Towards Tool Support for History
Annotations in Similarity Management

Extended Abstract

Thomas Schmorleiz and Ralf Lammel

Software Languages Team, Department of Computer Science, University of Koblenz-Landau, Germany

Abstract

When a system is needed in different variants to meet different re-
quirements, then some form of product line engineering may need
to be used. In practice, it is often preferred to develop the variants in
a loosely coupled fashion as opposed to the regime of a proper (‘ex-
plicit’) product line from which to derive variants by some genera-
tive mechanism. For instance, the 101haskell chrestomathy (a sub-
chrestomathy of 101) contains many similar, small, Haskell-based
systems that are indeed maintained in loosely coupled fashion. In
previous work, we and collaborators have proposed an approach
to manage such loosely coupled variants by using a virtual plat-
form and cloning-related operators. In this extended abstract, we
sketch a concrete method with a supporting tool, Ann, for explor-
ing the similarity of variants and annotating them with metadata
accordingly. As a direct result, a propagate operator is enabled to
automatically propagate changes across variants and to synthesize
a to-do list for remaining manual actions. We sketch the method
and the tool’s application in an ongoing case study for capturing
and improving the similarity of the Haskell-based variants of the
101haskell chrestomathy.

Categories and Subject Descriptors D.3.3 [PROGRAMMING
LANGUAGES]: Language Constructs and Features; D.2.7 [SOFT-
WARE ENGINEERING]: Distribution, Maintenance, and Enhance-
ment; F.3.2 [LOGICS AND MEANINGS OF PROGRAMS]: Se-
mantics of Programming Languages

Keywords Haskell. Software Product Line Engineering. Variabil-
ity Management. Virtual Platform. Ann.

Acknowledgement

The presented work continues previous joint work [[1] with Michal
Antkiewicz, Wenbin Ji, Thorsten Berger, Krzysztof Czarnecki, Ste-
fan Stanciulescu, Andrzej Wasowski, and Ina Schaefer. The work
is also inspired by Julia Rubin’s framework for clone manage-
ment [6]].

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Motivation and background

The corpus of the 101companies project [2] (or just ‘101’) holds
a set of variants (‘contributions’), all implementing a common fea-
ture model. Many of these variants share implementations of some
features because their conceptual contribution focuses on the im-
plementation of other features. Thus, cloning of feature implemen-
tations is often performed to start the implementation of new vari-
ants. While this practice is reasonable in itself, it makes it too hard
to understand the similarities of the variants; it also makes it too
easy for variants to diverge from each other over time unintention-
ally. Thus, a form of similarity management is needed. This prob-
lem was set up as a challenge for software chrestomathies in [3] and
it is, in fact, a challenge in software product line engineering [1].

We have developed a method with a supporting tool, Ann,
for exploring the similarity of variants and annotating them with
metadata accordingly. This work is directly based on the idea of
virtual platform for software product line engineering, as presented
in [1]. Our objective is not just to provide the user with information
about similarities in a corpus of variants, but also to enable the
automatic propagation of changes across variants, and, finally also
to reduce overall complexity and unintentional divergence within
the corpus. We sketch the method and tool’s application in an
ongoing case study for capturing and improving the similarity of
101’s Haskell segment, i.e., 101haskell [4].

2. A method for variability management

We describe the method by a series of key notions.

2.1 Fragment

We examine similarity of variants and their source-code units (files)
at a fragment level. Here is one possible (informal) definition of the
fragment notion. That is, a fragment is a range of consecutive lines
of source code that correspond to a ‘major’ node in the associated
abstract syntax tree (AST). We assume that syntactic categories
for forms of (named) abstractions are favored. Each fragment is
identified by a classifier and a name. Classifiers correspond to the
syntactic category at hand. For instance, in the case of Haskell,
classifiers are ‘data’, ‘type’, or ‘function’; names are those of data
types, type synonyms, or functions.

2.2 Similarity

We compare fragments by adopting an existing approach for detect-
ing near-miss intentional clones [3]]. In particular, we pretty-print
the source code in a regular manner to lay out compound constructs
over several lines so that a simple text-based measure, the diff ra-
tio, can be used for comparison. A similarity measure of ‘1’ means
equality. We lift similarity from the fragment level to the levels of

2014/9/9

) strafunski € haskellP paskelTermRep

© haskellSpec () haskellAcceptor Odph () tmvar

haskellParsec i
O haskellFIaQneaé o hasketlf%gﬁjga) haskellHxt
) haskellApplicative
) haskellSyb
() haskellLigl) haskellEngineer
€) hdbe () haskellLens

haskellProfessional
) hugh el haskellLambda

) haskellRecord() haskellCGI
) haskellStarter ©
() hasKellMonoid

) mvar € haskellTree

hskEngspiRate
0 hasﬁ'%éfd@omposwtion
) haskellScott
() happstack
) wxHaskell
) hxtPickler) haskellWriter

Figure 1. Visualization of similarity across the variants of
101haskell

files, folders, and variants by averaging similarities in a straight-
forward manner. Similarities are stored as triples of two fragment
identifiers with the computed diff ratio.

For illustration, consider [Figure I} which shows the Haskell-
based variants of the chrestomathy 101 (i.e., 101haskell [4]). The
edges indicate similarity of variants above a certain threshold. The
view is computed by the Ann tool.

2.3 Similarity evolution

We track the evolution of similarities between fragments through-
out the commit history. To this end, we also need to track the frag-
ments themselves—with regard to variant, file, and fragment re-
naming. We are specifically interested in two points on the time-
line: the point at which a similarity was detected and the current
state. Each similarity evolution can be classified according to these
types of evolution:

Always equal The similarity was always 1.

Eventually equal The similarity was initially below 1, but it is 1
eventually.

Eventually unequal The similarity was initially 1, but it is below
1 eventually.

Always unequal The similarity was always below 1.

2.4 Annotation

Each similarity can be annotated to express the intended treatment
of the similarity along evolution. That is, an annotation states how
a similarity should be maintained through automated or manual ac-
tions. The annotations themselves are to be attached manually, even
though defaults may be reasonably assigned in certain cases. The
idea is that the user sees the similarities in the order of decreasing
similarity (diff ratio), thereby prioritizing annotation of the most
similar fragments. There are these types of annotations:

Maintain equality An equality at hand should be maintained. This
can be done by merging any changes from one fragment to the
other, by automated three-way-merge, or possibly by manual
conflict resolution.

Maintain similarity A similarity, which is not an equality, should
be maintained. A manual action is required, when the similarity
(the diff ratio) decreases.

Restore equality A similarity, which is not an equality, should be
turned into an equality. In a simple case, either of two fragments
may be selected to override the other. It may also be necessary
though to change both fragments towards an equal fragment
through a manual action.

Increase similarity A similarity, which is not an equality, should
be increased, based on the insight that equality is not feasible,
while increased similarity is feasible. A manual action is re-
quired here.

Ignore similarity The similarity is to be ignored in that it is not
reported anymore, when following the diff ratio order.

Whether or not a certain annotation is applicable to a similarity
also depends on the type of evolution. For instance, the evolution
type ‘eventually unequal’ cannot be combined with the annotation
type ‘maintain equality’, but it can only be combined with ‘restore
equality’ or all the other types.

2.5 Propagation

Given a repository in a new state with some previously attached
similarity annotations, we can determine any sort of similarities that
have arrived, increased, decreased, or vanished (assuming some
threshold) and whether they have to be restored or increased. Some
of these case of similarity evolution may be addressed automati-
cally; others give rise to a to-do list to be addressed by the devel-
oper. This semantics is captured as a ‘propagate’ operator of our
method, as adopted from the general approach described in [1].

We are currently working on the propagate operator and its
integration into the workflow of the underlying version control
system, which is gif in the case of 101haskell. Overall, the idea
is that git commands such as commit, pull, and push are enriched
by the propagation semantics.

3. The Ann tool

Ann is an interactive tool supporting the exploration of the version
history and the set of variants down to the level of folders, files, and
fragments. The tool assumes that the variants are maintained by a
version control system. In the case of 101, we use git.

shows the annotation view of Ann: we are in the con-
text of a specific similarity, namely a fragment shared by two vari-
ants. We have decided to annotate the similarity with ‘maintain
equality’ so that automatic propagation of changes would be en-
abled.

Figure 3|shows all variants of 101haskell on the timeline of the
version history. One can study the commits to get quick access to
affected variants and files as well as the associated similarities.

gives an impression of the variant-centric dimension of
exploration. A variant is picked in the beginning (haskellEngineer
in the figure). The most similar variants are shown. One can dive
into the picked variant to select specific folders or files. One can
then further dive into files to eventually annotate similarities at the
fragment level.

4. State of research

We have developed all extraction tools that Ann depends on. We
have further implemented all essential views, as also illustrated
in this extended abstract including two dimensions of annotation:
variant-centric versus commit-centric. We have refined the user in-
terface in several iterations since the amount of data to be processed

2014/9/9

Annotations

Similar fragments (1)

1. Similarity: 1.00 ~> 1.00

From happstack (Focus.hs)

Annotation controls

Maintain Equality (2 %

E3E3

From haskellSTM (Focus.hs)

Automatically maintain equality by three-way-merge.
managerFocus :: Focus managerFocus
managerFocus focus@(managerFocus focuse(Intent
Figure 2. Annotation of a similarity
Variation Similarities in 56
commits.
% .- \ ¥ 5ccs979
C e oy \ » disesic
— — t
e T E! ¥ hughes?s
: E! ¥ parsec
= i
+e 3 >
0.._:: \ src/Company/Data.hs
e
\ .o ¥ iype/sal
= f ype/salary

¥ type/Address
“ type/Manager
¥ type/Name

¥ data/subUnit

W 27446cf

¥ 30dseel

W dad1an

Figure 3. Variations of 101haskell

by the user was initially too large. The iterations applied good user
experience (UX) principles to the design of Ann.

The tool already helped us to identify a set of variants that are
conceptually or technologically outdated or unnecessarily discon-
nected (in terms of similarity) to other variants. The next step is to
integrate the propagation operator into a git workflow by extending
existing git commands and implementing new commands. After
that we will aim at improving the similarity across 101haskell by
bringing up, for example, the degree of equal fragments in response
to the erosion (divergence) that has happened over time, when we
had no tool support like Ann.

References

[1] M. Antkiewicz, W. Ji, T. Berger, K. Czarnecki, T. Schmorleiz,
R. Ldammel, S. Stanciulescu, A. Wasowski, and I. Schaefer. Flexible
product line engineering with a virtual platform. In Proc. of ICSE 2014,
pages 532-535. ACM, 2014.

[2] J.-M. Favre, R. Lammel, T. Schmorleiz, and A. Varanovich. 101com-
panies: A Community Project on Software Technologies and Software

Languages. In Proc. of TOOLS 2012, volume 7304 of LNCS, pages
58-74. Springer, 2012.

[3] R. Lammel. Software chrestomathies. Sci. Comput. Program.,2013. In
press.

[4] R. Lammel, T. Schmorleiz, and A. Varanovich. The 10lhaskell
Chrestomathy—A Whole Bunch of Learnable Lambdas. In Postpro-
ceedings of IFL 2013, 2014. 12 pages. To appear in ACM DL. Available
onlinehttp://softlang.uni-koblenz.de/101haskell/|

[5] C. K. Roy and J. R. Cordy. NICAD: Accurate detection of near-miss
intentional clones using flexible pretty-printing and code normalization.
In Proc. of ICPC 2008, pages 172—181. IEEE, 2008.

[6] J. Rubin and M. Chechik. A framework for managing cloned product
variants. In Proc. ICSE 2013, pages 1233-1236. IEEE / ACM, 2013.

2014/9/9

http://softlang.uni-koblenz.de/101haskell/

Variant level

¥ haskell[Engineer haskellLambda @
haskellList [0.20]
haskellStarter
haskellComposition
haskellVariation
haskellData [[0.26]
haskellRecord [0.26]
haskellBarchart [0.25]
File level
¥ haskellEngineer Total.hs (in haskellLambda)
¥ sre/ Total.hs (in haskellList)
> Company/ Total.hs (in haskellStarter) @
_ Total.hs (in haskellComposition)
+ Cut.hs Tota.hs (in haskellBarchart) [0.79]
“ Data.hs
“ Sample .hs
Function level
¥ haskellEngineer function/total (in Total.hs, in haskellLambda)
¥ sre/ function/total (in Total.hs, in haskellList) @
¥ Company/ function/total (in Total.hs, in haskellStarter) @
 Total.hs function/total (in Total.hs, In haskellComposition)
_ function/total (in Total.hs, in haskellBarchart) @
¥ Cut.hs
“ Data.hs
“ Sample .hs

Figure 4. Levels of similarity exploration

2014/9/9

	Motivation and background
	A method for variability management
	Fragment
	Similarity
	Similarity evolution
	Annotation
	Propagation

	The Ann tool
	State of research

