
Preprint, Incomplete Draft

Monoids model extensibility
or, Moxy: a language with extensibly extensible syntax

Michael Arntzenius
Carnegie Mellon University

daekharel@gmail.com

Abstract
Many languages, libraries, or systems advertise themselves as ex-
tensible, but these claims are usually informal. We observe that
monoids formally characterize much of the essence of extensibility.
We present extensibility monoids for several pre-existing systems,
including grammars, macros, and monad transformers. To show the
utility of this approach, we present Moxy, a syntactically extensi-
ble programming language. Moxy’s implementation is surprisingly
simple for the power it offers. We hope the use of monoids as an or-
ganizing principle of extensibility will offer similar utility in other
domains.

Keywords Extensibility, extensible languages, macros, monoids,
parser-combinators, parsing, syntax.

1. Introduction
The concept of extensibility recurs frequently in programming lan-
guages research, but lacks a concrete definition. The most one can
say is “you know it when you see it”. This paper observes that
monoids capture some of the essential properties of extensibility.
In Section 2, several common examples of extensibility are fruit-
fully analysed in terms of their monoids.

To show this approach’s utility on a larger scale, in Section 3 we
present Moxy, a language designed to be syntactically extensible —
to permit the programmar to add syntax for new data types, opera-
tions, embedded DSLs, and so on — by using monoids to abstract
extensibility. Moxy’s design has several interesting qualities:

1. Moxy is not a Lisp or Scheme; extensibility is not achieved by
the sacrifice of syntactic conveniences such as infix operators.1

2. Moxy is self-extensible: extensions are written in Moxy itself.

3. Moxy extensions are modular, that is to say, they are imported
just like ordinary library definitions.

4. Moxy extensions are scoped; an extension can be imported
within a whole file, within a module, or just within a single
let-expression.

1 Opinions on the desirability of this property may differ.

[Copyright notice will appear here once ’preprint’ option is removed.]

5. Moxy extensions are not limited to adding new forms of ex-
pression. They can also add new forms of pattern for use in
pattern-matching, for example.

6. Moxy is meta-extensible: extensions can themselves be ex-
tended. For example, a Moxy programmer could create an em-
bedded DSL as an extension library, and leave that DSL open
to further extension by future programmers.

7. Moxy is homogenously extensible: All forms of extension —
new expressions, new patterns, extensions to some library-
defined extensible extension, and so forth — are accomplished
by the same mechanism; no special privilege is given to built-in
forms of extension, or to expressions over patterns.

8. Finally, Moxy itself is simple: about 2,000 lines of Racket code.

2. Monoids as a framework for extensibility
A monoid 〈A, ·, ε〉 consists of a set A, an operation (·) : A×A→
A, and an element ε : A satisfying:

a · (b · c) = (a · b) · c associativity
a · ε = a right-identity
ε · a = a left-identity

A notion of extensibility may be defined by giving a monoid
where A is the set off all possible extensions, (·) is an operator
that combines or composes two extensions, and ε is the “null exten-
sion”, representing the lack of any additional behavior.

We show that monoids are a good model for extensibility by
analysing five distinct forms of extensibility into their respective
monoids: composition of context-free grammars, lisp-style macros,
open recursion, middleware in a web framework, and monad trans-
formers.

2.1 Composition of context-free grammars
Consider the following grammar for a λ-calculus:

expressions e ::= x | λx. e | e e
variables x ::= ... (omitted) ...

It is easy enough to add infix arithmetic to this language:

expressions e ::= x | λx. e | e e
| n | e⊗ e

numerals n ::= d | dn
digits d ::= 0 | 1 | ... | 9
operators ⊗ ::= + | − | × | /

It is similarly easy to add lists:

expressions e ::= x | λx. e | e e
| [] | [es]

expression lists es ::= e | e, es

Monoids model extensibility 1 2014/9/25

Formally, each of these three grammars is a separate, complete
object. But there is a clear sense in which the two latter languages
are composed out of parts: “λ-calculus plus infix arithmetic”, “λ-
calculus plus lists”. And, without even writing its grammar, it is
obvious there exists a fourth language: “λ-calculus plus infix arith-
metic plus lists”. Can we formalize this colloquial “plus” operator?
We can; and it is even a monoid!

Context-free grammars. A context-free grammar (CFG) is a
tuple 〈Σ, N, P, e〉, where Σ is a finite set of terminal symbols, N
is a set (disjoint from Σ) of nonterminal symbols, P is a finite
set of production rules, and e ∈ N is an initial non-terminal.
Production rules p ∈ P have the form N ↪→ (Σ ∪ N)∗; that is,
P ⊆ N × (Σ ∪N)∗.

Fix a terminal set Σ, a (possibly infinite) nonterminal set N ,
and an initial nonterminal e. That is, consider grammars over a
known alphabet (e.g. Unicode characters). The non-terminal set is
also fixed, but this is no great limitation, since it is permitted to
be infinite; we will consider nonterminals to come from an inex-
haustible set of abstract names. And we fix an initial nonterminal
e, intended to represent well-formed expressions in some language.

Having fixed all this, a grammar is fully specified by a finite set
of production rules P . Our original λ-calculus is represented by:

Pλ = {e ↪→ x,
e ↪→ λx.e,
e ↪→ e e,
... (omitted rules for x) ...}

Composing CFGs. To compose two grammars represented as
production-rule-sets, simply take their union. For example, con-
sider the sets of rules added when extending our language with
infix arithmetic and lists respectively:

P⊗ = {e ↪→ n, e ↪→ e⊗ e,
n ↪→ d, n ↪→ dn,
d ↪→ 0, ..., d ↪→ 9,
⊗ ↪→ +, ⊗ ↪→ −, ⊗ ↪→ ×, ⊗ ↪→ /}

P[] = {e ↪→ [], e ↪→ [es],
es ↪→ e, es ↪→ e, es}

If we take Pλ ∪ P⊗, it gives us precisely the grammar of our
second language, “λ-calculus plus infix arithmetic”. Pλ ∪ P[] is
our third language, “λ-calculus plus lists”. And Pλ ∪ P⊗ ∪ P[] is
the hypothesized fourth language, “λ-calculus plus infix arithmetic
plus lists”.

We have thus successfully separated our languages into parts
— one which represents λ-calculus, one which represents infix
arithmetic, one which represents lists — and found an operator that
can combine them again. Finally, note that this operator (union of
production-rule-sets) is a (commutative, idempotent) monoid, with
∅ as identity.

Limitations. While a CFG specifies a syntax, it does not supply
an algorithm for parsing. Moreover, it specifies only syntax; a
programming language also needs semantics. Section 3.3 covers
one approach to parsing a monoidally-extensible syntax. Section
3.4 describes how Moxy permits extensible semantics.

2.2 Macro-expansion
Consider a simple lisp-like syntax:

s-expressions e ::= a | (es)
s-expression lists es ::= | e es
atoms a ::= s | n
numerals n ::= 0 | 1 | ...
symbols s ::= ...

We formalize a simplistic version of macro-expansion by defin-
ing expand(env, e), which takes an environment env mapping
symbols to their definitions, an s-expression e to expand, and re-
turns ep with all macro invocations recursively replaced by their
expansions. In pseudocode:

expand(env, (s es)) if s in env = expand(env[s](es))
expand(env, (es)) = map(expand(env,), (es))
expand(env, a) = a

(We write env[s] for the macro-definition of s in env, which
we take to be a function from an argument-list es to its immediate
expansion under that macro.)

Where’s the monoid? If macros yield a form of extensibility, how
do they fit into our monoidal framework? First, we must find the set
of possible extensions. Intuitively, macros are the extensions we are
concerned with. Perhaps the set of all macro-definitions? However,
there is no obvious operator to “merge” two macro-definitions.

This suggests that our notion of extension is not powerful
enough. So instead of single macros, we take our extensions to
be environments mapping macro-names to their definitions, like
the env argument to expand. Our binary operator (·) merges two
environments, so that:

s in (env1 · env2) iff (s in env1) ∨ (s in env2)

(env1 · env2)[s] =

{
env1[s] if s in env1

env2[s] otherwise

By convention, (·) is left-biased: if the same symbol is defined
in both arguments, it uses the left one.

Finally, note that (·) is associative, and forms an identity with
the empty environment; that is, (·) is a monoid.

Monoid-parameterized functions. Observe that expand is a func-
tion parameterized by a value of the monoid representing exten-
sions. It demonstrates one way of giving semantics to a notion of
extensibility: interpret extensions into functions. This is a pattern
we will see again in Moxy’s parse and compile phases.

2.3 Open recursion and mixins
Open recursion is the problem of, first, defining a set of mutually-
recursive functions by parts; that is, permitting the programmer
to define only some of the functions, and complete the set by
defining the rest later; and, second, of allowing the behavior of
these functions to be overridden or extended.

For example, consider the functions even(n) and odd(n), of
type N→ Bool, defined by:

even(0) = true
even(n) = odd(n− 1)
odd(0) = false
odd(n) = even(n− 1)

Definition by parts means that we could define even and odd
separately, as mixins, and later combine them into an instance that
implements both:

mixin EvenMixin where
inherit odd
even(0) = true
even(n) = self.odd(n− 1)

end
mixin OddMixin where

inherit even
odd(0) = false
odd(n) = self.even(n− 1)

end

Monoids model extensibility 2 2014/9/25

instance EvenOdd where
use EvenMixin
use OddMixin

end
EvenOdd.even(10) — returns true

Overriding means that a mixin can extend the behavior of a
function in a fashion similar to traditional object-oriented sub-
classing:

mixin EvenSpyMixin where
inherit odd
even(n) =

print(n);
super.even(n)

end
instance EvenOddDebug where

use EvenMixin
use OddMixin
use EvenSpyMixin

end
— prints 2, then prints 0, then returns true
EvenOddDebug.even(2)

2.3.1 Semantics of mutual recursion.
Setting aside for a moment the problem of open recursion, consider
ordinary, “closed”, mutual recursion. Suppose we wish to imple-
ment some signature Σ = 〈N, τ〉 of mutually recursive functions,
where N is a set of names and the function τ : N → type assigns
each name a type. An implementation of Σ is a function giving to
each name n a value of type τ(n). We write ImplΣ for the type of
implementations of the signature Σ:

Impl〈N,τ〉 = Π(n : N). τ(n)

We represent a group of mutually-recursive function definitions
as a function from implementations to implementations: we take a
self object, and to recursively call the function n, we call self(n).
In this manner we make self-reference explicit. We write DefnΣ for
the type of mutually-recursive function definitions represented this
way:

DefnΣ = ImplΣ → ImplΣ
For example, our original mutually-recursive definition of even

and odd is represented by:

Σ = 〈N, τ〉
N = {even, odd}
τ(even) = N→ Bool
τ(odd) = N→ Bool
EvenOdd : DefnΣ

EvenOdd(self)(even)(0) = true
EvenOdd(self)(even)(n) = self(odd)(n− 1)
EvenOdd(self)(odd)(0) = false
EvenOdd(self)(odd)(n) = self(even)(n− 1)

To obtain the desired implementations of even and odd, we take
the least-fixed-point of the EvenOdd function:

even = fix(EvenOdd)(even)
odd = fix(EvenOdd)(odd)

For some function fix : (α → α) → α satisfying fix(f) =
f(fix(f)) for appropriate α (here, α = ImplΣ).

2.3.2 Mixins as a monoid
Let’s apply our monoid methodology to the problem of semantics
for open recursion. We’ll tackle definition by parts first, and later
expand our semantics to cover overriding as well.

First, we must determine our set of extensions. The extensions
we are concerned with are “mixins”: partial definitions of a set of
mutually recursive functions. The definitions in a mixin have access
to a self object, allowing mutual- or self-recursion.

At first glance, this seems very similar to the way we formalized
closed sets of mutually-recursive definitions. The only difference is
that mixins are permitted to be partial, and omit a definition for a
particular function in the signature.

However, we can use the same type DefnΣ to represent mixins
if for names n which the mixin M does not define, we simply let
M(self)(n) = self(n), passing the undefined method through
unchanged. Thus a mixin is represented by a function from imple-
mentations to implementations: it takes a self object, and returns
that object updated with each of the functions the mixin imple-
ments.

For example, EvenMixin and OddMixin are represented by the
following functions:

EvenMixin(self)(even)(0) = true
EvenMixin(self)(even)(n) = self(odd)(n− 1)
EvenMixin(self)(odd) = self(odd)

OddMixin(self)(odd)(0) = false
OddMixin(self)(odd)(n) = self(even)(n− 1)
OddMixin(self)(even) = self(even)

At first, this representation seems pointless, like trying to fit a
square peg (mixins) into a round hole (DefnΣ). After all, if we take
fix(OddMixin)(odd), the resulting function diverges for all non-
zero inputs!

However, observe that

(EvenMixin ◦ OddMixin) = EvenOdd

(as can be verified by some tedious calculations)!
That is, that we can “combine” mixins by composing them as

functions; our monoidal operator is ◦. Our identity is just the iden-
tity function at type ImplΣ. Function composition is associative, so
we are done.

2.3.3 Mixins with overriding

MixinΣ = ImplΣ → ImplΣ → ImplΣ
ε(self)(super) = super

(f · g)(self)(super) = f(self)(g(self)(super))

EvenMixin(self)(super)(even)(0) = true
EvenMixin(self)(super)(even)(n) = self(odd)(n− 1)
EvenMixin(self)(super)(odd) = super(odd)
OddMixin(self)(super)(odd)(0) = false
OddMixin(self)(super)(odd)(n) = self(even)(n− 1)
OddMixin(self)(super)(even) = super(even)

EvenSpyMixin(self)(super)(odd) = super(odd)
EvenSpyMixin(self)(super)(even)(n) = print(n);

super(even(n))

To actually produce an implementation:

impl : MixinΣ → ImplΣ
impl(f) = fix(λs.f(s)(⊥))

2.4 Web framework middleware
We observe that middleware in many web frameworks (for exam-
ple, Django) is essentially a stack of pairs of functions, (Request→
Request) × (Response → Response), which are composed to-
gether via the monoid:

ε = 〈idRequest, idResponse〉
〈freq, fresp〉 · 〈greq, gresp〉 = 〈freq ◦ greq, gresp ◦ fresp〉

Monoids model extensibility 3 2014/9/25

top-level t ::= d | module N {t∗}
expressions e ::= Pn | PN | l | (e) | e⊕ e

| \(p, ...) e | e(e, ...)
| let d∗ in e
| case e [| p -> e]∗

declarations d ::= val p = e
| fun n(p, ...) = e [| n(p, ...) = e]∗

| tag N [(n, ...)]
| rec d [and d]∗

| open PX
patterns p ::= x | l | PX[(p, ...)]
operators ⊕ ::= + | - | * | / | == | <= | >= | < | > | ;

| ...
module paths P ::= [N.]∗

capital names N
names n
literals l

Figure 1. Grammar of Moxy, sans extensions

And then composed onto a base handler function h : Request→
Response:

withMiddleware(〈min,mout〉, h) = mout ◦ h ◦min

Middleware “in the wild” is more complicated, having to deal
with details such as error-handling, the possibility of early exit, and
so forth, but still forms a monoid. The fact that it forms a monoid
can even be observed by the way one specifies what middleware to
use: via a list, i.e. an element of the free monoid.

2.5 Monad transformers
Broadly speaking, monads as they appear in Haskell represent
effects which a computation has access to: for example, Maybe
represents the possibility of failure; State s represents access to
a single mutable location of type s; List represents backtracking
nondeterminism.

It is often useful to have multiple kinds of effect; for exam-
ple, failure and state. For this Haskell uses monad transformers,
type-level functions from monads to monads. Letting Hask be
the category of Haskell types, a monad such as State s has kind
Hask → Hask; a monad transformer such as StateT s has kind
(Hask→ Hask)→ (Hask→ Hask).

To combine multiple effects, one creates a stack of monad trans-
formers, terminating it with the identity monad Identity. To com-
bine failure (Maybe) with binary state (State Bool) and logging
(Writer [String]), we write:

WriterT [String] (StateT Bool (MaybeT Identity))

Clearly monad transformers represent a notion of extensibility,
namely “adding effects” to a pure base language. Unsurprisingly,
they form a monoid; the operator is simply composition, and the
identity is the monad transformer IdentityT. The above can be
rewritten (assuming a type-level composition operator ◦) as:

(WriterT [String] ◦ StateT Bool ◦MaybeT) Identity

3. Moxy
3.1 A brief introduction to Moxy, sans extensions
Moxy exists to test the hypothesis that monoids are a good way of
structuring extensibility. In other respects it is a banal, humdrum
language.

The basic grammar of Moxy is given in figure 1. “e, ...” indi-
cates a comma-separated list of expressions e; similarly for pat-
terns, “p, ...”.

Syntactically, Moxy is moderately MLish; semantically, Moxy
is somewhat Schemelike. Evaluation is eager; functions take mul-
tiple arguments and return one value; recursion is the only loop-
ing construct; pattern-matching is the only conditional construct
(if is implemented as a syntax extension). Moxy has a simple
module system that only handles namespacing (no ML-style func-
tors). Strings and numbers are built-in; booleans are defined in the
implicitly-imported prelude.

As an example, here is a naı̈ve recursive implementation of the
fibonacci function in Moxy:

fun fib(0) = 1
| fib(1) = 1
| fib(n) = fib(n-1) + fib(n-2)

Case is syntactically significant in Moxy: capitalized names
are used for modules, tags, and extension points, uncapitalized for
everything else.

3.2 Moxy’s approach to extensibility: Extension points
Moxy aims to be meta-extensible: to permit extensions (for exam-
ple, a DSL for parsers) that are themselves extensible (for example,
defining a+ as an abbreviation for aa∗). It therefore seems dif-
ficult to specify in advance what the monoid representing Moxy
extensions should be.

Moxy’s solution is to let the programmer define their own exten-
sion monoids, which Moxy calls extension points. To define an ex-
tension point, the programmer gives it a name (a Moxy identifier), a
value representing the identity element, and a function representing
the monoid operator. For example:

extension ExtCounts(0, \(x,y) x+y)

This defines an extension point named ExtCounts with the monoid
〈N,+, 0〉. As Moxy is dynamically typed, the fact that the intended
domain of ExtCounts is N exists only in the programmer’s mind.2

Having defined an extension point, we can extend it with an
extend declaration:

extend ExtCounts with 2 + 2

Within the scope of this declaration, ExtCounts will have a
value 4 higher than it otherwise would. Of course, this is quite
useless without some way to observe the value of an extension point
and use it in parsing.

For this purpose, Moxy comes with built-in extension points
which allow extending Moxy’s built-in syntax classes: expressions,
declarations, and patterns. For example, the InfixExprs extension
point permits adding new infix operators to the expression lan-
guage:

extend InfixExprs with
{ TSYM("."): { precedence = 10,

parse = [...omitted...] } }

3.3 Parsing Moxy
Moxy uses monadic parser-combinators after the style of Parsec to
implement a Pratt-style recursive descent parser. In practice what
the latter means is that infix operators are handled by means of a
table mapping the token for a given operator (say, + for addition) to
its precedence, paired with a parser for its right-hand-side. When
parsing an expression we keep track of the precedence we are
currently parsing at, and if we encounter an operator of looser

2 Indeed, there is nothing to say that the intended domain is not Z instead.

Monoids model extensibility 4 2014/9/25

precedence we stop parsing and return. Otherwise we recursively
invoke the parser for the operator we found, with the expression
we’ve parsed so far as an additional argument.

This permits arbitrary infix, suffix, and mixfix operators. How-
ever, it requires that each infix operator have a unique token identi-
fying it; no overloading is possible (at least, not in the parser).

Moxy currently has a separate tokenization phase, which unfor-
tunately limits the expressiveness of parse extensions. We believe
this can be eliminated in future by means of a scannerless-parsing
technique, such as that used by Parsec’s Text.Parsec.Token mod-
ule.

The monad which Moxy uses for parsing, in addition to behav-
ing like Parsec, also acts as a Reader ParseEnv, where ParseEnv
is a datastructure representing all extensions to all extension points
currently in scope. A ParseEnv is effectively a mapping from ex-
tension points to their values. It is the parameterization of the
parser by this value that lets extensions affect parsing (just as the
parameterization of expand by a macro-environment lets macro-
definitions affect macro-expansion).

For example, when the parser tries to parse the start of an ex-
pression, it first examines the current value of the Exprs extension
point. Exprs’ domain is dictionaries mapping tokens to parsers; its
monoid operation is right-biased merge and its identity is the empty
dictionary. If the next token is present in the value of Exprs, then
we invoke the parser it is bound to. Otherwise we try built-in parse
productions such as literals, variables, and function application.

Similar techniques are used for extending declarations and pat-
terns.

3.4 Compiling Moxy
Nodes in Moxy’s AST are instances of abstract interfaces. For
example, an expression is merely something which knows how to
compile itself. That is, expressions are “records”3 with a functional
compile field. This compile function, when supplied with a resolve
environment, returns the intermediate-representation4 compilation
of the expression in question.

The resolve environment is effectively merely the lexical envi-
ronment of the expression, a dictionary which tells the compiler
which variable names are in scope and how references to them are
to be compiled.

4. Prior work
Lisp and Scheme are obvious predecessors in the search for exten-
sible forms of programming. Moxy is in large part an attempt to
replicate the ease and power of Lisp-family macros in a non-Lisp
setting.

SugarJ does almost everything Moxy does and more [1]. How-
ever, it weighs in at 26k LOC, while Moxy is a mere 2k LOC. Moxy
can use extensions per-scope, not just per-file. Moxy has a REPL,
but SugarJ’s approach is probably compatible with a REPL as well.
Moxy allows for non-syntactic notions of scoped extensibility (but
I have no motivating examples). The Moxy approach currently has
no story for integrating with existing languages (but it probably
could be done).

Moxy’s use of a Pratt-style parser to aid extensibility is similar
to that of Magpie. [4]

Other previous syntactically extensible systems include OMeta
[3], Sweet.js, Seed7, and Omar et al’s Type-Specific Languages [2].

3 In this case, represented as hash-tables.
4 In this case, s-expressions representing Racket code.

References
[1] SugarJ: Library-based Syntactic Language Extensibility. Sebastian

Erdweg, Tillman Rendel, Christian Kästner and Klaus Ostermann. In
Proceedings of Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 391-406. ACM, 2011.

[2] Safely Composable Type-Specific Languages. C. Omar, D. Kurilova,
L. Nistor, B. Chung, A. Potanin and J. Aldrich. European Conference on
Object-Oriented Programming (ECOOP 2014) Uppsala, Sweden, July
28 – August 1, 2014.

[3] Experimenting with Programming Languages. Alessandro Warth.
Technical Report TR-2008-003, Viewpoints Research Institute, 2009.

[4] Extending Syntax from Within a Language. Bob Nys-
trom. http://journal.stuffwithstuff.com/2011/02/13/
extending-syntax-from-within-a-language/, 2011-02-13, ac-
cessed 2014-09-25.

[5] Parsec: Direct Style Monadic Parser Combinators For The Real
World. Daan Leijen and Erik Meijer. Technical Report UU-CS-2001-27,
Department of Computer Science, Universiteit Utrecht, 2001.

Monoids model extensibility 5 2014/9/25

