular, if RCfg cfg1 cfg2 then cfg1 ↓CES nat n ↔ cfg2 ↓CESH

nat n and cfg1 ↑CES ↔ cfg2 ↑CESH.6

To finalise the proof we note that there are configurations in
RCfg. One such example is the initial configuration for a fragment
of code: For any c, we have RCfg (c, [], []) (c, [], [], ∅) (where ∅ is the
empty heap).

3.3 Network models
In this section we define models for networks with synchronous and
asynchronous communication, that are parameterised by an under-
lying labelled transition system. Both kinds of networks are mod-
elled by two-level transition systems, which is common in oper-
ational semantics for concurrent and parallel languages. A global
level describes the transitions of the system as a whole, and a local
level the local transitions of the nodes in the system. Synchronous
communication is modelled by rendezvous, i.e. two nodes have
to be ready to send and receive a message at a single point in
time. Asynchronous communication is modelled using a “message
soup”, representing messages currently in transit, that nodes can
add and remove messages from, reminiscent of the Chemical Ab-
stract Machine [5].

The model (Agda module Network) is parameterised by the un-
derlying transition relation of the machines _ ` _ _−−−−→

Machine
_. The

sets Node, Machine, and Msg are additional parameters. Elements
of Node will act as node identifiers, and we assume that these en-
joy decidable equality.7 The type Machine is the type of the nodes’
configurations, and Msg the type of messages that the machines can
send. The presence of the Node argument means that the configura-
tion of a node may know about and can depend on its own identi-
fier. The type constructor Tagged is used to separate different kinds

2 CESH.Simulation.HeapUpdate.config
3 CESH.Simulation.simulation
4 CESH.Presimulation.presimulation
5 Relation.presimulation-to-simulation
6 CESH.Bisimulation.termination-agrees, CESH.Bisimulation.divergence-agrees
7 In MPI, they would correspond to the so called integer “node ranks”.

of local transitions: A Tagged Msg can be τ (i.e. a silent transition),
send msg, or receive msg (for msg : Msg).

A synchronous network (SyncNetwork) is an indexed family
of machines, Node → Machine, representing the nodes of the
system. An asynchronous network (AsyncNetwork) is an indexed
family of machines together with a list of pending messages
(Node→ Machine) × List Msg.

Fig. 5 shows the definition of the transition relation for syn-
chronous and asynchronous networks. It is uses update, a func-
tion that corresponds to the usual function update (often written
(f | x 7→ y)) which updates an element of an indexed family (here
relying on the decidable equality of node identifiers).

There are two ways for a synchronous network to make a tran-
sition. The first, silent-step, occurs when a machine in the network
makes a transition tagged with τ , and is allowed at any time. The
second, comm-step, is the aforementioned rendezvous. A node s first
takes a step sending a message, and afterwards a node r (which can
be s) takes a step receiving the same message. Asynchronous net-
works only have one rule, step, which can be used if a node steps
with a tagged message that “agrees” with the pending messages. If
the node receives a message, the message has to be in the list before
the transition. If the node sends a message, it has to be there after.
If the node takes a silent step, the list stays the same before and
after.8

Asynchronous networks actually subsume synchronous net-
works.9 Going in the other direction is not possible in general,
but for some specific instances of the underlying transition relation
it is, as we will see later.

3.4 DCESH1: A trivially distributed machine
In higher-order distributed programs containing location specifiers,
we will sometimes encounter situations where a function is not
available locally. For example, when evaluating the function f in
the term (f @ A) (g @ B), we may need to apply the remotely
available function g. Our general idea is to do this by decomposing
some instructions into communication. In the example, the function
f may send a message requesting the evaluation of g, meaning that
the APPL instruction is split into a pair of instructions: APPL-send
and APPL-receive.

This section outlines an abstract machine, called DCESH1,
which decomposes all application and return instructions into com-
munication. The machine is trivially distributed, because it runs as
the sole node in a network, sending messages only to itself. Al-
though it is not used as an intermediate step for the proofs, it is
included because it illustrates this decomposition.

A configuration of the DCESH1 machine (Machine) is a tuple
consisting of a possibly running thread (Maybe Thread), a closure
heap (Heap Closure), and a “continuation heap” (Heap (Closure × Stack)).
Since the language is sequential we have at most one thread
running at once. The thread resembles a CES configuration,
Thread = Code × Env × Stack, but stacks are defined differ-
ently. A stack is now a list of values paired with an optional pointer
(into the continuation heap), Stack = List Val × Maybe ContPtr
(ContPtr is a synonym for Ptr). When performing an application,
when CES would push a continuation on the stack, the DCESH1

8 This is formalised using a function called detag, which creates lists of input
and output messages from a tagged message.
9 Network.−→Sync-to-−→Async+

6 2014/9/8

silent-step : ∀ { i m’} → i ` nodes i τ−−−−→
Machine

m’→ nodes −−→
Sync

update nodes i m’

comm-step : ∀ {s r msg sender’ receiver’} → let nodes’ = update nodes s sender’ in

s ` nodes s
send msg−−−−−→
Machine

sender’→ r ` nodes’ r
receive msg−−−−−−→

Machine
receiver’→ nodes −−→

Sync
update nodes’ r receiver’

step : ∀ {nodes} msgsl msgsr { tmsg m’ i} → let (msgsin,msgsout) = detag tmsg in

i ` nodes i
tmsg−−−−→

Machine
m’→ (nodes,msgsl ++ msgsin ++ msgsr) −−−→Async

(update nodes i m’,msgsl ++ msgsout ++ msgsr)

Figure 5. The definition of the transition relations for synchronous and asynchronous networks.

machine is going to stop the current thread and send a message,
which means that it has to save the continuation and the remainder
of the stack in the heap for them to persist the thread’s lifetime.

The optional pointer in Stack is an element at the bottom of the
list of values. Comparing it to the definition of the CES machine,
where stacks are lists of either values or continuations (just clo-
sures), we can picture their relation: Whereas the CES machine
stores the values and continuations in a single, contiguous stack,
the DCESH1 machine stores first a contiguous block of values un-
til reaching a continuation, at which point it stores (just) a pointer
to the continuation closure and the rest of the stack.

The definition of closures, values, and environments are other-
wise just like in the CESH machine. The machine communicates
with itself using two kinds of messages, APPL and RET, corre-
sponding to the instructions that we are replacing with communi-
cation.

Fig. 6 defines the transition relation for the DCESH1 machine,
written m

tmsg−−→ m’ for a tagged message tmsg and machine
configurations m and m’. Most transitions are the same as in the
CESH machine, just framed with the additional heaps and the just
meaning that the thread is running. We elide them for brevity.

The interesting rules are the decomposed application and return
rules. When an application is performed, an APPL message con-
taining a pointer to the closure to apply, the argument value and
a pointer to a return continuation (which is first allocated) is sent,
and the thread is stopped (nothing). We call such a machine inac-
tive. The machine can receive an application message if the thread
is not running. When that happens, the closure pointer is derefer-
enced and entered, adding the received argument to the environ-
ment. The stack is left empty apart from the continuation pointer of
the received message. When returning from a function application,
the machine sends a return message containing the continuation
pointer and the value to return.

On the receiving end of that communication, it dereferences the
continuation pointer and enters it, putting the result value on top of
the stack.

Example 3.3. We trace the execution of Ex. 3.1 in a synchronous
network of nodes indexed by the unit type. Heaps with pointer
mappings are written {ptr 7→ element}. The last list shown in each
step is the message list of the asynchronous network.

let hcl = {ptr1 7→ (c1, [])}
h’cl = {ptr1 7→ (c1, []), ptr2 7→ (c2, [])}
hcnt = {ptrcnt 7→ ((END, []), [], nothing)}

in (just (CLOS c1 ; CLOS c2 ; APPL ; END, [], [], nothing), ∅, ∅), []
−→〈 step CLOS 〉
(just (CLOS c2 ; APPL ; END, [], [clos ptr1], nothing), hcl, ∅), []
−→〈 step CLOS 〉
(just (APPL ; END, [], [clos ptr2, clos ptr1], nothing), h’cl, ∅), []
−→〈 step APPL-send 〉
(nothing, h’cl, hcnt), [APPL ptr1 (clos ptr2) ptrcnt]
−→〈 step APPL-receive 〉
(just (VAR 0 ; RET, [clos ptr2], [], just ptrcnt), h’cl, hcnt), []
−→〈 step (VAR refl) 〉

(just (RET, [clos ptr2], [clos ptr2], just ptrcnt), h’cl, hcnt), []
−→〈 step RET-send 〉
(nothing, h’cl, hcnt), [RET ptrcnt (clos ptr2)]
−→〈 step RET-receive 〉
(just (END, [], [clos ptr2], nothing), h’cl, hcnt), []

Comparing this to Example 3.2 we can see that an APPL-send fol-
lowed by an APPL-receive amounts to the same thing as the APPL
rule in the CES machine, and similarly for the RET instruction.

3.5 DCESH: The distributed CESH machine
We have so far seen two refinements of the CES machine. We
have seen CESH, that adds heaps, and DCESH1, that decomposes
instructions into communication in a degenerate network of only
one node. Our final refinement is a distributed machine, DCESH,
that supports multiple nodes. The main problem that we now face
is that there is no centralised heap, but each node has its own
local heap. This means that, for supporting higher-order functions
across node boundaries, we have to somehow keep references to
closures in the heaps of other nodes. Another problem is efficiency;
we would like a system where we do not pay the higher price of
communication for locally running code. The main idea for solving
these two problems is to use remote pointers, RPtr = Ptr × Node,
pointers paired with node identifiers signifying on what node’s heap
the pointer is located. This solves the heap problem because we
always know where a pointer comes from. It can also be used to
solve the efficiency problem since we can choose what instructions
to run based on whether a pointer is local or remote. If it is local,
we run the rules of the CESH machine. If it is remote, we run the
decomposed rules of the DCESH1 machine.

The final extension to the term language and bytecode will add
support for location specifiers. We add a term construct t @ i, and
an instruction REMOTE c i for its compilation. The location spec-
ifiers, t @ i, are taken to mean that the term t should be evaluated
on node i. For compilation, we require that the terms t in all loca-
tion specification sub-terms t @ i are closed. Terms where this does
not hold are transformed automatically using lambda lifting [25]
(transform every sub-term t @ i to t’ = ((λ fv t. t) @ i) (fv t)).
The REMOTE c i instruction will be used to start running a code
fragment c on node i in the network. We also extend the compile’
function to handle the new term construct:

compile’ (t @ i) c = REMOTE (compile’ t RET) i ; c

Note that we reuse the RET instruction to return from a remote
computation.

The definition of closures, values, environments and closure
heaps are the same as in the CESH machine, but using RPtr instead
of Ptr for closure pointers.

The stack combines the functionality of the CES(H) machine,
permitting local continuations, with that of the DCESH1 machine,
making it possible for a stack to end with a continuation on another
node. A stack element is a value or a (local) continuation signified
by the val and cont constructors. A stack (Stack) is a list of stack el-
ements, possibly ending with a (remote) pointer to a continuation,
List StackElem × Maybe ContPtr (where ContPtr = RPtr). Threads

7 2014/9/8

APPL-send : ∀ {c e v ptrcl s r hcl hcnt} → let (h’cnt, ptrcnt) = hcnt I ((c, e), s, r) in

(just (APPL ; c, e, v :: clos ptrcl :: s, r), hcl, hcnt)
send (APPL ptrcl v ptrcnt)−−−−−−−−−−−−−−−→ (nothing, hcl, h’cnt)

APPL-receive : ∀ {hcl hcnt ptrcl v ptrcnt c e} → hcl ! ptrcl ≡ just (c, e)→

(nothing, hcl, hcnt)
receive (APPL ptrcl v ptrcnt)−−−−−−−−−−−−−−−−→ (just (c, v :: e, [], just ptrcnt), hcl, hcnt)

RET-send : ∀ {e v ptrcnt hcl hcnt} →

(just (RET, e, v :: [], just ptrcnt), hcl, hcnt)
send (RET ptrcnt v)
−−−−−−−−−−−→ (nothing, hcl, hcnt)

RET-receive : ∀ {hcl hcnt ptrcnt v c e s r} → hcnt ! ptrcnt ≡ just ((c, e), s, r)→

(nothing, hcl, hcnt)
receive (RET ptrcnt v)
−−−−−−−−−−−−→ (just (c, e, v :: s, r), hcl, hcnt)

Figure 6. The definition of the transition relation of the DCESH1 machine (excerpt).

and machines are defined like in the DCESH1 machine. The mes-
sages that DCESH can send are those of the DCESH1 machine but
using remote pointers instead of plain pointers, plus a message for
starting a remote computation, REMOTE c i rptrcnt. Note that send-
ing a REMOTE message amounts to sending code in our formali-
sation, which is something that we would not like to do. However,
because no code is generated at run-time, every machine can be
“pre-loaded” with all the bytecode it needs, and the message only
needs to contain a reference to a fragment of code.

Fig. 7 defines the transition relation of the DCESH machine,
written i ` m

tmsg−−→ m’ for a node identifier i, a tagged message
tmsg and machine configurations m and m’. The parameter i is taken
to be the identifier of the node on which the transition is taking
place. For local computations, we have rules analogous to those
of the CESH machine, so we omit them and show only those for
remote computations. The rules use the function i ` h I x for
allocating a pointer to x in a heap h and then constructing a remote
pointer tagged with node identifier i from it. When starting a remote
computation, the machine allocates a continuation in the heap and
sends a message containing the code and continuation pointer to the
remote node in question. Afterwards the current thread is stopped.

@ A @ B
REMOTE c' B; c
e
s
r

REMOTE
c' B rptr

nothing

nothing

(c, e, (s, r))

c'
[]
[]
just rptr

*
RET
e
val v
rptr

RET
rptr v

c
e
val v :: s
r

On the receiving end of such a communication, a new thread is
started, placing the continuation pointer at the bottom of the stack
for the later return to the caller node. To run the apply instruction
when the function closure is remote, i.e. its location is not equal to
the current node, the machine sends a message containing the clo-
sure pointer, argument value, and continuation, like in the DCESH1

machine. On the other end of such a communication, the machine
dereferences the pointer and enters the closure with the received
value. The bottom remote continuation pointer is set to the received
continuation pointer. After either a remote invocation or a remote
application, the machine can return if it has produced a value on the
stack and has a remote continuation at the bottom of the stack. To
do this, a message containing the continuation pointer and the re-
turn value is sent to the location of the continuation pointer. When
receiving a return message, the continuation pointer is dereferenced
and entered with the received value.

A network of abstract machines is obtained by instantiating
the Network module with the −→Machine relation. From here on
SyncNetwork and AsyncNetwork and their transition relations refer to
the instantiated versions.

Unsurprisingly, if all nodes in a synchronous network except
one are inactive, then the next step is deterministic.10 Another key
ancillary property of DCESH nets is that synchronous or asyn-
chronous networks for single threaded computations behave essen-
tially the same,11 which means it is enough to deal with the simpler
synchronous networks.

DCESH nets nodes can terminate with a value v (nodes ↓Sync v),
terminate (nodes ↓Sync), or diverge (nodes ↑Sync). A network
terminates with a value v if it can step to a network where only one
node is active, and that node has reached the END instruction with
the value v on top of its stack. The other definitions are analogous
to those of the CES(H) machine.

3.5.1 Correctness
To prove the correctness of the machine, we will now establish a
bisimulation between the CESH and the DCESH machines.

To simplify this development, we extend the CESH machine
with a dummy rule for the REMOTE c i instruction so that both
machines run the same bytecode. This rule is almost a no-op, but
since we are assuming that the code we run remotely is closed, the
environment is emptied, and since the compiled code c will end in
a RET instruction a return continuation is pushed on the stack.

(REMOTE c’ i ; c, e, s, h) −−−→
CESH

(c’, [], cont (c, e) :: s, h)

The relation that we are about to define is, as before, almost
equality. But since values may be pointers to closures, it must be
parameterised by heaps. A technical problem is that both machines
use pointers, and the DCESH machine also uses remote pointers
and has two heaps for each node: so the relation must be parame-
terised by all the heaps in the system. The extra parameter is a syn-
onym for an indexed family of the closure and continuation heaps,
Heaps = Node → DCESH.ClosHeap × DCESH.ContHeap. The com-
plexity of this relation justifies our use of mechanised reasoning.

The correctness proof itself is not routine. Simply following
the recipe that we used before does not work. In the old proof,
there can be no circularity, since that bisimulation was constructed
inductively on the structure of the CES configuration. But now both
systems, CESH and DCESH, have heaps where there is a potential
for circular references (e.g. a closure, residing in a heap, whose
environment contains a pointer to itself), preventing a direct proof
via structural induction. This is perhaps the most mathematically
(and formally) challenging point of the paper. The solution lies in
using the technique of step-indexed relations, adapted to the context

10 DCESH.Properties.determinism-Sync
11 DCESH.Properties.−→Async+-to-−→Sync+

8 2014/9/8

REMOTE-send : ∀ {c’ i’ c e s r hcl hcnt} → let (h’cnt, rptr) = i ` hcnt I ((c, e), s, r) in

i ` (just (REMOTE c’ i’ ; c, e, s, r), hcl, hcnt)
send (REMOTE c’ i’ rptr)−−−−−−−−−−−−−−−→ (nothing, hcl, h’cnt)

REMOTE-receive : ∀ {hcl hcnt c rptrcnt} →

i ` (nothing, hcl, hcnt)
receive (REMOTE c i rptrcnt)−−−−−−−−−−−−−−−−−→ (just (c, [], [], just rptrcnt), hcl, hcnt)

APPL-send : ∀ {c e v ptrcl j s r hcl hcnt} → i 6≡ j→ let (h’cnt, rptrcnt) = i ` hcnt I ((c, e), s, r) in

i ` (just (APPL ; c, e, val v :: val (clos (ptrcl, j)) :: s, r), hcl, hcnt)
send (APPL (ptrcl,j) v rptrcnt)−−−−−−−−−−−−−−−−−→ (nothing, hcl, h’cnt)

APPL-receive : ∀ {hcl hcnt ptrcl v rptrcnt c e} → hcl ! ptrcl ≡ just (c, e)→

i ` (nothing, hcl, hcnt)
receive (APPL (ptrcl,i) v rptrcnt)−−−−−−−−−−−−−−−−−−→ (just (c, v :: e, [], just rptrcnt), hcl, hcnt)

RET-send : ∀ {e v rptrcnt hcl hcnt} →

i ` (just (RET, e, val v :: [], just rptrcnt), hcl, hcnt)
send (RET rptrcnt v)
−−−−−−−−−−−−→ (nothing, hcl, hcnt)

RET-receive : ∀ {hcl hcnt ptrcnt v c e s r} → hcnt ! ptrcnt ≡ just ((c, e), s, r)→

i ` (nothing, hcl, hcnt)
receive (RET (ptrcnt,i) v)
−−−−−−−−−−−−−−→ (just (c, e, val v :: s, r), hcl, hcnt)

Figure 7. The definition of the transition relation of the DCESH machine (excerpt).

of bisimulation relations [2]. The additional rank parameter records
how many times pointers are allowed to be dereferenced.

The rank is used in defining the relation for closure pointers
Rrptrcl . If the rank is zero, the relation is trivially fulfilled. If the
rank is non-zero then three conditions must hold. First, the CESH
pointer must point to a closure in the CESH heap; second, the re-
mote pointer of the DCESH network must point to a closure in the
heap of the location that the pointer refers to; third, the two clo-
sures must be related. The relation for stack elements RStackElem is
almost as before, but now requires that the relation is true for any
natural number rank, i.e. for any finite number of pointer derefer-
encings. The relation for stacks RStack now takes into account that
the DCESH stacks may end in a pointer representing a remote
continuation, requiring that the pointer points to something in the
continuation heap of the location of the pointer, which is related
to the CESH stack element. Finally, a CESH configuration and a
DCESH thread are RThread-related if the thread is running and the
constituents are pointwise related. Then a CESH configuration is
related to a synchronous network RSync if the network has exactly
one running machine that is related to the configuration.

DCESH net heaps are ordered pointwise (called ⊆s since it is
the “plural” of ⊆). For any CESH closure heaps h and h’ such that
h ⊆ h’ and families of DCESH heaps hs and hs’ such that hs ⊆s hs’,
if REnv n h hs e1 e2 then REnv n h’ hs’ e1 e2 and if RStack h hs s1 s2
then RStack h’ hs’ s1 s2.12

Showing that RSync is a simulation relation13 proceeds by cases
on the CESH transition. In each case, the DCESH network can
make analogous transitions. The property above is then used to
show that RSync is preserved. It is quite immediate that the inverse
of RSync is a presimulation14 which leads to the main result that RSync

is a bisimulation.15

In particular, if RSync cfg nodes then cfg ↓CESH nat n↔ nodes ↓Sync

nat n and cfg ↑CESH ↔ nodes ↑Sync,16 and we also have that initial
configurations are in RSync.17 These final results complete the pic-
ture for the DCESH machine. We have established that we get the
same final result regardless of whether we choose to run a fragment
of code using the CES, the CESH, or the DCESH machine.

12 DCESH.Simulation-CESH.HeapUpdate.env, DCESH.Simulation-CESH.HeapUpdate.stack
13 DCESH.Simulation-CESH.simulation-sync
14 DCESH.Simulation-CESH.presimulation-sync
15 DCESH.Simulation-CESH.bisimulation-sync
16 DCESH.Simulation-CESH.termination-agrees-sync,
DCESH.Simulation-CESH.divergence-agrees-sync
17 DCESH.Simulation-CESH.initial-related-sync

4. Fault-tolerance via transactions
In this section we present a generic transaction-based method for
handling failure which is suitable for the DCESH. Node state is
“backed up” (commit) at certain points in the execution, and if an
exceptional condition arises, the backup is restored (roll-back).

This development is independent of the underlying transition
relation, but the proofs rely on sequentiality. We assume that we
have two arbitrary types Machine and Msg, as well as a transition
relation over them:

−−−−→
Machine

: Machine→ Tagged Msg→ Machine→ ?

Since we have no knowledge of exceptional states in Machine, since
it is a parameter, we define another relation, −−−→

Crash
, as a thin

layer on top of −−−−→
Machine

. The new definition is shown in Fig. 8
and adds the exceptional state nothing by extending the set of states
of the relation to Maybe Machine. The fallible machine can make
a normal-step transition from and to just ordinary Machine states,
or it can crash which leaves it in the exceptional state. This means
that we tolerate fail-stop faults as opposed to e.g. the more general
Byzantine failures.

The additional assumptions for sequentiality are that we have a
decidable predicate, active : Machine → ? on machines, and the
following functions:

inactive-receive-active : ∀ {m m’ msg} →
(m

receive msg−−−−−−→
Machine

m’)→ ¬ (active m) × active m’

active-silent-active : ∀ {m m’} →
(m τ−−−−→

Machine
m’)→ active m × active m’

active-send-inactive : ∀ {m m’ msg} →
(m

send msg−−−−−→
Machine

m’)→ active m × ¬ (active m’)

These functions express the property that if a machine is in-
voked, i.e. it receives a message, then it must go from an inactive
to an active state. If the machine then takes a silent step, it must
remain active, and when it sends a message it must go back to be-

normal-step : ∀ { tmsg m m’} →
(m

tmsg−−−−→
Machine

m’)→ (just m
tmsg−−−→

Crash
just m’)

crash : ∀ {m} →
(just m τ−−−→

Crash
nothing)

Figure 8. The definition of the transition relation of a machine that
may crash.

9 2014/9/8

silent-step : ∀ {m n m’} →
(just m τ−−−→

Crash
just m’) → ((m, n) τ−−−−→

Backup
(m’, n))

receive-step : ∀ {m n m’ msg} →

(just m
receive msg−−−−−−→

Crash
just m’)→ ((m, n)

receive msg−−−−−−→
Backup

(m’,m’))

send-step : ∀ {m n m’ msg} →

(just m
send msg−−−−−→

Crash
just m’) → ((m, n)

send msg−−−−−→
Backup

(m’,m’))

recover : ∀ {m n} →
(just m τ−−−→

Crash
nothing) → ((m, n) τ−−−−→

Backup
(n, n))

Figure 9. The definition of the transition relation for a crashing
machine with backup.

ing inactive. This gives us sequentiality; a machine cannot fork new
threads, and cannot be invoked several times in parallel.

As the focus here is on obvious correctness and simplicity, we
abstract from the method of detecting faults in a separate node, and
assume that it can be done (using e.g. a heartbeat network). Simi-
larly, we assume that we have a means of creating and restoring a
backup of a node in the system; how this is done depends largely
on the underlying system. We so define a machine with a backup as
Backup = Machine × Machine, where the second Machine denotes
the backup. Using this definition, we define a backup strategy, given
in Fig. 9. This strategy makes a backup just after sending and re-
ceiving messages. In the case of the underlying machine crashing,
it restores the backup. Note that this is only one of many possible
backup strategies. This one is particularly nice from a correctness
point-of-view, because it makes a backup after every observable
event, although it may not be the most performant.

We define binary relations for making transition with some
tagged message, as follows:

_ −−−−→
Machine

_ : Machine→ Machine→ ?

m1 −−−−→
Machine

m2 = ∃ λ tmsg→ (m1
tmsg−−−−→

Machine
m2)

_ −−−−→
Backup

_ : Backup→ Backup→ ?

b1 −−−−→
Backup

b2 = ∃ λ tmsg→ (b1
tmsg−−−−→

Backup
b2)

Using these relations we can define the observable trace of run
of a Machine (Backup), i.e. an element of the reflexive transitive
closure of the above relations. First we define IO, the subset of
tagged messages that we can observe, namely send and receive:

data IO (A : ?) : ? where
send receive : A→ IO A

The following function now gives us the observable trace, given
an element of −−−−→

Machine
∗ (which is defined using list-like notation)

by ignoring any silent steps.

J_KM : ∀ {m1 m2} → m1 −−−−→
Machine

∗ m2 → List (IO Msg)

J [] KM = []
J ((τ ,) :: steps) KM = J steps KM
J ((send msg,) :: steps) KM = send msg :: J steps KM
J ((receive msg,) :: steps) KM = receive msg :: J steps KM

J_KB is defined analogously. Given this definition, we can triv-
ially prove that if we have a run m1 −−−−→

Machine
∗ m2 then there exists

a run of the Backup machine that starts and ends in the same state
and has the same observational behaviour.18 This is proved by con-
structing a crash-free Backup run given the Machine run. Obviously,
the interesting question is whether we can take any crashing run
and get a corresponding Machine run.

18 Backup.soundness

The key to proving the result that we want, which more formally
is that, given (bs : (b1, b1) −−−−→

Backup
∗ (m2, b2)), there is a run

(ms : b1 −−−−→
Machine

∗ m2) with the same observational behaviour as

bs19, is the following lemma20:

fast-forward-to-crash : ∀ {m1 m2 b1 b2 n} →
(s : (m1, b1) −−−−→

Backup
∗ (m2, b2))→

thread-crashes s→ length s 6 n→
∃ λ (s’ : ((b1, b1) −−−−→

Backup
∗ (m2, b2)))→

(¬ thread-crashes s’) × (J s KB ≡ J s’ KB) × (length s’ 6 n)

Here thread-crashes is a decidable property on backup runs, that
ensures that, if m1 is active, then it crashes and does a recovery step
at some point before it performs an observable action. The proof of
fast-forward-to-crash is done by induction on the natural number n.

The above result can be enhanced further by observing that if the
probability of a machine crash is not 1 then the probability of the
machine eventually having a successful execution is 1. This means
that the probability for the number n above to exist is also 1.21

5. Related work
There is a multitude of programming languages and libraries for
distributed or client server computing. We focus mostly on those
with a functional flavour. For surveys, see [28, 42]. Broadly speak-
ing, we can divide them into those that use some form of explicit
message passing, and those that have more implicit mechanisms for
distribution and communication.

Explicit A prime example of a language for distributed comput-
ing that uses explicit message passing is Erlang [3]. Erlang is a
very successful language used prominently in the telecommunica-
tion industry. Conceptually similar solutions include MPI [21] and
Cloud Haskell [14]. The theoretically advanced projects Nomadic
Pict [44] and the distributed join calculus [16] both support a no-
tion of mobility for distributed agents, which enables more expres-
sivity for the distribution of a program than the fairly static net-
works (with only ubiquitous functions being mobile) that our work
uses. Session types have been used to extend a variety of languages,
including functional languages, with better communication primi-
tives [43]. Work on session types has been an inspiration also for us:
the way that we compile a single program to multiple nodes can be
likened to the projection operator in multiparty session types [24].
But in general, explicit languages are well-proven, but far away in
the language design-space from the seamless distributed comput-
ing that we envision could be done using native RPC, because they
place the significant burden of explicit communication on the pro-
grammer.

Implicit Our work generalises Remote Procedure Call (RPC) [7]
with full support for higher-order functions. In loc. cit. it is argued
that emulating a shared address space is infeasible since it requires
each pointer to also contain location information, and that it is
questionable whether acceptable efficiency can be achieved. These
arguments certainly apply to our work, where we do just this.
With the goal of expressivity in mind, however, we believe that we
should enable the programmer to write the potentially inefficient
programs that (internally) use remote pointers, because not all
programs are performance critical. Furthermore, using a tagged
pointer representation [30] for closure pointers means that we can
tag pointers that are remote, and pay a very low, if any, performance
penalty for local pointers.

19 Backup.completeness
20 Backup.fast-forward-to-crash
21 This argument has not been formalised in Agda.

10 2014/9/8

Remote Evaluation (REV) [40] is another generalisation of
RPC, siding with us on enabling the use of higher-order functions
across node boundaries. The main differences between REV and
our work is that REV relies on sending code, whereas we can do
both, and that it has a more elaborate distribution mechanism.

The well-researched project Eden [29] and the associated ab-
stract machine DREAM [8], which builds on HASKELL, is a semi-
implicit language. Eden allows expressing distributed algorithms
at a high level of abstraction, and is mostly implicit about com-
munication, but explicit about process creation. Eden is specified
operationally using a two-level semantics similar to ours, but in
the context of the call-by-need evaluation strategy. Kanor [23] is
a project that similarly aims to simplify the development of dis-
tributed programs by providing a declarative language for specify-
ing communication patterns inside an imperative host language.

Hop [38], Links [11], and ML5 [32] are examples of so called
tierless languages that allow writing (for instance) the client and
server code of web applications in unified languages with more or
less seamless interoperability between them. The Links language
shares our goal of unifying distributed programs into a single lan-
guage with seamless interoperability between the nodes, but its fo-
cus is on web programming with client, server, and database. For
that purpose it includes sub-languages for elegantly constructing
and manipulating XML documents and for doing database queries.
The behaviour of Links is specified using the client/server calcu-
lus [10], which is an operational semantics similar in purpose to
our abstract machines, but, as its name suggests, limited to two
nodes. The two nodes of the system are constructed with web-
programming in mind and are not equal peers. The server is state-
less to be able to handle a large number of clients and unexpected
disconnections. The semantics operates on a first-order language
and uses explicit substitutions. The client/server calculus also in-
spired work on the LSAM [33], that lifts the two-node limitation.
A similar, but earlier, machine is that of dML [35]. The dML and
LSAM machines are conceptually close to our machine, but de-
scribed on a level that is not as readily implementable as our work,
using explicit substitutions and synchronous message passing.

On the language side, our work draws inspiration from abstract
machines for game semantics [17, 18] where an exotic compila-
tion technique based on game semantics is used to implement a
language like ours, but for call-by-name and without algebraic data
types. Recent work shows a formalisation similar to ours, but based
on the Krivine machine and the significantly less popular call-by-
name evaluation strategy [19].

6. Conclusion
The main conceptual contribution of this work is a new abstract
machine, or abstract machine net rather, called the DCESH. Its
main feature is that function calls behave, from the point of view of
the programmer, in the same way whether they are local or remote.
Moreover, on a single node the behaviour of DCESH is that of a
conventional SECD-like abstract machine. All correctness proofs
have been formalised using Agda.

On this theoretical foundation it is natural to build a compiler
for a (very conventional) CBV language where terms are location-
aware. Compared to most of the literature on the topic, the thrust
of this work is not a general-purpose functional language for
location-aware computing but rather a location-aware compilation
technique for general-purpose functional languages. The perfor-
mance of the compiler, as suggested by the benchmarks, improves
dramatically on previous work in terms of single-node behaviour,
and the distribution overheads are not onerous.

RPC as a paradigm has been criticised for several reasons: its
execution model does not match the native call model, there is
no good way of dealing with failure, and it is inherently ineffi-

cient [41]. By taking an abstract machine model in which RPCs
behave exactly the same as local calls, by showing how a generic
transaction mechanism can handle failure, and by implementing a
reasonably performant compiler we address all these problem head-
on. We believe that we provide enough evidence for general native
RPCs to be reconsidered in a more positive light.

6.1 Further work
The DCESH has the internal machinery required for parallel exe-
cution, but we restrict ourselves to sequential execution. In moving
towards parallelism there are several language design (how to add
parallelism?) and theoretical (is compilation still correct?) chal-
lenges. The language design aspects are too broad to discuss here,
beyond emphasising that the thread-based mechanism of DCESH
is indeed quite flexible. The only ingredient lacking is a synchroni-
sation primitive, but that is not a serious difficulty. The theoretical
challenges are mainly stemming out of the failure of the equiva-
lence of synchronous and asynchronous networks in the presence
of multiple pending messages22. Whether we choose to stick to a
synchronous network model, which can however be rather unrealis-
tic, or we try to work directly in the more challenging environment
of asynchronous networks, remains to be seen.

The current implementation does not need distributed garbage
collection. The values which are the result of CBV evaluation are
always sent, along with any required closures, to the node where the
function using them as arguments is executed. With this approach
local garbage collection suffices. Note that this is similar to the ap-
proach that Links takes. If a large data structure needs to be held
on a particular node the programmer needs to be aware of this re-
quirement and indirect the access to it using functions. However, if
we wanted to automate this process as well, and prevent some data
from migrating when it’s too large, the current approach to garbage
collection could not cope, and distributed garbage collection would
be required. Mutable references or lazy evaluation would also re-
quire it. Whether this can be done efficiently is a separate topic of
research [36].

Whether code or data can or should be migrated to different
nodes is a question that can be answered from a safety or from an
efficiency point of view. The safety angle is very well covered by
type systems such as ML5’s, which prevent the unwanted exporta-
tion of local resources. The efficiency point of view can also be
dealt with in a type-theoretic way, as witnessed by recent work
in resource-sensitive type systems [9, 20]. The flexibility of the
DCESH in terms of localising or remoting the calls (statically or
even dynamically) together with a resource oriented system can
pave the way towards a highly-convenient automatic orchestration
system in which a program is automatically distributed among sev-
eral nodes to achieve certain performance objectives.

Finally, an Agda formalisation is given only for the abstract ma-
chine and its property, which are the new theoretical contributions
of the paper. However, a full formalisation of the compiler stack,
remains a long-term ambition.

References
[1] Floskel, proofs and compiler implementation. http://www.cs.

bham.ac.uk/~ohf162/floskel.tar.gz. Last accessed: 3 June
2014.

[2] A. J. Ahmed, M. Fluet, and G. Morrisett. A step-indexed model of
substructural state. In ICFP, pages 78–91, 2005.

[3] J. Armstrong, R. Virding, and M. Williams. Concurrent programming
in ERLANG. Prentice Hall, 1993. ISBN 978-0-13-285792-5.

[4] L. Augustsson. Compiling pattern matching. In FPCA, pages 368–
381, 1985.

22 DCESH.Properties.−→Async+-to-−→Sync+

11 2014/9/8

[5] G. Berry and G. Boudol. The Chemical Abstract Machine. In POPL,
pages 81–94, 1990.

[6] B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M. Levy.
Lightweight remote procedure call. ACM Trans. Comput. Syst., 8(1):
37–55, 1990.

[7] A. Birrell and B. J. Nelson. Implementing Remote Procedure Calls.
ACM Trans. Comput. Syst., 2(1):39–59, 1984.

[8] S. Breitinger, U. Klusik, R. Loogen, Y. Ortega-Mallén, and R. Pena.
Dream: The distributed eden abstract machine. In IFL, pages 250–269,
1997.

[9] A. Brunel, M. Gaboardi, D. Mazza, and S. Zdancewic. A core quan-
titative coeffect calculus. In Shao [39], pages 351–370. ISBN 978-3-
642-54832-1.

[10] E. Cooper and P. Wadler. The RPC calculus. In PPDP, pages 231–242,
2009.

[11] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: Web Program-
ming Without Tiers. In FMCO, pages 266–296, 2006.

[12] O. Danvy and K. Millikin. A rational deconstruction of Landin’s
SECD machine with the J operator. LMCS, 4(4), 2008.

[13] N. G. de Bruijn. Lambda calculus notation with nameless dummies,
a tool for automatic formula manipulation, with application to the
church-rosser theorem. Indagationes Mathematicae, pages 381–392,
1972. .

[14] J. Epstein, A. P. Black, and S. L. P. Jones. Towards Haskell in the
cloud. In Symposium on Haskell 2011, pages 118–129.

[15] M. Felleisen and D. P. Friedman. Control operators, the SECD-
machine, and the lambda-calculus. In IFIP TC 2/WG 2.2, Aug. 1986.

[16] C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and D. Rémy. A
calculus of mobile agents. In CONCUR, pages 406–421, 1996.

[17] O. Fredriksson and D. R. Ghica. Seamless Distributed Computing
from the Geometry of Interaction. In TGC, pages 34–48, 2012.

[18] O. Fredriksson and D. R. Ghica. Abstract Machines for Game Seman-
tics, Revisited. In LICS, pages 560–569, 2013.

[19] O. Fredriksson and D. R. Ghica. Krivine Nets: A semantic foundation
for distributed execution. In ICFP, 2014 (to appear).

[20] D. R. Ghica and A. I. Smith. Bounded linear types in a resource
semiring. In Shao [39], pages 331–350. ISBN 978-3-642-54832-1.

[21] W. D. Gropp, E. L. Lusk, and A. Skjellum. Using MPI: portable
parallel programming with the message-passing interface, volume 1.
MIT Press, 1999.

[22] P. Henderson. Functional programming - application and implemen-
tation. Prentice Hall International Series in Computer Science. 1980.
ISBN 978-0-13-331579-0.

[23] E. Holk, W. E. Byrd, J. Willcock, T. Hoefler, A. Chauhan, and
A. Lumsdaine. Kanor - a declarative language for explicit commu-
nication. In PADL, pages 190–204, 2011.

[24] K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous
session types. In POPL, pages 273–284, 2008.

[25] T. Johnsson. Lambda Lifting: Transforming Programs to Recursive
Equations. In FPCA, pages 190–203, 1985.

[26] P. J. Landin. The mechanical evaluation of expressions. Computer
Journal, 6(4):308–320, Jan. 1964.

[27] X. Leroy. MPRI course 2-4-2, part II: abstract machines. 2013-2014.
URL http://gallium.inria.fr/~xleroy/mpri/progfunc/.

[28] H.-W. Loidl, F. Rubio, N. Scaife, K. Hammond, S. Horiguchi,
U. Klusik, R. Loogen, G. Michaelson, R. Pena, S. Priebe, Á. J. R. Por-
tillo, and P. W. Trinder. Comparing Parallel Functional Languages:
Programming and Performance. HOSC, 16(3):203–251, 2003.

[29] R. Loogen, Y. Ortega-Mallén, and R. Peña-Marí. Parallel functional
programming in Eden. JFP, 15(3):431–475, 2005.

[30] S. Marlow, A. R. Yakushev, and S. L. P. Jones. Faster laziness using
dynamic pointer tagging. In ICFP, pages 277–288, 2007.

[31] Y. Minamide, J. G. Morrisett, and R. Harper. Typed closure conver-
sion. In POPL, pages 271–283, 1996.

[32] T. Murphy VII, K. Crary, and R. Harper. Type-Safe Distributed
Programming with ML5. In TGC 2007, pages 108–123.

[33] K. Narita and S.-y. Nishizaki. A parallel abstract machine for the RPC
calculus. In Informatics Engineering and Information Science, pages
320–332. Springer, 2011.

[34] U. Norell. Towards a practical programming language based on
dependent type theory. PhD thesis, Chalmers Uni. of Tech., 2007.

[35] A. Ohori and K. Kato. Semantics for communication primitives in an
polymorphic language. In POPL, pages 99–112, 1993.

[36] D. Plainfossé and M. Shapiro. A Survey of Distributed Garbage
Collection Techniques. In IWMM, pages 211–249, 1995.

[37] G. D. Plotkin. LCF Considered as a Programming Language. Theor.
Comput. Sci., 5(3):223–255, 1977.

[38] M. Serrano, E. Gallesio, and F. Loitsch. Hop: a language for program-
ming the web 2.0. In OOPSLA, pages 975–985, 2006.

[39] Z. Shao, editor. Programming Languages and Systems - 23rd Euro-
pean Symposium on Programming, ESOP 2014, Grenoble, France,
April 5-13, 2014, Proceedings, volume 8410 of Lecture Notes in Com-
puter Science, 2014. Springer. ISBN 978-3-642-54832-1.

[40] J. W. Stamos and D. K. Gifford. Remote evaluation. TOPLAS, 12(4):
537–565, 1990.

[41] A. S. Tanenbaum and R. van Renesse. A critique of the remote
procedure call paradigm. Vrije Universiteit, Subfaculteit Wiskunde
en Informatica, 1987.

[42] P. W. Trinder, H.-W. Loidl, and R. F. Pointon. Parallel and Distributed
Haskells. JFP, 12(4&5):469–510, 2002.

[43] V. T. Vasconcelos, S. J. Gay, and A. Ravara. Type checking a multi-
threaded functional language with session types. Theor. Comput. Sci.,
368(1-2):64–87, 2006.

[44] P. T. Wojciechowski and P. Sewell. Nomadic pict: language and
infrastructure design for mobile agents. IEEE Concurrency, 8(2):42–
52, 2000.

12 2014/9/8

