
Branch and Bound in a Data Parallel Setting
Extended Abstract

Sven-Bodo Scholz
Heriot-Watt University
S.Scholz@hw.ac.uk

Abstract
This paper investigates how branch and bound algorithms
can be implemented in a functional, data parallel setting. We
identify a general programming pattern for such algorithms
and we discuss compilation and runtime aspects when it
comes to mapping the programming pattern into parallel
code. We use the maximum clique problem in undirected
graphs as a running example and we present first experiences
in the context of SaC.

1. Introduction
Branch and bound algorithms (which, in the sequel, we will
refer to as BBAs) play an important role for many combi-
natorial search and optimisation problems. Typically these
problems are NP-complete and require, at least in principle,
the inspection of a search tree of exponential size. The key
idea of branch and bound algorithms is the identification of
certain bounds that allow pruning the search tree. That way,
the overall runtime in many real-world applications can be
brought down to a level where useful results are feasible de-
spite the NP-complete nature of the underlying problem.

Application areas for these algorithms are vast including
many areas that gain importance in the context of big data
such as bio-informatics, computational chemistry, or social
network analytics. The wide range of applications combined
with the desire to deal with ever increasing amounts of data
creates a demand for attempts to scale these applications to
many-core systems. However, the challenges of successfully
parallelising BBAs are many-fold. While a first cut seems
rather obvious, i.e., spawning several threads that investigate
separate branches of the search tree, achieving a parallel per-
formance that scales well is far from trivial: The search tree

[Copyright notice will appear here once ’preprint’ option is removed.]

typically is not well balanced, it may not even be statically
known. The effectiveness of the bounding process often de-
pends on knowledge gained by previous search space explo-
ration and it may differ depending on where in the search
space the exploration happens.

For many application areas, there exists a large body
of work which investigates the effectiveness of different
BBAs for individual problem instances. Often the perceived
best solutions depend not only on the executing hardware,
whether the algorithm is executed sequentially or in paral-
lel, but they also depend on the given data itself. Low-level
implementations of these algorithms are tedious, error-prone
and typically require a lot of fine-tuning to achieve reason-
able runtime performance.

This appears to be a setting where a declarative approach
might help, be it in the form of a DSL or in the form of
special language constructs. This paper presents our results
when looking at BBAs from a data parallel angle. While
a data-parallel approach may at first glance seem counter-
intuitive for this seemingly inherent task-parallel class of
algorithms, it turns out that nested reductions (folds) are a
very apt vehicle for formulating BBAs. They provide an easy
way to conveniently specifying the need for branching and,
at the same time, they enable a compilation into effectively
executable parallel code.

The main challenge, as in the manual case discussed
extensively in the literature, is an effective declaration of
the bounding needs. To our surprise, it turns out that very
few language mechanisms suffice to express the bounding
needs elegantly. We discuss what these mechanisms are and
we argue their versatility. Furthermore, we show that SaC
already provides suitable mechanisms. We use a classical
problem from graph theory as running example to present
and contrast several different specifications in SaC. This
allows us to obtain initial performance figures and to relate
these to the implementation features used.

Acknowledgments
This work was supported in part by grant EP/L00058X/1
from the UK Engineering and Physical Sciences Research
Council (EPSRC).

1 2014/9/8


