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Abstract

We present a library for expressing digital signal processing
(DSP) algorithms using a deeply embedded domain-specific
language (EDSL) in Haskell. The library supports definitions
in functional programming style, reducing the gap between
the mathematical description of streaming algorithms and
their implementation. The deep embedding makes it possi-
ble to generate efficient C code without any overhead as-
sociated with the high-level programming model. The sig-
nal processing library is intended to be an extension of the
Feldspar EDSL which, until now, has had a rather low-level
interface for dealing with synchronous streams. However, the
presented library is independent of the underlying expres-
sion language, and can be used to extend any pure EDSL
for which a C code generator exists with efficient stream
processing capabilities. The library is evaluated using ex-
ample implementations of common DSP algorithms and the
generated code is compared to its handwritten counterpart.

1. Introduction

In recent years, the amount of traffic passing through the
global communications infrastructure has been increasing at
a rapid pace. Worldwide, total Internet traffic is estimated
to grow at an average rate of 32% annually, reaching ap-
proximately eighty million terabytes per month by the end
of next year [16]. Mobile communications in particular have
been growing at a phenomenal rate, which can be largely
attributed to the rising popularity of mobile terminals.

For telecommunications infrastructure, the consequences
of such a rapid growth rate have been a dramatic increase
in the demand for network capacity and computational
power [1]. At the same time, telecom carriers are faced with
an increasing need to deliver new services faster, while si-
multaneously adapting the the recent diversification in avail-
able architecture. These factors, while positively influencing
the available computational power, have also significantly
increased the complexity of developing new solutions for
telecommunication systems.

[Copyright notice will appear here once ’preprint’ option is removed.]

Today, digital signal processing software is typically im-
plemented in low level C, which forces designers to focus
on low-level implementation details rather than the math-
ematical specification of the algorithms. Our group is de-
veloping an embedded domain-specific language (EDSL),
Feldspar [3], that aims to raise the abstraction level of signal
processing software by expressing algorithms as pure func-
tional programs.

However, signal processing is more than just pure com-
putations – it is also about how to connect those func-
tions in a network that operates on streaming data. A
suitable programming model for reactive systems that pro-
cess streams of data is synchronous dataflow (SDF) [19],
which offers natural, high-level descriptions of streaming al-
gorithms, while still permitting the generation of efficient
code. Feldspar does have a library for programming with
synchronous streams, but that library is quite low-level and
tedious to use.

This paper describes a library for extending an existing
Haskell EDSL with support for SDF. The underlying EDSL
is used to represent pure functions (which, of course, can be
arbitrarily complicated), and our library gives a means to
connect such functions using an SDF programming model.
If the underlying EDSL provides a C code generator with a
given interface, our library is capable of emitting C code for
SDF programs. We are interested in using Feldspar as the
expression language; however, the library is not dependent
on Feldspar, and so may be of interest to other EDSL
developers.

This paper makes the following contributions:

• We present a simple EDSL for synchronous dataflow
programming in Haskell. Practically, the result is a useful
addition to Feldspar.

• We make use of observable sharing [7] to achieve a deep
embedding without relying on combinators to express
sharing or cycles. This technique has long been used in
the hardware description EDSL Lava [6, 11], but our
work now permits the combination not just of simple
gates but of arbitrarily complex EDSL programs.

• We abstract away from the underlying expression lan-
guage by establishing an interface for the underlying ex-
pression compiler.

• We show how to generate C code from our library, and
evaluate the results on examples.

1.1 Synchronous dataflow programming

Dataflow programming is a paradigm which internally mod-
els an application as a directed graph [17, 21], similar to a
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dataflow diagram. Nodes in the graph are then executable
blocks, representing the different components of an appli-
cation: they receive input, apply some transformation, and
forward it to the other connected nodes. A dataflow appli-
cation is then, simply stated, a composition of such blocks,
with one or more source and sink blocks.

A later extension to dataflow programming is the intro-
duction of synchronous dataflow. SDF is a subset of pure
dataflow, in which the number of tokens produced or con-
sumed by nodes during each step of evaluation is known at
compile-time. Restricting the dataflow model in this way has
the advantage that it can be statically scheduled [18], which,
in turn, allows for generation of efficient code.

Lucid Synchrone [8, 20] is a member of the family of
synchronous languages and is designed to model reactive
systems. It was introduced as an extension of LUSTRE [13],
and demonstrated that the language could be extended with
new and powerful features. For instance, automatic clock
and type inference was introduced, and a restricted form
of higher-order functions was added. However, Lucid Syn-
chrone is a standalone language which cannot easily be in-
tegrated with EDSLs such as Feldspar. For this reason, we
chose to implement a library, partly inspired by Lucid Syn-
chrone, that brings an SDF programming model to existing
EDSLs, such as Feldspar.

2. Signal

This library is based on the concept of a signal, which repre-
sents an infinite sequence of values in some pure expression
language. Signals are constructed by the following interface:

map :: (exp a → exp b)

→ Signal exp a

→ Signal exp b

repeat :: exp a → Signal exp a

zip :: Signal exp a

→ Signal exp b

→ Signal exp (a, b)

fst :: Signal exp (a, b)

→ Signal exp a

where exp is the pure expression language. The map function
promotes a pure function to operate over signals; repeat

makes a constant-valued signal; zip and fst are used to make
nodes with multiple incoming or outgoing signals.

Sequential operations are supported through the follow-
ing functions, which manage a signal’s phase and frequency:

delay :: exp a

→ Signal exp a

→ Signal exp a

sample :: exp Int

→ Signal exp a

→ Signal exp a

While few in number, these sequential functions are quite
general and allow for arbitrary feedback networks to be
expressed.

The need to implement particular signal functions may
place demands on the underlying expression language, in

that support for common data types or functionality may be
required. For instance, in order to implement a signal version
of Haskell’s zipWith function, the expression language needs
to support tuples:

class TupExp exp

where

tup :: exp a → exp b → exp c

fst :: exp (a,b) → exp a

snd :: exp (a,b) → exp b

zipWith :: (TupExp exp , Signal exp ~ sig)

⇒ (exp a → exp b → exp c)

→ sig a → sig b → sig c

zipWith f s u = map (λp → f (fst p) (snd p))

$ zip s u

Classes such as TupExp provide a suitable interface with
the expression language, but without forcing a particular
language to be hardwired into the system.

2.1 Example: FIR Filter

Consider the mathematical definition of a finite impulse
response filter of rank N :

yn =

N∑
i=0

bi ∗ xn−i

This description is convenient for software realization, as it
can be deconstructed into three main components: a number
of successive unit delays, multiplication with coefficients
and a summation. We can represent the decomposed filter
graphically, as in Figure 1.

Figure 1. A direct form discrete-time FIR filter of order N

Support for such numerical operations over signals is
implemented by instantiating their corresponding classes in
Haskell:

instance (TupleExp exp , Num (exp a)) ⇒
Num (Signal exp a)

where

fromInteger = repeat . fromInteger

(+) = zipWith (+)

(-) = zipWith (-)

...

where similar instance declarations can be made for frac-
tional and floating point arithmetic.

Using Haskell’s standard classes in this way simplifies
the construction of signals by providing a homogeneous user
interface. Furthermore, as the pure Haskell code is separated
from our signal library in this way, it introduces a meta-
level of computation, helping us to reason about program
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correctness. The ability to use pure Haskell in this way
presents several benefits, as it improves the syntax and ease
of programming signals significantly. For instance, in order
to define complex networks, the user is only required to
be versed in Haskell’s standard library operators, thereby
further reducing the complexity of developing new networks.

Given this support for numerical operations, we now cre-
ate helper functions, modeling the three main components of
the FIR filter: summation and multiplication of signals and
successive delaying. Using Haskell’s standard library func-
tions, summation can be neatly expressed as a single fold
operation:

import qualified Prelude as P

sums :: (TupExp exp , Num (exp a))

⇒ [Signal exp a]

→ Signal exp a

sums = P.foldr1 (+)

Similarly, both of the remaining components can be ex-
pressed using standard Haskell functions:

muls :: (TupExp exp , Num (exp a))

⇒ [exp a]

→ [Signal exp a]

→ [Signal exp a]

muls = P.zipWith (λc s → repeat c * s)

delays :: [exp a]

→ Signal exp a

→ [Signal exp a]

delays as s = P.tail

$ P.scanl (P.flip delay) s as

The FIR filter can now be neatly expressed as:

fir :: (TupleExp exp , Num (exp Float))

⇒ [exp Float]

→ Signal exp Float

→ Signal exp Float

fir bs = sums . muls bs . delays ds

where

ds = P.replicate (P.length bs) 0

This description is close to the filter’s graphical represen-
tation, a beneficial attribute since domain experts in DSP
tend to be comfortable with composing sub-components in
this way.

2.2 Example: IIR Filter

Infinite impulse response (IIR) filters are digital filters with
an infinite impulse response and, unlike FIR filters, contain
feedback. These filters will therefore serve as an example of
how the signal library handles recursively defined signals,
that is, signals whose output depends on a combination of
previous input and output values.

The IIR filter is often described and implemented in
terms of a difference equation, which defines how the output
signal is related to the input signal:

yn =
1

a0

(
P∑

i=0

bi ∗ xn−j −
Q∑

j=1

aj ∗ yn−j

)

where P and Q are the feedforward and feedback filter
orders, respectively, and aj and bi are the filter coefficients.
We can represent the decomposed filter graphically, as in
Figure 2.

Figure 2. A direct form discrete-time IIR filter of order P
and Q

This description, besides the subtraction and division of
signals, is quite similar to the previous FIR filter when de-
constructed. This similarity seems to imply that they share
computational components. As it turns out, the previously
defined helper functions can indeed be reused to implement
the IIR filter as well:

iir :: ( TupleExp exp

, Num (exp Float)

, Fractional (exp Float))

⇒ [exp Float]

→ [exp Float]

→ Signal exp Float

→ Signal exp Float

iir (a:as) bs s = repeat (1 / a) * (l - r)

where

l = sums $ muls bs $ delays (inits bs) s

r = sums $ muls as $ delays (inits as) r

inits = P.flip P.replicate 0 . P.length

where the rightmost summation, here called r, is defined in
terms of itself rather than the input signal. Recursive defi-
nitions like this are made possible by the lazy nature of the
delay operator. The general idea is that any recursion ex-
pressed using the signal library introduces feedback, while
recursion introduced by pure Haskell code produces repeti-
tive code instead.

3. Implementation

Signals are implemented on top of the following Stream data
type:

data Stream exp a =

Stream (Prog exp (Prog exp a))

The Prog exp monad is a deep embedding of an imperative
programming language that uses exp to represent pure ex-
pressions. In the above definition, the outer monad is used to
initialize the stream, and the inner action is used to retrieve
the next value of the stream. For example, the head func-
tion, which retrieves the first element of a stream is defined
as follows:
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head :: Stream exp a → Prog exp a

head (Stream init) = do

next ← init

next

The first line in the do block initializes the next action, and
the second line uses next to get the first element.

Our model of streams is essentially the same as in
Feldspar’s Stream library, except that the Prog exp monad
used here is a standalone monad that adds imperative pro-
gramming on top of any pure expression EDSL.

The problem with Stream is that is quite low-level and
cumbersome to program with. For example, in order to
define a filter that refers to previous values of some signal,
one has to manually create a mutable buffer and update
it on every iteration. Feldspar exports a few combinators
that hide the details of creating such networks, but these
combinators are rather ad hoc, and can only handle a few
predefined cases.

Our Signal type can be seen as a front end to Stream

that offers a much more convenient interface. In the end,
functions on signals are compiled to functions on streams,
as seen in the type of the compile function:

compile

:: (Typeable a, Typeable b)

⇒ (Signal exp a → Signal exp b)

→ IO (Stream exp a → Stream exp b)

The IO in the result type comes from the data-reify package
that performs observable sharing [10].

The basic way to create nodes in a signal network is by
lifting a stream function to a signal function:

lift :: (Stream exp a → Stream exp b)

→ Signal exp a

→ Signal exp b

We can, for example, use lift to define map from Section 2:

map f = lift (Stream.map f)

Lifting is however not enough to define generators, as those
are supposed to create signals from nothing. Another sig-
nal construct is therefore introduced, modeling the signals
identity morphism:

bot :: Signal exp a

which allows us to define repeat as:

repeat e = lift (const $ Stream.repeat e) bot

Here, Stream.map and Stream.repeat are the corresponding
functions defined for streams.

In this extended abstract, we will not show the definition
of Signal, lift and compile, but here is an outline of how it
all works:

• Signal is a tree type, whose nodes consist of lifted stream
functions, delay and sample. Observable sharing is used
to turn this tree into a DAG.

• The compiler assigns a mutable reference (supported
by the imperative Prog monad) for each node in the

graph and creates a program that executes all nodes in
sequence, reading and writing data to the corresponding
references.

• By analyzing the graph, certain references can be elimi-
nated, and chains of delay nodes can be turned into effi-
cient cyclic buffers.

While the stream type is kept abstract in signals, basing
them on the co-iterative approach [5] allows us to ensure
that no unused computations are performed. Co-iteration is
a concept for reasoning about infinite streams and allows one
to handle such streams in a strict manner. This strictness in
turn enables stream transformers to pick and remove parts
of streams as they please – ensuring that no unsued part of
a stream is ever computed. This property is kept for signals,
as lifted nodes are fused during compilation.

Furthermore, signals offer optimization for a common
concept in DSP: feedback networks. As the recursively de-
fined streams in feedback networks may reference a number
of previous values, memory efficient buffers are introduced
for storing the delayed values in these signals. These buffers
have memory proportional in size to the number of delays
and are used to minimize the number of read/write oper-
ations used during execution. Detecting such feedback in
signal networks is made possible by using observable shar-
ing [7], which allows us to reify signal networks into graphs
were the back-edges between nodes are visible.

4. Evaluation

In order to evaluate the signal library we will look at both
its expressiveness and the code it generates. As the actual
library is being finished at the time of writing, we delay
most of the evaluation until the final report and only in-
clude a comparison between the generated code of an ex-
ample and its hand-written counterpart. Note, too, that the
compiler has some notable limitations: it currently only han-
dles pure signal functions, that is, we can only compile types
of Signal exp a → Signal exp b. Also, while signals support
the notion of buffers, the compiler does not. The following
example will therefore not make use of circular arrays, but
will do so in the final version.

Disregarding the current state of our compiler, the pro-
duced code has room for several potential improvements.
Firstly, too many references are used during the compila-
tion process, which then spills into the compiled code and
produces a number of unused variables. There are also some
leftover pairs found in the produced code, remnants from
the zipping constructor. Both the numerous variables and
the pairs can however be optimized away, and should not
be present in the final report. There is also room for more
subtle improvements; for example, a dedicated initialization
function could remove the need for some if-statements. An-
other interesting improvement is to make use of C specific
memory management functions, such as memset or memcopy,
for cases when the data is neatly ordered – as it is in the
case of the FIR filter, for example.

For the actual comparison, we generated code from the
previous FIR filter and compared it to a hand-written ver-
sion. However, as the compiler only accepts signal functions,
we feed the FIR filter a one-element list of ones before com-
piling it – effectively making it a rank-1 FIR filter. This
produces the following code:
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typedef struct {

float first;

float second;

} pair;

int main()

{

FILE *v0;

v0 = fopen("test", "r");

FILE *v1;

v1 = fopen("test2", "w");

int i = 0;

while (i < 3)

{

float v3;

float v4;

fscanf(v0,"%f",v4);

float v5 = v4;

float v6;

pair v7;

float v8;

float v9;

bool v10 = true;

float v11 = v5;

bool v12;

if (v12 = v10)

{

v10 = false;

v8 = 0.0;

}

else

{

float v13 = v9;

v8 = v13;

}

v9 = v11;

float v14;

v14 = 1.0;

float v15 = v14;

float v16 = v8;

v7.first = v15;

v7.second = v16;

pair v17 = v7;

v6 = v17.first * v17.second;

float v18 = v6;

v3 = v18;

float v19 = v3;

fprintf(v1, "%f", v19);

i++;

}

return 0;

}

While the hand-written code is for a more general FIR filter,
where the number of coefficients hasn’t been fixed yet, the
comparison should however still be valid as the underlying
ideas have not changed.

double insamp[ ... ];

void firInit( void )

{

memset( insamp , 0, sizeof( insamp ) );

}

void fir( double *coeffs ,

double *input , double *output ,

int length , int filterLength )

{

double acc; // accumulator for MACs

double *coeffp; // pointer to coefficients

double *inputp; // pointer to input samples

int n;

int k;

// put the new samples at the high

// end of the buffer

memcpy( &insamp[filterLength - 1], input ,

length * sizeof(double) );

// apply the filter to each input sample

for ( n = 0; n < length; n++ ) {

// calculate output n

coeffp = coeffs;

inputp = &insamp[filterLength - 1 + n];

acc = 0;

for ( k = 0; k < filterLength; k++ ) {

acc += (* coeffp ++) * (* inputp --);

}

output[n] = acc;

}

// shift input samples back in time

// for next time

memmove( &insamp [0], &insamp[length],

(filterLength - 1) * sizeof(double) );

}

While benchmarking would clearly be of interest here, we
delay it to the final paper.

5. Related Work

Lava is a family of simple hardware description languages
embedded in Haskell [6, 11]. What look like circuit descrip-
tions are actually circuit generators that are run to produce
internal representations, which can be used to produce fur-
ther useful artifacts such as netlists or formulas for use in
formal verification. Later versions of Lava have used observ-
able sharing to provide a more user-friendly approach to
capturing feedback in these circuit descriptions. There is a
close link between this approach to hardware description and
SDF languages like LUSTRE. One way to view the present
work is as a beefed up Lava in which the building blocks are
general data-processing functions rather than just Boolean
gates.

Lucid Synchrone is another functional language for SDF
and is hosted in OCaml, importing every ground type from
the host language and lifting them to corresponding stream
versions [8, 20]. Sequential operations over the imported
stream are also offered, similar to those from our signal li-
brary. Lucid Syncrhone incorporates several type systems
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(including clock inference) that guarantee safety properties
of the generated code. In addition, special syntax for defining
automata is provided. Our work is inspired by Lucid Syn-
crhone and we will investigate the inclusion of these features
in our signal library.

Functional reactive programming is another common
paradigm for modeling continuous signals, and its libraries
are typically implemented using Haskell’s arrow or ap-
plicative classes, see for example Yampa [9, 12], reactive-
banana [2] or Sodium [4]. Although we cannot support the
promotion of abstract functions required by these otherwise
attractive interfaces, we have still drawn inspiration from
the lifting functions of FRP.

The use of pure Haskell for modeling signals [22] has also
been investigated, demonstrating that functional program-
ming and lazy evaluation can directly model common signal
problems quite satisfactorily. Other related work includes
Atom [14], Ivory and Tower [15], but we delay the discus-
sion of these to the final paper.

6. Discussion

Functional programming encourages a style of programming
in which combinators or higher order functions capture
common patterns of computation. It is when we combine
SDF with a sufficiently general value type that the question
of how to design an appropriate set of combinators becomes
an interesting one. For instance, the ability to pass arrays,
or any similar data type, as values over signals means that
the programmer is concerned with processing chunks of
data rather than just individual values. This change of
perspective is necessary if we are to implement key functions
like FFT on signals. This generality does however come at
a cost, as ill-defined signals could be expressed and type-
checked due to a lack of constraints on sequential signals

The benefits of a general lifting constructor come into full
effect when the underlying expression language has powerful
features of its own. In the case of Feldspar, an expression
language which already supports a plethora of different
algorithms, several complex signal functions can often be
obtained by simply lifting the regular ones. For instance, as
Feldspar already contains an FFT algorithm over vectors, a
signal version can be obtained by simply lifting the existing
one.

The simplicity of the current signal library does mean
that some ill-defined signals can be expressed. Sequential
operations in particular are quite susceptible to grammatical
errors, as one can easily create signals with an undefined
behavior when using delay/sample. For instance, consider
the following function:

f :: Signal exp a → Signal exp a

f sig = sample 2 sig + sig

The clocks of these two streams are obviously not equal,
but there are at present no constraints in place to keep such
signals for being defined. Recursively defined signals suffer
from a similar problem: there is no constraint in place to
check whether the recursive signal has been delayed or not
before it is used. Signals with undefined initial values can
therefore be expressed by, for example, writing:

g :: Num (exp a) ⇒ Signal exp a

g = o where o = map (+1) o

Such ill-defined signals could however be identified during
the compilation process, by inspecting the signal’s reified
syntax tree.

Our plan is to develop this library futher, based on ideas
from Lucid Synchrone and FRP.
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