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Abstract
Asynchronous adaptive specialization of rank- and shape-generic
code for processing immutable (purely functional) multi-dimen-
sional arrays has proven to be an effective technique to reconcile
the desire for abstract specifications with the need to achieve rea-
sonably high performance in sequential as well as in automatically
parallelized execution. Since concrete rank and shape information
is often not available as a matter of fact until application runtime,
we likewise postpone the specialization and in turn aggressive opti-
mization of generic functions until application runtime. As a conse-
quence, we use parallel computing facilities to asynchronously and
continuously adapt a running application to the structural properties
of the data it operates on.

A key parameter for the efficiency of asynchronous adaptive
specialization is the time it takes from requesting a certain spe-
cialization until this specialization effectively becomes available
within the running application. We recently proposed a persistence
layer to effectively reduce the average waiting time for specialized
code to virtually nothing In this paper we revisit the proposed ap-
proach in greater detail. We identify a number of critical issues that
partly have not been foreseen before. Such issues stem among oth-
ers from the interplay between function specialization and function
overloading as well as the concrete organization of the specializa-
tion repository in a persistent file system. We describe the solutions
we have adopted for the various issues identified.

Categories and Subject Descriptors Software and its engineering
[Software notations and tools]: Dynamic compilers

Keywords Array processing, Single Assignment C, runtime opti-
mization, dynamic compilation, rank and shape specialization

1. Introduction
SAC (Single Assignment C) is a purely functional, data-parallel ar-
ray language [4, 6, 7] with a C-like syntax (hence the name). SAC
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features immutable, homogeneous, multi-dimensional arrays and
supports both shape- and rank-generic programming: SAC func-
tions may not only abstract from the concrete shapes of argument
and result arrays, but even from their ranks (i.e. the number of di-
mensions).

In software engineering practice, it is generally desirable to ab-
stract as much as possible from concrete shapes and ranks. This is
particularly true for the compositional array programming style ad-
vocated by SAC, where in the tradition of APL entire applications
are constructed abstraction layer by abstraction layer from basic
building blocks, which are by definition rank- and shape-generic as
well as application-agnostic.

However, generic array programming comes at a price. In com-
parison to non-generic code the runtime performance of equivalent
operations is substantially lower for shape-generic code and again
for rank-generic code [18]. There are various reasons for this obser-
vation and often their relative importance is operation-specific, but
nonetheless we can identify three categories of overhead caused
by generic code: First, generic runtime representations of arrays
need to be maintained, and generic code tends to be less efficient,
e.g. no static nesting of loops can be generated to implement a
rank-generic multidimensional array operation. Second, many of
the SAC compiler’s advanced optimizations [8, 9] are not as effec-
tive on generic code because certain properties that trigger program
transformations cannot be inferred. Third, in automatically paral-
lelized code [1, 3, 5, 13] many organizational decisions must be
postponed until runtime, and the ineffectiveness of optimizations
inflicts frequent synchronization barriers and superfluous commu-
nication.

In order to reconcile the desires for generic code and high
runtime performance, the SAC compiler aggressively specializes
rank-generic code into shape-generic code and shape-generic code
into non-generic code. However, regardless of the effort put into
compiler analysis for rank and shape specialization, this approach
is fruitless if the necessary information is not available at compile
time as a matter of principle. For example, the corresponding data
may be read from a file, or the SAC code may be called from
external (non-SAC) code, to mention only two potential scenarios.

Such scenarios and the ubiquity of multi-core processor archi-
tectures form the motivation for our asynchronous adaptive special-
ization framework [11, 12]. The idea is to postpone specialization,
if necessary, until runtime, when complete structural information
on array arguments (rank and shape) is trivially available. Asyn-
chronous with the execution of a generic function, potentially in a
data-parallel fashion on multiple cores, a specialization controller
generates an appropriately specialized binary variant of the same



function and dynamically links the additional code into the running
application program. Eligible functions are indirectly dispatched
such that if the same binary function is called again with arguments
of the same shapes as previously, the corresponding new and fast
non-generic clone is run instead of the old and slow generic one.

The effectiveness of our approach, in general, depends on mak-
ing specialized, and thus considerably more efficient, binary vari-
ants available to a running application as quickly as possible. This
would normally call for fast and light-weight just-in-time com-
piler, but firstly the SAC compiler is everything but light-weight
and rewriting it in a more light-weight style would be a gigantic
engineering effort. Secondly, making the compiler faster would in-
evitably come at the expense of reducing its aggressive optimiza-
tion capabilities, which obviously is adverse to our overarching
goal: highest possible application performance.

In [10] we proposed a total of four different refinements of the
original asynchronous adaptive specialization framework:

• bulk asynchronous adaptive specialization,
• prioritized asynchronous adaptive specialization,
• parallel asynchronous adaptive specialization and
• persistent asynchronous adaptive specialization

All four mutually orthogonal techniques aim at reducing the av-
erage effective time that it takes for a specialization to become
available to the running application once it has been identified as
needed.

In this paper we focus on the persistence refinement. In the
original asynchronous adaptive specialization framework special-
izations are accumulated during one execution of an application
and are automatically removed upon the application’s termination.
Consequently, any follow-up run of the same application program
starts again from scratch as far as specializations are concerned.
Of course, the next run may use arrays of different shape, but in
many scenarios it is quite likely that a similar set of shapes will
prevail as in previous runs. The same holds across different appli-
cation programs, in particular as any SAC application is heavily
based on the foundation of SAC’s comprehensive standard library
of rank-generic array operations.

With the proposed persistent storage of specialized functions
the overhead of actually compiling specializations at application
runtime can often be avoided entirely. For many applications the
persistent storage of specializations would in practice result in a
sort of training phase, after which most required specializations
have been compiled. Only in case the user runs an application
on a not previously encountered array shape, does the dynamic
specialization machinery become active again.

A potential scenario could be image filters. They can be applied
to any image pixel format. In practice, however, users only deal
with a fairly small number of different image formats. Still, the con-
crete formats are unknown at compile time of the image processing
application. Purchasing a new camera may introduce further image
formats to be used. This scenario would result in a short training
phase until all image filters have been specialized for the additional
image formats of the new camera.

However, persistence requires more radical changes to the dy-
namic specialization framework than thought at first glance. This
paper is about these issues and how to solve them.

The remainder of the paper is organized as follows. In Section 2
we explain SAC in general and the calculus of multi-dimensional
arrays in particular. In Section 3 we elaborate on the existing run-
time specialization framework in more detail. Through Sections 4–
7 we sketch out a number of issues that arise from the desire to
make specializations persistent and explain how to solve them. Fi-
nally, we draw conclusions in Section 8.
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Figure 1. Truly multidimensional arrays in SAC and their repre-
sentation by data vector, shape vector and rank scalar

2. SAC and its Multi-Dimensional Arrays
As the name “Single Assignment C” suggests, SAC leaves the
beaten track of functional languages with respect to syntax and
adopts a C-like notation. This choice is primarily meant to facilitate
familiarization for programmers who rather have a background in
imperative languages than in declarative languages. Core SAC is
a functional, side-effect free subset of C: we interpret assignment
sequences as nested let-expressions, branching constructs as condi-
tional expressions and loops as syntactic sugar for tail-end recursive
functions. Details on the design of SAC can be found in [4, 7].

Following the example of interpreted array languages, such as
APL[2, 14], J[15] and NIAL[16, 17], an array value in SAC is
characterized by a triple (r,~s, ~d). The rank r ∈ N defines the
number of dimensions (or axes) of the array. The shape vector ~s ∈
Nr yields the number of elements along each of the r dimensions.
The data vector ~d ∈ T

∏
~s contains the array elements (in row-

major unrolling), the so-called ravel. Here T denotes the element
type of the array. Some relevant invariants ensure the consistency of
array values. The rank equals the length of the shape vector while
the product of the elements of the shape vector equals the length of
the data vector.

...
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Figure 2. Three-level hierarchy of array types: arrays of unknown
dimensionality (AUD), arrays of known dimensionality (AKD) and
arrays of known shape (AKS)

Fig. 1 illustrates the calculus of multi-dimensional arrays that is
the foundation of array programming in SAC. The array calculus
nicely extends to scalars, which have rank zero and the empty vec-
tor as shape vector. Consequently, every value in SAC has rank,
shape vector and data vector as structural properties. Both rank
and shape vector can be queried by built-in functions. The data
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vector can only be accessed element-wise through a selection fa-
cility adopting the square bracket notation familiar from other C-
like languages. Given the ability to define rank-generic functions,
whose argument array’s ranks may not be known at compile time,
indexing in SAC is done using vectors (of potentially statically
unknown length), not (syntactically) fixed sequences of scalars as
in most other languages. Characteristic for the calculus of multi-
dimensional arrays is a complete separation between data assem-
bled in an array and the structural properties (rank and shape) of
the array.

The type system of SAC is monomorphic in the element type of
an array, but polymorphic in the structure of arrays. As illustrated
in Fig. 2, each element type induces a conceptually unbounded
number of array types with varying static structural restrictions on
arrays. These array types essentially form a hierarchy with three
levels. On the lowest level we find non-generic types that define
arrays of fixed shape, e.g. int[3,7] or just int. On an intermedi-
ate level of genericity we find arrays of fixed rank, e.g. int[.,.].
And on the top of the hierarchy we find arrays of any rank, and
consequently any shape, e.g. int[*]. The hierarchy of array types
induces a subtype relationship, and SAC supports function over-
loading with respect to subtyping.

The array type system leads to three different runtime represen-
tations of arrays depending on the amount of compile time struc-
tural information, as illustrated in Fig. 2. For AKS arrays both rank
and shape are compile time constants and, thus, only the data vec-
tor is carried around at runtime. For AKD arrays the rank is a com-
pile time constant, but the shape vector is fully dynamic and, hence,
must be maintained alongside the data vector. For AUD arrays both
shape vector and rank are dynamic and lead to corresponding run-
time data structures.

3. Asynchronous Adaptive Specialization
In order to reconcile software engineering principles for generality
with user demands for performance we have developed the asyn-
chronous adaptive specialization framework illustrated in Fig. 3.
The idea is to postpone specialization if necessary until runtime,
when all structural information is eventually available no matter
what. A generic SAC function compiled for runtime specialization
leads to two functions in binary code: the original generic and pre-

sumably slow function definition and a small proxy function that is
actually called by other code instead of the generic binary code.

When executed, the proxy function files a specialization request
consisting of the name of the function and the concrete shapes of
the argument arrays before calling the generic implementation. Of
course, proxy functions also check whether the desired specializa-
tion has been built before, or whether an identical request is cur-
rently pending. In the former case, the proxy function dispatches
to the previously specialized code, in the latter case to the generic
code, but without filing another request.

Concurrent with the running application, a specialization con-
troller (thread) takes care of specialization requests. It runs the
fully-fledged SAC compiler with some hidden command line ar-
guments that describe the function to be specialized and the spe-
cialization parameters in a way sufficient for the SAC compiler to
re-instantiate the function’s partially compiled intermediate code
from the corresponding module, compile it with high optimization
level and generate a new dynamic library containing the specialized
code and a new proxy function. Eventually, the specialization con-
troller links the application with that library and replaces the proxy
function in the running application.

The effectiveness of asynchronous adaptive specialization de-
pends on how often the dynamically specialized variant of some
function is actually run instead of the original generic version. This
depends on two connected but distinguishable properties. Firstly,
the application itself must apply an eligible function repeatedly to
arguments with the same shape. Secondly, the specialized variant
must become available sufficiently quickly to have a relevant im-
pact on application performance. In other words, the application
must run considerably longer than the compiler needs to generate
binary code for specialized functions.

The first condition relates to a property of the application. Many
applications in array processing do expose the desired property, but
obviously not all. We can only deal with unsuitable applications by
dynamically analyzing an application’s properties and by stopping
the creation of further specialized functions at some point.

The second condition sets the execution time of application
code in relation to the execution time of the compiler. In array
programming, however, the former often depends on the size of
the arrays being processed, whereas the latter depends on the size
and structure of the intermediate code. Obviously, execution time
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Figure 4. Case study: running a generic convolution kernel on a 3-dimensional argument array of shape 100× 100× 100 with and without
asynchronous adaptive specialization

and compile time of any code are unrelated with each other and,
thus, many scenarios are possible.

In order to demonstrate the possible dynamic behaviour of asyn-
chronous adaptive specialization and its impact on application per-
formance, we show the measurements from one experiment in
Fig. 4. The experiment was performed on an AMD Phenom II
X4 965 quad-core system. The machine runs at 3.4GHz clock fre-
quency and is equipped with 4GB DDR3 memory; the operating
system is Linux with kernel 2.6.38-rc1, but we expect very similar
results on different processor architectures.

The experiment is based on a rank-generic convolution kernel
with convergence test. In this code two functions are run alternately
for a sequence of steps: a convolution step that computes a new
array from an existing one and a convergence test that checks
whether the old and the new array are sufficiently similar to stop
computing. Both functions are defined in rank-generic manner and
appropriate measures are put in place to prevent the SAC compiler
from statically optimizing either function.

Fig. 4 shows the dynamic behaviour of an application that ap-
plies this convolution kernel to a 3-dimensional array of 100 ×
100×100 double precision floating point numbers. The plot shows
individual iterations on the x-axis and measured execution time for
each iteration on the y-axis. The two lines show measurements with
runtime specialization disabled and enabled, respectively.

With asynchronous adaptive specialization disabled the time
it takes to complete one cycle consisting of convolution step and
convergence check — as expected — is more or less constant.
With asynchronous adaptive specialization enabled, however, we
can observe two significant drops in per iteration execution time.
After 8 iterations running completely generic binary code a shape-
specialized version of the convolution step becomes available.
Switching from a generic to a non-generic implementation reduces
the execution time per iteration from about 1.5 seconds to roughly
0.25 seconds. After 26 iterations in addition to the specialized con-

volution step also a specialized convergence check has been com-
piled and linked into the running application. This reduces the
execution time of a single iteration further from 0.25 seconds to
0.065 seconds.

This example demonstrates the tremendous effect that runtime
specialization can have on generic array code. The main reason for
this considerable performance improvement again is the effective-
ness of optimizations that fuse consecutive array operations and,
thus, avoid the creation of intermediate arrays. A more detailed
explanation of this experiment as well as a number of further ex-
periments can be found in [12] and in [10]. All these experiments
unanimously substantiate the relevance of asynchronous adaptive
specialization in practice.

4. Issue 1: specialization vs overloading
Our first issue originates from SAC’s support for function over-
loading in conjunction with our desire to share specializations be-
tween independent applications. The combination of overloading
and specialization raises the question how to correctly dispatch
function applications between different function definitions of the
same name. In Fig. 5 we show an example of 5 overloaded defini-
tions of the function foo. The actual bodies of the function defi-
nitions are irrelevant in our context and, thus, we leave them out.
Moreover, SAC is currently restricted to be monomorphic on the
element type of arrays. Hence, we uniformly use type int through-
out the example.

From a given set of overloaded function definitions the SAC
compiler derives explicit dispatch code that dispatches on param-
eter types from left to right and for each parameter first on rank
and then on type. The type system of SAC ensures that the dis-
patch is unambiguous [19]. More precisely, if the first parameter
type of some function instance is a subtype of the first parameter
type of some other overloaded instance of the same function, then
the same relationship must hold for all further parameter types, etc.



1 int [*] foo( int [*] a, int [*] b) {...}
2 int [*] foo( int [.] a, int [.] b) {...}
3 int [*] foo( int [7] a, int [8] b) {...}
4 int [*] foo( int[.,.] a, int [42] b) {...}
5 int [*] foo( int[2,2] a, int [99] b) {...}

Figure 5. Example of shapely function overloading in SAC

Fig. 6 shows an excerpt of the wrapper code derived from the orig-
inal overloading example.

For the construction of the dispatch tree it is irrelevant whether
a some instance of a function definition is original user-supplied
code or a compiler-generated specialization. There is, however, a
significant semantic difference between the two cases that makes
our life difficult as it comes to the proposed persistence layer:
when dispatching between compiler-generated specializations of
the some original function, it is desirable to dispatch to the most
specific instance because that is arguably the most efficient one,
but it is, not necessary from a correctness point of view. In contrast,
when dispatching between different overloaded instances of some
function, the compiler must dispatch any application to the best
matching instance, no matter what.

With this in mind the obvious question is how we dispatch func-
tion applications in the case of the original asynchronous adaptive
specialization framework. In fact, we can exploit an interesting fea-
ture of the SAC module system. It allows us to import possibly
overloaded instances of some function and to again overload those
instances with further instances in the importing module. This fea-
ture allows us to incrementally add further instances to a function,
and this feature is extremely handy when it comes to implementing
runtime specialization.

On every module level that adds further instances a new dis-
patch (wrapper) function similar to that shown in Fig. 6 is gen-
erated that implements the dispatch over all visible instances of a
function regardless of where exactly these instances are actually
defined. We take advantage of this design for implementing asyn-
chronous adaptive specialization as follows: each time we gener-
ate a new specialization at application runtime we effectively con-
struct a new module that imports all existing instances of the to be
specialized function and then adds one more specialization to the
module, the one matching the current function application. With-
out further ado the SAC compiler in addition to the new executable
function instance also generates a new dispatch wrapper function
that dispatches over all previously existing instances plus the one
newly generated instance. All we need to do at runtime then is to
appropriately replace the previously existing dispatch function by
the new one.

At first glance, it seems we could continue with this scheme,
and whenever we add a further specialization to the repository of
specializations we replace the previous dispatch function by the
new one. In other words, we would carry over the concept from a
single application run to the set of all application runs in the history
of the computing system installation.

Unfortunately, this would be incorrect.
The show-stopper here is the coexistence of semantically equiv-

alent specializations and possibly semantically different overload-
ings of function instances. One dispatch function in the specializa-
tion repository is not good enough because any program (or mod-
ule) may well contribute further overloadings to whatever function
definition is available. This may shadow certain specializations in
the repository and at the same time require the generation of new
specializations that are semantically different from the ones in the
repository, despite sharing the same function name.

1 int [*] foo_wrapper(int[*] a, int [*] b)
2 {
3 if (dim(a) == 1) {
4 if (shape(a) == [7]) {
5 if (dim(b) == 1) {
6 if (shape(b) == [8]) {
7 c = foo_3( a, b);
8 }
9 else {

10 c = foo_2( a, b);
11 }
12 }
13 else {
14 c = foo_1( a, b);
15 }
16 }
17 else {
18 if (dim(b) == 1) {
19 c = foo_2( a, b);
20 }
21 else {
22 c = foo_1( a, b);
23 }
24 }
25 }
26 else if (dim(a) == 2) {
27 if (shape(a) == [2,2]) {
28 if (dim(b) == 1) {
29 if (shape(b) == [99]) {
30 c = foo_5( a, b);
31 }
32 else if (shape(b) == [42]) {
33 c = foo_4( a, b);
34 }
35 else {
36 c = foo_1( a, b);
37 }
38 }
39 else {
40 c = foo_1( a, b);
41 }
42 }
43 else {
44 if (shape(b) == [42]) {
45 c = foo_4( a, b);
46 }
47 else {
48 c = foo_1( a, b);
49 }
50 }
51 }
52 else {
53 c = foo_1( a, b);
54 }
55
56 return c;
57 }

Figure 6. SAC wrapper function with dispatch code for the five
overloaded instances of function foo shown in Fig. 5

A simple example illustrates the issue: let us assume a function
foo with, for simplicity, a single argument of type int[*]. Again
the element type, here int, is irrelevant. Let us further assume that
the original definition of foo is found in module A. Now, some
application using module A may have created specializations for
shapes [42], [42,42] and [42,42,42], i.e. for 1-dimensional, 2-
dimensional and 3-dimensional arrays of size 42 in each dimension.



In this context we write another module B that imports the orig-
inal definition of function foo, i.e. the generic one, and adds one
more instance: foo(int[.,.]). This new instance of foo may not
be semantically equivalent to the generic function imported from
module A. Of course, it would be good software engineering prac-
tice if both function instances that bear the same name are some-
what related, but firstly this cannot be enforced in any way and
secondly there may be a good reason to provide the specific defi-
nition of function foo for matrices, although it does not yield the
exact (bit-wise) same result as applying the original rank-generic
definition to a matrix.

As a consequence of the scenario sketched out above, an ap-
plication of function foo to a vector of 42 elements in module B
could be dispatched to the specialized instance in the repository,
same as in module A. However, an application of function foo to
a matrix of 42x42 elements in module B must be dispatched to the
shape-generic instance defined in module B itself. This should trig-
ger a further runtime specialization during the execution of module
B. As a consequence, two different instances of function foo both
specialized for 42x42 element matrices materialize in the special-
ization repository.

This raises questions pertaining to the organization of the spe-
cialization repository that we elaborate on in Section 5 while we
focus on the dispatch issue for now. From the above scenario it be-
comes clear that we need a two-level dispatch for the persistence
layer. Firstly, we must dispatch within the current application. This
can be done with the conventional dispatch wrapper functions as il-
lustrated in Fig. 6. If as the result of this first level dispatch a rank-
or shape-generic function instance is selected, we must interfere.

First, we focus our attention on the specialization repository.
We must figure out whether or not a suitable specialization already
exists. For this purpose module name, function name and the se-
quence of argument types with full shape information (as is al-
ways available at application runtime) suffice to identify the cor-
rect instance. If the required specialization does already exist, we
can directly link it into the running application and call it. If the
required specialization does not yet exist, we file the correspond-
ing specialization request, as described in Section 3. Then we call
the generic function instance. Asynchronously, the specialization
controller will create an executable specialization of this specific
generic function instance and likewise asynchronously will add it
to the specialization repository when finished with compilation.

5. Issue 2: file system as specialization data base
So far, we have silently assumed some form of specialization col-
lection or data base that allows us to store and retrieve function
specializations in a space and time efficient way. To be more con-
crete now, we deem the file system to be the best option to serve as
this persistent data base.

To avoid issues with write privileges in shared file systems
we refrain from sharing specilazations between multiple users.
While it would appear attractive to do so in particular for functions
from the usually centrally stored SAC standard library from a
purely technical perspective, the system administration concerns
of running SAC applications in privileged mode can hardly be
overcome in practice. Consequently, we store specialized function
instances in the user’s file system space. A subdirectory .sac2c in
the user’s home directory appears to be a suitable default location.

Each specialized function instance is stored in a separate dy-
namic library. In order to store and later retrieve specializations
we make reuse of an already existing feature within the SAC com-
piler: to disambiguate overloaded function instances (and likewise
compiler-generated specializations) in compiled code we employ a
scheme that constructs a unique function name out of module name,
function name and argument type specifications. We use that very

same scheme, but replace the original separator token (underscore-
underscore) by a slash. As a consequence, we end up with a poten-
tially very complex directory structure that effectively implements
a search tree and thus allows us to efficiently locate existing spe-
cializations as well as to identify missing specializations.

There is, however, one small pitfall that luckily can be overcome
fairly easily. A module name in SAC is not necessarily unique
in a file system. Like many other compilers the SAC compiler
allows users to specify directory paths to locate modules in the
file system. Changing the path specification from one compiler run
to the next may effect the semantics of a program. Like with any
other compiler, it is the user’s responsibility to get it right. For our
purpose this merely means that instead of the pure module name
we need to use a fully qualified path name to uniquely identify a
module definition.

6. Issue 3: semantic revision control
For users who merely run SAC application programs instead of
writing their own the techniques described in the preceding two
sections would be sufficient. Of course, forbidding users to write
their own SAC code when making use of persistent asynchronous
adaptive specialization is a fairly undesirable constraint.

So, what is the issue?
Let us go back to the scenario sketched out in Section 4. The

user’s specialization repository contains four specializations, three
specializations of the function foo(int[*]) as defined in module
A ([42], [42,42] and [42,42,42]) and one specialization of
function foo(int[.,.]) as defined in module B (again [42,42]).

A developing user could now simply come up with the idea to
change the implementation of function foo(int[.,.]) in module
B and by doing so invalidate certain existing specializations in the
repository. To be on the safe side, we must incorporate the entire
definition of a rank- or shape-generic function into the identifier of
a specialization.

For this purpose we linearize the intermediate code of a generic
function instance into textual form and compute a suitable hash
when generating a dynamic specialization of this generic instance.
This hash is then used as the lowest directory level when storing a
new specialization in the file system.

Upon retrieving a specialization from the file system repository
a running application again generates a hash of a linearization of
the intermediate code of its own generic definition and uses this
for generating the path name to look up the existence of a specific
specialization needed.

With this non-trivial solution we ensure that we never acciden-
tally run an outdated specialization.

7. Issue 4: specialization repository size control
A rather obvious issue in persistent asynchronous adaptive special-
ization is the need to control the size of a specialization repository
in some suitable way. Otherwise, the scheme as described so far
is bound to accumulate more and more specializations over time.
With today’s typical disk spaces this is not an immediate problem,
but of course it will become one over time, no matter what. Requir-
ing the user to manually discard all specializations when running
out of disk space is not an attractive solution.

Instead, we ask the user at installation time how much disk
space he would like to give SAC for the specialization repository;
of course, this could be changed later. Now, the specialization
repository becomes a sot of cache memory. As long as the size limit
has not been reached, we simply let it grow. When the size limit is
reached, we must create space before storing a new specialization.
As is common in cache organizations, we expect the least recently
used specialization across all modules, functions, etc. to be the least



likely to be used in the future. This is of course just a heuristics,
but it has worked reasonably well in hardware caches and in the
absence of accurate prediction of the future there is not much we
could do to be much smarter. Given the heuristic nature of this
approach we can — just as hardware caches do — get away with a
reasonable approximation of the least recently used property.

File system time stamps provide all the necessary information
for free. Unfortunately, searching for the file with the oldest access
time stamp in a reasonably large specialization repository can be
unpleasantly time consuming. Of course, this would happen asyn-
chronously to the running application in a specialization controller
thread, but notwithstanding it makes sense to think about a smarter
scheme.

Our plan is to store a small file containing the access time stamp
of the least recently accessed file in the whole directory. Originally,
this is the creation time of the first file in some directory (and that
of the directory). Adding a new file (or subdirectory) to a directory
does not affect this time stamp because that file would have a newer
time stamp.

However, if a specialization is loaded from the repository the
access time stamp of the corresponding file is updated. If that file
is/was the oldest in the repository (i.e. its time stamp coincides
with that stored in the special file), the time stamp in the special
file will be updated to the now oldest time stamp found in the
directory. If so, we go one directory up and check if the special
file on that level contains exactly the given time stamp. If so, we
must update the information of this directory level. Since directory
time stamps do not accurately reflect accesses to subdirectories, we
must rely on our own time stamp files. In this case we search for
the special file with the oldest time stamp among all subdirectories
and copy this file (or rather its contents) into the current directory.
We recursively repeat this procedure until we reach the top level of
the specialization repository.

If new a specialization is to be stored in an already full special-
ization repository, we can now efficiently locate the least recently
accessed specialization in the whole repository by going top-down
from the root of the directory tree always choosing the least re-
cently accessed subdirectory based on the time stamps in the spe-
cial files. After deleting the least recently used specialization, we
recursively go up the directory tree again applying the exact same
technique as described above for loading a specialization.

The advantage of the proposed scheme is that its overhead is
linear in the depth of the tree, not in the size of the tree as a
naive search. The scheme is, nonetheless, not fully accurate as
it only recognizes when a specialization is loaded into a running
application, not how often that specialization is effectively used
in that application. One can think of a refinement that updates the
access time stamps above whenever a specialized function instance
from the repository is actually executed within an application. It is,
however, not a-priori clear that the additional overhead that such a
refinement would bring with it on average pays off. We consider
this an area of future research to give more substantiated answers
to these questions.

8. Conclusions
Asynchronous adaptive specialization is a viable approach to rec-
oncile the desire for generic program specifications in (functional)
array programming with the need to achieve competitive runtime
performance under limited compile time information about the
structural properties (rank and shape) of the arrays involved. This
scenario of unavailability of shapely information at compile time is
extremely relevant. Beyond potential obfuscation of shape relation-
ships in user code data structures may be read from files or func-
tional array code could be called from less information-rich envi-
ronments in multi-language applications. Furthermore, the scenario

is bound to become reality whenever application programmer and
application user are not identical, which rather is the norm than the
exception in (professional) software engineering.

In the past we proposed several improvements and extensions
to asynchronous adaptive specialization that generally broaden its
applicability by making specialized binary code available quicker
[10]. One key proposal was to make specializations persistent.
Persistent asynchronous adaptive specialization aims at sharing
runtime overhead across several runs of the same application or
even across multiple independent applications sharing the same
core library code (e.g. from the SAC standard library).

In the ideal case required specializations of some function do
not need to be generated on demand in a time- and resource-
consuming way at all. Instead, following some learning or setup
period the vast majority of required specializations have already
been generated in preceding runs of the same application or even
other applications that share some of the code base, as for example
parts of SAC’s comprehensive standard library. If so, these pre-
generated specializations merely need to be loaded from a special-
ization repository and linked into the running application. In many
situations the proposed persistence layer may effectively reduce the
average overhead of asynchronous adaptive specialization to close
to nothing.

What appeared to be very attractive but mainly an engineering
task at first glance has proven to be fairly tricky in practice. In this
paper we identified a number of issues related to correct function
dispatch in the presence of specialization and overloading, use of
the file system as code data base, revision control in the potential
presence of semantically different function definitions and, last not
least, control of the specialization repository size. We sketched out
our solutions found for each of the four issues.

Currently, we are busy implementing the various proposed solu-
tions. In the near future we expect to run experiments that demon-
strate how we can reconcile abstract specifications with high se-
quential and parallel execution performance, seemingly without ob-
servable overhead.
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