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Abstract
Recent works have shown the power of linear indexed type systems
for capturing complex safety properties. These systems combine
linear type systems with a language of indices that appear in the
types, allowing more fine-grained analysis. For example, linear
indexed types have been fruitfully applied to verify differential
privacy in the Fuzz type system.

A natural way to enhance the expressiveness of this approach
is by allowing the indices to depend on runtime information, in
the spirit of dependent types. This approach is used in DFuzz, an
extension of Fuzz. The DFuzz type system relies on an index-level
language supporting real and natural number arithmetic over con-
stants and dependent variables. Moreover, DFuzz uses a subtyping
mechanism to semantically manipulate indices. By themselves, lin-
earity, dependency, and subtyping each require delicate handling
when performing type checking or type inference; their combination
increases this challenge substantially, as the features can interact in
non-trivial ways.

In this paper, we study the type-checking problem for DFuzz. We
show how we can reduce type checking for (a simple extension of)
DFuzz to constraint solving over a first-order theory of naturals and
real numbers which, although undecidable, can often be handled in
practice by standard numeric solvers.

Categories and Subject Descriptors F.3.3 [Studies of Program
Constructs]: Type structure

Keywords type checking, type inference, linear types, subtyping,
sensitivity analysis

1. Introduction
Linear indexed type systems have been used to ensure safety proper-
ties of programs with respect to different kinds of resources; exam-
ples include usage analysis [24, 25], implicit complexity [4, 5, 14],
sensitivity analysis [10, 23], automatic timing analysis [12, 13],
and more. Linear indexed types use a type-level index language to
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describe resources and linear types to reason about the program’s
resource usage in a compositional way.

A limitation of current analysis techniques for such systems is
that resource usage is inferred independently of the control flow of
a program—e.g. the typing rule for branching usually approximates
resources by taking the maximal usage of one of the branches,
and recursion imposes even greater restrictions. To improve this
scenario, some authors have proposed extending such systems with
dependent types, using type indices to capture both resource usage
and the size information of a program’s input. This significantly
enriches the resulting analysis by allowing resource usage to depend
on runtime information. Linear dependent type systems have been
used in several domains, including implicit complexity [4, 16] and
sensitivity analysis [10].

Of course, there is a price to be paid for the increase in expres-
siveness: type checking and type inference become inevitably more
complex. In linear indexed type systems, these tasks are often done
in two stages: a standard Hindley-Milner-like pass, followed by
a constraint-solving procedure. In some cases, the generated con-
straints can be solved automatically by using custom algorithms [17]
or off-the-shelf SMT solvers [7, 13]. However, the constraints are
specific to the index language, and richer index languages often lead
to more complex constraints.

Type-checking DFuzz
In this paper we will focus on the type-checking problem for a par-
ticular programming language with linear dependent types, DFuzz.
Reed and Pierce [23] recently proposed the Fuzz programming lan-
guage, where linear indexed types are used to reason about sensitiv-
ity of programs in the context of differential privacy; the sensitivity
of a function measures the distance between outputs on nearby
inputs. In this setting, type checking and inference correspond to
sensitivity analysis.

Fuzz uses real numbers as indices for the linear types. Then
addition and multiplication of the indices will produce an upper
bound on the sensitivity of the program. This approach gives a
simple but effective sensitivity static analysis. Indeed, as shown
by D’Antoni et al. [7], type-checking for Fuzz programs can be
performed efficiently by using an SMT solver to discharge the
numeric proof obligations arising from the type system. Moreover,
the same approach works for type inference, which infers the
minimal sensitivity of a function.

While Fuzz works well on a variety of simple programs, it has
a fundamental limitation: sensitivity information cannot depend
on runtime information, such as the size of a data structure. To
get around this problem, Gaboardi et al. [10] introduced DFuzz,
an extension of Fuzz with a limited form of dependent types.



The index language in DFuzz combines information about the
size of data structures with information about the sensitivity of
functions. Technically, this is achieved by considering an index
language with index variables ranging over integers (to refer to
runtime sizes) and reals (to refer to runtime sensitivities). This
richer index language, combined with dependent pattern-matching
and subtyping, achieves increased expressiveness in the analysis,
providing sensitivity bounds beyond Fuzz’s capabilities.

However, adding variables to the index language has a significant
impact on the difficulty of type checking. Concretely, since the index
language also supports addition and multiplication, index terms are
now polynomials over the index variables. Instead of constraints
between real constants like in Fuzz, type checking constraints in
DFuzz may involve general polynomials.

A natural first approach is to try to extend the algorithm proposed
by D’Antoni et al. [7] to work with the new index language by
simply generating additional constraints when dealing with the new
language constructs. This would be similar in spirit to the work of
Dal Lago et al. [6] for type inference for d`PCF, a linear dependent
type system for complexity analysis. A crucial difference between
that setting and DFuzz is that the index language of d`PCF can
be extended by arbitrary (computable) functions. This makes the
approach to type inference for d`PCF proposed by Dal Lago and
Petit the most natural, since such functions can be used as direct
solutions to some of the introduced constraints.

However, such an approach does not work as well for DFuzz,
which opts for a much smaller index language. While it may be
possible to extend DFuzz’s index language with general functions,
we opt to keep the index language simple. Instead, since the type
system of DFuzz also supports subtyping, we consider a different ap-
proach inspired by techniques from the literature on subtyping [21]
and on constraint based type-inference approaches [15, 19, 22].

The main idea is to type-check a program by inferring some set
of sensitivities for it, and then testing whether the resulting type is
a subtype of the desired type. To obtain completeness (relative to
checking the subtype), one must ensure that the inferred sensitivities
are the “best” possible for that term. Unfortunately, the DFuzz index
language is not rich enough for expressing such sensitivities. For
instance, some cases require taking the maximum of two sensitivity
expressions, something that cannot be done in the language of
polynomials. We solve this problem by extending the index language
with three syntactic constructs, resulting in a new type system that
we name EDFuzz. This new system has meta-theoretic properties
that are similar to those of DFuzz, but also simplifies the search
for minimal sensitivities. Using these new constructs, we design a
sensitivity-inference algorithm for EDFuzz which we show sound
and complete, modulo constraint resolution.

We now face the problem of solving the constraints generated
by our algorithm. First, we show how to compile the constraints
generated by the algorithmic systems to constraints in the first-order
theory over mixed integers and reals. This way, we can still use
a numeric solver without resorting to custom symbolic resolution.
Unfortunately, the presence of universal quantification over natural
numbers in the constraints leads to undecidability of constraint
solving; we show that DFuzz type-checking is undecidable, by
reduction from Hilbert’s tenth problem, a standard undecidable
problem.

While this result shows that we can’t have a terminating type-
checker that is both sound and complete, not everything is lost.
We first show that by approximating the constraints, we obtain a
sound and computable method to type-check EDFuzz programs. We
show that this procedure can successfully type-check a fragment of
EDFuzz which we call UDFuzz; almost all of the examples proposed
by Gaboardi et al. [10] belong to this class. Of course, UDFuzz is a

strict subset of EDFuzz, and it is not hard to come up with well-typed
programs in EDFuzz that are invalid under UDFuzz.

Finally, we present a constraint simplification procedure that
can significantly reduce the complexity of our translated constraints
(measured by the number of alternating quantifiers), even when
checking full EDFuzz.

Contributions
We briefly overview the DFuzz programming language in Section 2,
to move to an informal exposition of the main challenges involved
in Section 3. Then, we present the main contributions of the paper:

• EDFuzz: an extension of DFuzz with a more expressive sensi-
tivity language that allows to type programs with more precise
types (Section 4);

• a sound and complete algorithm that reduces type checking and
inference in EDFuzz to constraint solving over the first-order
theory of N and R (Section 5 and Section 6);

• a proof of undecidability of type checking in DFuzz (and
EDFuzz) (Section 7);

• a sound translation from the previous type-checking constraints
to the first-order theory of the real numbers, a decidable theory
(Section 8.1); and

• a simplification procedure to make the constraints more amenable
to automatic solving (Section 8.2).

2. The DFuzz System
DFuzz [10] is a type system for verifying differential privacy. While
the precise application of DFuzz is somewhat beyond the scope of
this paper, at a high level, DFuzz is a system for checking function
sensitivity. Given a notion of distance between values, a function f
is said to be k-sensitive for some number k if dist(f(x), f(y)) ≤
k · dist(x, y). Sensitivities are expressed by the index language in
a linear indexed type system; let us begin by presenting DFuzz in
some detail before discussing the type-checking challenges.

2.1 Syntax and Types
DFuzz is an extension of PCF with indexed linear types. Indices
consist of numeric constants; index-level variables, which range
over sizes (natural numbers) or sensitivities (positive reals extended
with∞, denoted S); and addition and multiplication of indices. The
full syntax for DFuzz, including the types, terms, and the index
language, is shown in Figure 1. We take a brief tour through the
term language.

• Abstraction and application for index variables are captured by
the Λi : κ.e and e[R] terms, with κ representing the kind for i.
We refer to variables of natural number kind as size variables,
while variables of real number kind are sensitivity variables.

• Singleton types N[S] and R[R] are used to related type-level
sizes and sensitivities with term-level sizes and sensitivities.

• Dependent pattern matching over N[S] types is captured by the
case construction.

• Linear types indexed by R are written !Rσ ( τ .
• Variable environments Γ carry an additional annotation for

assignments x :[R] σ, representing the current sensitivity R
for the variable x.

• Index variable environments φ specify the kinding of index
variables.

• Constraint environments Φ store assumptions introduced under
dependent pattern matching. Often, we will think of a constraint
environment as the conjunction of its constraints.



κ ::= r | n (kinds)
S ::= R≥0 ∪ {∞} (extended positive reals)
S ::= i | 0 | S + 1 (sizes)
R ::= S | i | S | R+R | R ·R (sensitivities)
σ, τ ::= R | R[R] | N[S] | !Rσ ( τ (types)

| ∀i : κ. σ | σ ⊗ τ | σ N τ
e ::= x | N | s e | R≥0 | fix (x : σ).e (expressions)

| λx :[R] σ.e | e1 e2
| Λi : κ. e | e[R]
| 〈e1, e2〉 | πi e
| (e1, e2) | let (x, y) = e in e′

| case eof 0⇒ e0 | n[i] + 1⇒ es
Γ,∆ ::= ∅ | Γ, x :[R] σ (environments)
φ, ψ ::= ∅ | φ, i : κ (sens. environments)
Φ,Ψ ::= > | Φ, S = 0 | Φ, S = i+ 1 (constraints)

Figure 1. DFuzz Types and Expressions

2.2 Environment Operations
As is the case for many linear type systems, DFuzz defines opera-
tions on variable environments. Precisely, two environments Γ,∆
can be combined with addition, and a single environment Γ can mul-
tiplied by a sensitivity (a sort of environment scaling). Throughout,
we will write dom(Γ) for Γ’s domain.

We define environment multiplication R · Γ as the operation
taking every element xi :[ri] σi of Γ to xi :[R·ri] σi. Environment
addition is defined iff all the common assignments of Γ, ∆ map
to the same type, that is to say, forall xi in dom(Γ) ∩ dom(∆),
(xi :[Ri] σi) ∈ Γ ⇐⇒ (xi :[Si] σi) ∈ ∆. In such case:

Γ + ∆ = {xi :[Ri+Si] σ | xi ∈ dom(Γ) ∩ dom(∆)}
∪ {xj :[Rj ] σj | xj ∈ dom(Γ)− dom(∆)}
∪ {xk :[Rk] σk | xk ∈ dom(∆)− dom(Γ)}

2.3 Subtyping
DFuzz has a notion of subtyping, which intuitively corresponds to a
standard property of function sensitivity: a k-sensitive function
is also k′-sensitive for all k′ ≥ k. Furthermore, subtyping in
DFuzz is the mechanism that allows types to use information from
the constraint environment; in this use, subtyping allows a form
of type coercion. We consider here a slightly simpler definition
of subtyping than the one used in Gaboardi et al. [10]. In the
environments we requires subtyping to preserve the internal type.
This slight modification will allow us to simplify some rules of the
type-checking algorithm.

The semantics of the subtying relation is defined by interpreting
sensitivity expressions as functions that produce sensitivity values.
Formally, let R be a sensitivity expression, well-typed under envi-
ronment φ, and ρ a suitable variable valuation (i.e., a function that
maps each variable x : κ in φ to an element of JκK, with JnK = N
and JrK = S). We then define JRKρ as follows:

J0Kρ := 0
JS + 1Kρ := JSKρ + 1

JiKρ := ρ(i) i a variable
JrKρ := r r a constant

JR1 +R2Kρ := JR1Kρ + JR2Kρ
JR1 ·R2Kρ := JR1Kρ · JR2Kρ

Then, the standard ordering ≥ on S (i.e., the positive real
numbers with a maximal element∞) induces an ordering on index
terms, which we can then extend to a subtype relation v on types
and environments; the rules can be found in Figure 2. Note that

φ; Φ |= σ v σ v-Refl

φ; Φ |= σ′ v σ φ; Φ |= τ v τ ′

φ; Φ |= σ N τ v σ′ N τ ′
(v . N)

φ; Φ |= σ v σ′ φ; Φ |= τ v τ ′

φ; Φ |= σ ⊗ τ v σ′ ⊗ τ ′
(v .⊗)

|= ∀φ. (Φ⇒ R ≤ R′)
φ; Φ |= σ′ v σ φ; Φ |= τ v τ ′

φ; Φ |= !Rσ ( τ v !R′σ
′ ( τ ′

(v .()

φ, i : κ; Φ |= σ v τ i fresh in φ
φ; Φ |= ∀i : κ. σ v ∀i : κ. τ

(v .∀)

∀(x :[Ri] σi, x :[R′i] σi) ∈ (Γ,∆)

dom(∆) ⊆ dom(Γ) |= ∀φ. (Φ⇒ Ri ≥ R′i)
φ; Φ |= Γ v ∆

v-Env

Figure 2. DFuzz Subtyping Relation

checking happens under the current constraint environment Φ, so
subtyping may use information recovered from a dependent match.

The leaves of the subtype derivation are either equalities that
are consequences of the constraint environment Φ, or assertions
φ |= (Φ⇒ R1 ≥ R2). These are defined logically as

∀ρ.(dom(ρ) = φ ∧ ρ(Φ))⇒ JR1Kρ ≥ JR2Kρ,

where the quantification is over all well-kinded substitutions ρ for
variables specified by φ satisfying the constraints Φ.

2.4 Typing
Typing judgments for DFuzz are of the form

φ; Φ | Γ ` e : σ

meaning that term e has type σ under environments φ and Γ and
constraints Φ; full rules are shown in Figure 3.

We highlight here just the most complex rule, the dependent
pattern matching rule (N E), which allows each branch to be typed
under different assumptions on the type N[S] of the scrutinee (e).
The left branch e0 is typed under the assumption S = 0, while the
right branch es is typed under the assumption S = i+ 1 for some i.
Indeed, this rule is useful for capturing programs whose sensitivity
depends on the number of iterations or number of input elements;
combined with the fix rule (Fix), these features enable programs
that iterate depending on a runtime parameter while still reasoning
about the number of iterations. Readers interested in more details
can consult Gaboardi et al. [10]; we follow their presentation closely
except for a few points, which we detail in the Appendix.

2.5 Examples
We close the overview of DFuzz with some examples. The first ex-
ample is multiplication. Usually, multiplication cannot be assigned
a type as is not sensitive for any k. However, thanks to dependent
types we can introduce a multiplication primitive with type:

× : ∀R1 : r.∀R2 : r.!R1R[R1] ( !R2R[R2] ( R[R1 ·R2]

A function that adds ε noise to the output has type:

add_noise : ∀ε : r.!εR ( #R
where #R is the type of probability distributions over R.



φ; Φ | ∆ ` e : σ φ; Φ |= Γ v ∆

φ; Φ | Γ ` e : σ
(v .L)

φ; Φ | Γ ` e : σ φ; Φ |= σ v τ
φ; Φ | Γ ` e : τ

(v .R)

r ∈ R
φ; Φ | Γ ` r : R

(ConstR)
n = JSK

φ; Φ | Γ ` n : N[S]
(ConstN)

φ; Φ | Γ, x :[1] σ ` x : σ
(Var)

φ; Φ | Γ, x :[∞] σ ` e : σ

φ; Φ | ∞ · Γ ` fix (x : σ).e : σ
(Fix)

φ; Φ | Γ, x :[R] σ ` e : τ

φ; Φ | Γ ` λx :[R] σ.e : !Rσ ( τ
(( I)

φ; Φ | Γ ` e1 : !Rσ ( τ φ; Φ | ∆ ` e2 : σ

φ; Φ | Γ +R ·∆ ` e1 e2 : τ
(( E)

φ, i : κ; Φ | Γ ` e : σ i fresh in Φ,Γ

φ; Φ | Γ ` Λi : κ. e : ∀i : κ. σ
(∀I)

φ; Φ | Γ ` e : ∀i : κ. σ φ |= S : κ

φ; Φ | Γ ` e[S] : σ[S/i]
(∀E)

φ; Φ | Γ1 ` e1 : σ φ; Φ | Γ2 ` e2 : τ

φ; Φ | Γ1 + Γ2 ` (e1, e2) : σ ⊗ τ (⊗I)
φ; Φ | ∆ ` e : σ ⊗ τ φ; Φ | Γ, x :[R] σ, y :[R] τ ` e′ : µ

φ; Φ | Γ +R ·∆ ` let (x, y) = e in e′ : µ
(⊗E)

φ; Φ | Γ ` e1 : σ φ; Φ | Γ ` e2 : τ

φ; Φ | Γ ` 〈e1, e2〉 : σ N τ
(N I)

φ; Φ | Γ ` e : σ1 N σ2

φ; Φ | Γ ` πi e : σi
(N E)

φ; Φ | Γ ` e : N[S]

φ; Φ | Γ ` s e : N[S + 1]
(S I)

φ; Φ | ∆ ` e : N[S] φ; Φ, S = 0 | Γ ` e0 : σ
φ, i : n; Φ, S = i+ 1 | Γ, n :[R] N[i] ` es : σ i fresh in φ

φ; Φ | Γ +R ·∆ ` case e returnσ of 0⇒ e0 | n[i] + 1⇒ es : σ
(N E)

Figure 3. DFuzz Typing Rules

Functions sensitive on number of iterations or size of the input
are similarly typed. A function that adds noise i times to an input is:

iNoise : ∀i : n,∀ε : r.!∞N[i] ( !∞R[ε] ( !i·εR ( R

3. The Challenge of Type-checking Linear
Dependent Types

Type-checking a language with linear indexed types presents several
challenges, which are only compounded when dependent types and
subtyping are added to the mix. In this section, we take a closer look
at these challenges.

3.1 To Split, or not to Split?
The first problem we face is due to linearity. Given a term and
an environment, we need a way to “split” the environment into
appropriate sub-environment that can be used in the recursive calls
to type check subterms.

Automatically inferring the right environments in our setting is
difficult, due to the index language for DFuzz. Indeed, index terms
are polynomials over index variables, which may range over the
reals or the naturals. For instance, we may know that a particular
variable x has sensitivity i2 · j2 + 3 in our environment. However,
it is not clear how to split such sensitivity information between two
environments that share the variable x. In fact, as we will show
below, in general it is not always possible to find a split. One might
hope to simplify the type-checking task by requiring the programmer
to provide a few type annotations, like in non-linear type systems.
Unfortunately, this approach is impractical for the splitting problem
because naively, the annotations must describe the split for every
variable binding in the context!

To better understand this obstacle, let us consider two general
approaches to type-checking linear type systems, which we call the
top-down and bottom-up strategies.

The Downfall of Top-Down
For the type-checking problem, suppose we are given the environ-
ment Γ, a term e, and a purported type σ. The goal is to decide if
Γ ` e : σ is derivable. The top-down strategy takes a context and a
term, and attempts to partition the context and recursively type the
subterms of e.

The main difficulty of this approach centers around splitting the
environment, a problem that is most clear in the application rule.
Here is a simplified version:

Γ ` f : !Rσ ( τ ∆ ` e : σ

Γ +R ·∆ ` f e : τ

So given a type-checking problem Σ ` f e : σ′ our first difficulty is
to pickR, Γ, and ∆ such that Σ = Γ +R ·∆. We could try to guess
R, but unfortunately it may depend on the choice of Γ. Since our
index language contains the real numbers, the number of possible
splittings isn’t even finite.

A natural idea is to delay the choice of this split. For instance, we
may create a placeholder variable R and placeholder environments
Γ′, ∆′, asserting Σ = Γ′ +R ·∆′ and recursively type-checking f
and e. After reaching the leaves of the derivation, we would have a
set of constraints whose satisfiability would imply that the program
type-checks.

Unfortunately, the constraints seem difficult to solve due to the
syntactical nature of our indices. In other words, the “placeholder
variables” are really meta-variables that range over index terms,
which could potentially depend on bound index variables. In order
to prove soundness of such a system with respect to the formal
typing system, the solver must return success only if there is a
solution where all the meta-variables can be instantiated to an index
term—a syntactic object. This is at odds with the way most solvers
work—semantically—finding arbitrary solutions over their domain.



It is not clear how to solve these existential constraints automatically
for the specific index language of DFuzz.

The Rise of Bottom-Up?
A different approach is a bottom-up strategy: suppose we are again
given an environment Γ, a term e, and a type σ, and we want to
check if Γ ` e : σ is derivable. The main idea is to avoid splitting
environments by calculating the minimal sensitivities needed for
typing each subexpression. For each typing rule, these minimal sen-
sitivities can be combined to find the resulting minimal sensitivities
for e. Once this is done, we just need to check whether these optimal
sensitivities are compatible with Γ and σ via subtyping.

Let’s consider how this works in more detail by analyzing a
few important cases. At the base case, we type-check variables in a
minimal context (that is, empty but for the variable) an assigning it
the minimal sensitivity required:

x :[1] σ ` x : σ

Recall that we have weakening on the left so can add non-occurring
variables to the context later.

Now, the key benefit of the bottom-up approach becomes evident
in the application rule: we can completely avoid the splitting
problem. When faced with a type-checking instance Σ ` f e : σ,
we recursively find optimal Γ, R, and ∆ for checking f and e; then,
checking that Σ v Γ +R ·∆ suffices.

Unfortunately, things don’t look so easy in the additive rules.
Let’s examine the introduction rule for N:

Γ ` e1 : σ1 Γ ` e2 : σ2

Γ ` 〈e1, e2〉 : σ1 N σ2

This rule forces both environments to have the same sensitivities,
but the bottom-up idea may infer different environments for each
expression:

Γ1 ` e1 : σ1 Γ2 ` e2 : σ2

Σ? ` 〈e1, e2〉 : σ1 N σ2

Now we need to guess a best environment Σ?, but the DFuzz
sensitivity language is too weak to express this value. For instance,
if we consider sensitivity expressions r2 and r depending on
a sensitivity variable r, we can show that there is no minimal
polynomial upper bound for them under the point-wise order on
polynomials1.

To maintain the minimality invariant, we can extend the sensitiv-
ity language with a new syntactic construct max(R1, R2) for type-
inference purposes only, which should denote the maximum of two
sensitivity values. We could then safely set Σ? := max(Γ1,Γ2),
where the expression combines sensitivities for the bindings on both
environments as expected.

However, there is a problem with this approach: the resulting
algorithm is not sound with respect to the original type system,
because it allows more terms to be typed even when sensitivities in
the final type do not mention the new construct! To see this, assume
that our algorithm produces a derivation Γ′ ` e : σ′ using extended
sensitivities. Now, soundness amounts to showing that for all Γ, σ
mentioning only standard sensitivities such that Γ v Γ′ and σ′ v σ,
there exists a typing derivation Γ ` e : σ that uses only the original
sensitivity language. Let’s try to sketch how this proof would work
by restricting our attention to a particular instance of the application
rule:

φ; ∅ | ∅ ` f : !Rf σ ( τ φ; ∅ | x :[R̂x] µ ` e : σ

φ; ∅ | x :[Rf ·R̂x] µ ` f e : τ

1 Indeed, it can be seen that DFuzz does not possess minimal types. Refer to
the Appendix for a more detailed proof.

where R̂x is an extended sensitivity expression. By induction, we
know that for all standard sensitivity expressions Rx such that
Rx ≥ R̂x, we can obtain a standard derivation x :[Rx] µ ` e : σ.
We also have standard Rxf such that Rxf ≥ Rf · R̂x. Thus, all we
need to do is to calculate from Rf , Rxf standard sensitivities R′f ,
R′x to be able to apply both induction hypotheses. The following
result shows that this is not always possible.

Lemma 1. Given standard sensitivities expressions Rxf , Rf and
an extended sensitivity expression R̂x such that Rxf ≥ Rf · R̂x, it
is not the case that one can always find standard R′f , R′x such that
Rxf ≥ R′f ·R′x ∧R′f ≥ Rf ∧R′x ≥ R̂x.

Proof. Take Rxf = r2 + 1, Rf = r and R̂x = max(2, r). As we
can see, we have r2 + 1 ≥ r ·max(2, r), with a strict equality
iff r = 1. Suppose there exist standard sensitivity expressions
R′f , R

′
x such that they satisfy the statement. Because R′f ≥ r

and R′x ≥ max(2, r), we know by asymptotic analysis that the
degree of R′f and R′x must be at least 1. Furthermore, because
r2 + 1 ≥ R′f · R′x, their degree must be exactly 1, with leading
coefficient equal to 1. Write R′f = r + a and R′x = r + b, where
a, b are positive constants. The lower bound on R′x implies b ≥ 2.
For r = 1, we haveR′f ·R′x ≥ 3a+ 3 ≥ 3. However, the lower and
upper bounds forR′f ·R′x coincide at that point, forcingR′f ·R′x = 2;
contradiction. Thus, no such R′f , R

′
x can exist.

It is not hard to adapt the above into a counterexample for the
soundness of the algorithm with respect to the original system.
However, we can recover soundness by extending the sensitivity
language for the basic typing rules as well.

3.2 Avoiding the Avoidance Problem
After the addition of least upper bounds for sensitivities, the bottom-
up approach is in a good working state for the basic system. However,
other constructs in the language introduce further challenges. In
particular, let’s examine a simple version of the abstraction rule for
sensitivity variables:

φ, i : κ | Γ ` e : σ i fresh in Γ

φ | Γ ` Λi : κ. e : ∀i : κ. σ

When this rule is interpreted in a top-down approach, usually no
problem arises; we would just introduce the new sensitivity variable
and proceed with type checking.

However, when the typechecking direction is reversed, we hit a
version of the avoidance problem [8, 11, 18]. The avoidance problem
usually appears in slightly different scenarios related to existential
types, and could be informally stated as finding a best type free of a
particular variable. In our case, we must find the “best” Γ free of i.
It may not be obvious how i could have been propagated to Γ, but
indeed, a function f in e could have a type like as !iσ ( τ , and
applying f will introduce i into the environment in the bottom-up
approach.

Fortunately, in our setting, we can easily solve the avoidance
problem by further extending the sensitivity language. The “best”
way of freeing a sensitivity expression R of a variable i is to take
the supremum of R over all possible values of i, which we denote
by sup(i, R)2. Then, the minimal environment is sup(i,Γ), where
the supremum is extended to each binding in the environment.

2 Contrary to max(−,−), it would have been possible to define this
construct as a function over sensitivity expressions, without the need to
extend their syntax. This would still be true even after introducing index-level
case sensitivity expression for analyzing dependent pattern matching. As the
translation is somewhat intricate and leads to more complex constraints, we
chose to add it directly to the syntax of sensitivity expressions.



3.3 Undependable Dependencies
The last case to consider in our informal overview is case, also
referred as dependent pattern matching.

The dependent pattern matching can be considered as a special
case of the two previous difficulties. Like the least upper bound,
we must compute a least upper bound of the resources used in
two branches. However, now the information coming from the
successor branch may also contain sensitivities depending on the
newly introduced refinement variable, which cannot occur in the
upper bound; similar to the avoidance problem we just discussed.
On top of that, information coming from both sides is conditional
on the particular refinements induced by the match, so any new
sensitivity information that we propagate cannot really depend on
the refinements.

We now face a choice: we can introduce refinement types over
sensitivity and size variables of the form {σ | P (~i)}, which would
allow us to express the sensitivty inference for case in term of
the least upper bound and supremum operations. However, we take
a simpler path and add a conditional operator on natural number
expressions S, case(S,R0, i, Rs), interpreted as R0 if S is 0 or
Rs[i 7→ S − 1] if S ≥ 1.

In the next sections we proceed to formally introduce the ex-
tended sensitivities and its semantics; we discuss the type-checking
algorithm, which depends on solving inequality constraints over the
extended sensitivities; and we study several approaches and discuss
their decidability.

4. Extended DFuzz: EDFuzz
We define a conservative extension to DFuzz’s type system, EDFuzz,
which is basically DFuzz with an extended sensitivity language for
the indices. We summarize the new sensitivity terms:

• max(R1, R2) is the pointwise least upper bound of sensitivity
terms R1, R2.

• sup(i, R) is the pointwise least upper bound of R over all i.
• case(S,R0, i, Rs) is the conditional function on the size ex-

pression S that is valued R0 when S = 0, and Rs[i 7→ S − 1]
when S is a strictly positive integer.

We write R̂ for the extended sensitivity language, built from the
standard sensitivity terms and operations and the new extended
terms. The semantics of extended terms are defined as follows.

Definition 2 (Extended sensitivity semantics). For every well-
kinded valuation φ |= ρ for φ |= R we have:

Jsup(i : κ, R̂)Kρ := sup
r∈κ
{JR̂Kρ∪[i=r]}

Jmax(R̂1, R̂2)Kρ := max(JR̂1Kρ, JR̂2Kρ)

Jcase(S, R̂0, i, R̂s)Kρ :=

{
JR̂0Kρ if JSKρ = 0

JR̂sKρ∪[i=n−1] if JSKρ = n ≥ 1.

JR̂1 + R̂2Kρ := JR̂1Kρ + JR̂2Kρ
JR̂1 · R̂2Kρ := JR̂1Kρ · JR̂2Kρ.

We define analogous operations on contexts in the obvious
way. For instance, if x :R1 σ ∈ Γ1 and x :R2 σ ∈ Γ2, then
x :max(R1,R2) σ ∈ max(Γ1,Γ2). Context operations that take
two contexts Γ1,Γ2 are only defined if the contexts have the same
skeleton, i.e., Γ•1 = Γ•2.

It is not hard to show that any derivation valid in DFuzz remains
valid in EDFuzz. Furthermore, DFuzz’s metatheory only relies on
sensitivity terms having an interpretation as total function from free
variables to a real number, rather than on any specific property about

the interpretation itself. The extended interpretation is total, and
hence the metatheory of DFuzz extends to EDFuzz.

5. Type Checking and Inference
We present a sound and complete type checking and inference
algorithm for EDFuzz. The algorithm assumes the existence of
an oracle for deciding the subtyping relation, so in that sense our
algorithm is relatively complete. We defer discussion about solving
subtyping constraints to the next section.

We remind the reader that our definitions of type-checking and
inference assume that a regular typing derivation—that is to say,
erasing all linear types and dependent terms—for an expression is
already known. This can be computed, for example, by a Hindley-
Milner-style pass. Here and below, we focus on handling the
sensitivities. For a type σ, we write σ for the type where all linear
types are mapped to regular function types and all the dependently
typed types are mapped to their non-dependent version. This erasure
operation is extended to environments in the natural way: Given
an environment Γ, we define its skeleton as Γ, containing a list of
type bindings (x : σ), but without the external sensitivities (i.e., the
annotation on the colon).

Definition 3 (Type Checking). Given a context Γ, a term e, a type
σ, and a HM derivation Γ `H e : σ, then the type-checking problem
for EDFuzz is to determine whether a derivation ∅; ∅; Γ ` e : σ
exists.

In our context, type inference means inferring the sensitivity
annotations in both a context and a type.

Definition 4 (Type Inference). Given a context skeleton Γ, a term
e, a regular type σ, and a HM derivation Γ `H e : σ, the type-
inference problem is to compute a context Γ and a type τ such that
a derivation ∅; ∅; Γ ` e : τ exists and Γ = Γ and τ = σ.

5.1 The Algorithm
We can fulfill both goals using an algorithm that takes as inputs
a term e, an environment free of sensitivity annotations Γ• and a
refinement constraint Φ. The algorithm will output an annotated
environment ∆ and a type σ. We write a call to the type inference
algorithm as:

φ; Φ; Γ•; e =⇒ ∆;σ.

Figure 4 presents the full algorithm in a judgmental style. The
algorithm is based on a syntax-directed version of DFuzz that enjoys
several nice properties; full technical details can be found in the
Appendix. Here, we just sketch how the transformation works in the
proofs of soundness and completeness.

Theorem 5 (Algorithmic Soundness). Suppose φ; Φ; Γ•; e =⇒
Γ;σ. Then, there is a derivation of φ; Φ; Γ ` e : σ.

Proof. We define two intermediate systems: The first one internaliz-
ing certain properties of weakening and a second, syntax-directed.
The algorithm is a direct transcription of the syntax-directed system
and soundness can be proved by induction on the number of steps.
We prove soundness of the syntax-directed system by induction on
the syntax-directed derivation.

Theorem 6 (Algorithmic Completeness). Suppose φ; Φ; Γ ` e : σ
is derivable. Then φ; Φ; Γ•; e =⇒ Γ′;σ′ and φ; Φ |= Γ v
Γ′ ∧ σ′ v σ.

Proof. We show that a “best” syntax-directed derivation can be
build from any standard derivation by induction on the original
derivation plus monotonicity and commutativity properties of the
subtype relation. Completeness for the algorithm follows.



φ; Φ; Γ•; r =⇒ Ectx(Γ•);R
(Const)

n = JSK
φ; Φ; Γ•;n =⇒ Ectx(Γ•);N[S]

(ConstN)

φ; Φ; Γ•, x : σ;x =⇒ Ectx(Γ•), x :[1] σ;σ
(Var)

φ; Φ; Γ•, x : σ; e =⇒ Γ, x :[R′] σ; τ
φ; Φ |= R ≥ R′2↑

φ; Φ; Γ•;λ(x :[R] σ). e =⇒ Γ; !Rσ ( τ
(( I)

φ; Φ; Γ•; e1 =⇒ Γ; !Rσ ( τ
φ; Φ; ∆•; e2 =⇒ ∆;σ′

φ; Φ |= σ′ v σ
φ; Φ; Γ•; e1 e2 =⇒ Γ +R ·∆; τ

(( E)

φ; Φ; Γ•, x : σ; e =⇒ Γ, x :[R] σ;σ′

φ; Φ |= σ′ v σ
φ; Φ; Γ•; fixx : σ. e : σ =⇒∞ · Γ;σ

(Fix)

φ, i : κ; Φ; Γ•; e =⇒ Γ;σ

φ; Φ; Γ•; Λi : κ. e =⇒ sup(i,Γ); ∀i : κ. σ
(∀I)

φ; Φ; Γ•; e =⇒ Γ;∀i : κ. σ φ |= S : κ

φ; Φ; Γ•; e[S] =⇒ Γ;σ[S/i]
(∀E)

φ; Φ; Γ•; e1 =⇒ Γ1;σ1

φ; Φ; Γ•; e2 =⇒ Γ2;σ2

φ; Φ; Γ•; 〈e1, e2〉 =⇒ Γ1 + Γ2;σ1 ⊗ σ2
(⊗I)

φ; Φ; Γ•; e =⇒ ∆;σ ⊗ τ
φ; Φ; Γ•, x : σ, y : τ ; e′ =⇒ Γ, x :[R1] σ, y :[R2] τ ;µ

φ; Φ; Γ•; let(x, y) = e in e′ =⇒ Γ + max(R12↑, R22↑) ·∆;µ
(⊗E)

φ; Φ; Γ•; e1 =⇒ Γ1;σ1

φ; Φ; Γ•; e2 =⇒ Γ2;σ2

φ; Φ; Γ•; 〈e1, e2〉 =⇒max(Γ1,Γ2);σ1 N σ2
(N I)

φ; Φ; Γ•; e =⇒ Γ;σ1 N σ2

φ; Φ; Γ•;πie =⇒ Γ;σi
(N E)

φ; Φ; Γ•; e =⇒ Γ;N[S]

φ; Φ; Γ•; s e =⇒ Γ;N[S + 1]
(S I)

φ; Φ; Γ•; e =⇒ ∆;N[S] φ; Φ, S = 0; Γ•; e0 =⇒ Γ0;σ0

φ, i : n; Φ, S = i+ 1; Γ•, x : N[i]; es =⇒ Γs, x :[R′] N[i];σs
φ; Φ, S = 0 |= σ0 v σ φ, i : n; Φ, S = i+ 1 |= σs v σ

φ; Φ; Γ•; case e returnσ of 0 7→ e0 | x[i] + 1 7→ es
=⇒ case(S,Γ0, i,Γs) + case(S, 0, i, R′2↑) ·∆;σ

(N E)

Figure 4. Algorithmic Rules for EDFuzz

5.2 Removing Sensitivity Annotations
We briefly discuss the role annotations play in our algorithm. DFuzz
programs have three different annotations: the type of the argument
for lambda terms (including the sensitivity), the return type for case,
and the type for fixpoints.

The sensitivity annotations ensure that inferred types are free of
terms with extended sensitivities. This is useful for some optimiza-
tions on subtype checking (introduced later in the paper). However,
the general encoding of subtyping checks works with full extended
types, thus the sensitivity annotations can be safely omitted and the
system will infer types containing extended sensitivities.

Due to technical difficulties in inferring the minimal sensitivity
in the presence of higher-order functions, the argument type in
functions (σ in λ(x : σ)) must be annotated, and we require the
type of fixpoints to be annotated.

6. Constraint Solving over Mixed Reals/Naturals
The type-checking algorithm introduced in the previous section pro-
duces inequality constraints over the extended sensitivity language.
While these extended sensitivity terms may appear complicated, we
can translate them into formulas in the first-order theory of S and N
in a sound and complete way.

While we will show in the next section that the kind of first-order
formulas we generate here are in general undecidable, they can still
be handled by numeric solvers providing mixed real/natural theories.
Moreover, in Section 8.1 we will present a sound (although not
complete) computable procedure to check the constraints.

Quantification over S should be interpreted as quantification
over R∞ with a non-negativity constraint; all the quantifiers in our
target first-order theory will range over either R∞ or N. (In the next
section, we will show that quantifying over just R and N is enough.)

The idea behind our translation is simple: we use a first-order
formula to uniquely specify each extended sensitivity term. In other
words, we define a predicate T (R) for each extended sensitivity
term R, such that JT (R)(r)Kρ holds exactly when r is equal to the
interpretation of R under the valuation ρ. For instance, consider the
translation for R1 +R2:

T (R1+R2)(r) := ∃r1 r2 : S, T (R1)(r1)∧T (R2)(r2)∧r = r1+r2.

For ρ a valuation forR1, R2, we have r1 = JR1Kρ and r2 = JR2Kρ.
Then the only r that satisfies this predicate is

r = r1 + r2 = JR1Kρ + JR2Kρ = JR1 +R2Kρ,

as desired.
For a more involved example, consider the translation of

max(R1, R2):

T (max(R1, R2))(r)

:= ∃r1 r2 : S, T (R1)(r1) ∧ T (R2)(r2)∧
(r1 ≥ r2 ∧ r = r1 ∨ r2 ≥ r1 ∧ r = r2).

Again, for any valuation ρ of R1, R2, we have r1 = JR1Kρ and
r2 = JR2Kρ. The final conjunction states that r must be the larger
of r1 and r2, which is precisely the semantics we have given
Jmax(R1, R2)Kρ. The full translation is in Figure 5.

We formalize our intuitive explanation of the translation with the
following lemma.



κ := N | S
T (i)(r) := i = r

T (R1 +R2)(r) := ∃r1 r2 : S, T (R1)(r1) ∧ T (R2)(r2) ∧ r = r1 + r2

T (R1 ·R2)(r) := ∃r1 r2 : S, T (R1)(r1) ∧ T (R2)(r2) ∧ r = r1 · r2
T (max(R1, R2))(r) := ∃r1 r2 : S, T (R1)(r1) ∧ T (R2)(r2) ∧ (r1 ≥ r2 ∧ r = r1 ∨ r2 ≥ r1 ∧ r = r2)

T (case(S,R0, i, Rs))(r) := ∃rs : N, T (S)(rs) ∧ (rs = 0 ∧ T (R0)(r) ∨ ∃i : N, rs = i+ 1 ∧ T (Rs)(r))

T (sup(i : κ,R))(r) := bound(i : κ,R, r) ∧ ∀r′,bound(i : κ,R, r′)⇒ r′ ≥ r
bound(i : κ,R, r) := ∀i : κ, ∃r′ : S, T (R)(r′) ∧ r′ ≤ r

Figure 5. Constraint Translation

Lemma 7. For every sensitivity expression R and r ∈ S, and for
every valuation ρ whose domain contains the free variables of R,
JT (R)(r)Kρ ⇐⇒ r = JRKρ

Proof. By induction onR. We have already considered theR1 +R2

and max(R1, R2) cases above.

Using the translation of terms, we can translate sensitivity con-
straints generated by our typing algorithm. We map each constraint
of the form

|= ∀φ,Φ⇒ R1 ≥ R2

for R1 a standard sensitivity term to

∀φ,Φ⇒ ∃r : S, T (R2)(r) ∧R1 ≥ r
Note that since R1 is a standard sensitivity term, the resulting
formula is a first-order formula in the theory of S and N. Thanks
to Lemma 7, both formulas are semantically equivalent.

7. Undecidability of Type-checking over Mixed
Reals/Naturals

As we have seen in the previous section, constraints over our
extended sensitivity language can be translated to simple first-order
formulas. Taken by itself, this is not entirely satisfactory, as the first-
order theory of N is already undecidable. A nice illustration of this
is Hilbert’s tenth problem, which asks if a polynomial equation of
the form P (~x) = 0 over several variables has any solutions over the
natural numbers. After several years of investigation, this property,
easily definable in first-order arithmetic, was finally shown to be
undecidable.

In this section, we will show that this problem is present in
DFuzz: type-checking is undecidable. We begin with an auxiliary
lemma.

Lemma 8. Given polynomials P , Q over n variables with coeffi-
cients in N, checking ∀~i ∈ Nn, P (~i) ≥ Q(~i) is undecidable.

Proof. We will use a solution to our problem to solve Hilbert’s tenth
problem. Suppose we are given a polynomial P with integer coef-
ficients, and we want to decide whether ∃~i ∈ Nn, P (~i) = 0. This
is equivalent to deciding ¬∀~i ∈ Nn, P (~i)2 ≥ 1. Write P (~i)2 =

P+(~i)− P−(~i), where P+ and P− have only positive coefficients.
Then our condition is equivalent to ¬∀~i ∈ Nn, P+(~i) ≥ P−(~i)+1.
Thus, we can solve Hilbert’s tenth problem by using P+ and P−+1
as inputs to our problem, which shows that it is undecidable.

This class of constraints is important for DFuzz, as they can arise
when checking the subtype relation.

Corollary 9. The subtype relation of DFuzz is undecidable.

Proof. Suppose we are given P and Q as previously. Consider the
types σ = ∀~i, !0Nn[~i] ( !Q(~i)R ( R and τ = ∀~i, !0Nn[~i] (
!P (~i)R ( R. Then σ v τ is equivalent to the previous problem,
hence undecidable.

Corollary 10. DFuzz type checking is undecidable.

Proof. Using recursion and dependent pattern matching, it is possi-
ble to write a function that multiplies a real number by a polynomial
Q(~v) with variables ranging over N. Its minimal type will clearly
be σ. Therefore, type-checking it against τ is equivalent to deciding
σ v τ , which is undecidable by Lemma 8.

8. Approaches to Constraint Solving
Given that type-checking DFuzz (and hence also EDFuzz) is un-
decidable, is there anything more we can do besides feeding the
constraints to a solver and hoping for the best? In this section, we
discuss two possible directions to tackle these constraints. For both
of these approaches, we require that all annotations in the term
are standard sensitivities, rather than extended. Then, we have the
following lemma. (We defer the proof to the Appendix.)

Lemma 11 (Standard Annotations). Assume annotations in a term
e range over standard sensitivities and φ; Φ; Γ•; e =⇒ Γ;σ. Then:

• σ has no extended sensitivities; and
• all constraints required for the algorithm are of the form |=
∀φ. (Φ⇒ R ≥ R′) where R is a standard sensitivity term.

8.1 Modifying the subtype relation
As seen in the previous section, the EDFuzz subtyping relation
is undecidable. Here, we explore a modified version of EDFuzz—
which we call UDFuzz—that enjoys decidable typechecking. The
modification is simple to describe: UDFuzz has all the same typing
rules as EDFuzz, except we strongly restrict the subtyping relation
to force all generated constraints to be decidable, and all annotations
must be standard sensitivity terms. By restricting the subtype relation
of EDFuzz, UDFuzz typeable programs are a strict subset of EDFuzz.
This subtype restriction will rule out many programs that are
typeable under EDFuzz, but is expressive enough to cover a range of
examples (including most of the examples presented in the original
work on DFuzz [10]).

Recall that the constraints handled by our algorithmic system
have the form

|= ∀φ. Φ⇒ R ≥ R′,
where R,R′ are possibly extended sensitivity terms, and φ consists
of both natural and real index variables. As we are requiring all
annotations in UDFuzz standard sensitivities, then by Lemma 11, R
will be a standard sensitivity term in UDFuzz; we use this invariant



to show the subtype relation of UDFuzz is a subrelation of the
subtype relation of EDFuzz.

Furthermore, we note that the first order theory over S is decid-
able: we can try all settings variables to∞ and check the resulting
constraints (with all the remaining quantifiers ranging over R). The
resulting formula is in the first order theory over R, and is decidable
(as shown by Tarski). Hence, a natural idea is to replace quantifica-
tion over the naturals with quantification over S; let us first make
this idea precise.

We define the semantics for sensitivity terms, where natural-
kinded free variables may now be mapped to values in S. We call
this extension the uniform interpretation of size and sensitivity terms,
and denote it by J·KU . A well-formed uniform valuation φ |=U ρ
maps dom(φ) to S; note that “size variables” may be interpreted as
real numbers, not just natural numbers.

First, the uniform interpretation of standard size and sensitivity
terms is completely identical to the standard interpretation. The ex-
tended sensitivities have slightly different interpretations: sup(i, R)
now takes a max over all real numbers, and case(S,R0, i, Rs) must
now be defined when the interpretation of S is not an integer.

Jsup(i : κ, R̂)KUρ := sup
r∈S
{JR̂KUρ∪[i=r]}

Jmax(R̂1, R̂2)KUρ := max(JR̂1KUρ , JR̂2KUρ )

Jcase(S, R̂0, i, R̂s)KUρ :=


JR̂1KUρ if JSKUρ = 0
0 if JSKUρ ∈ (0, 1)

JR̂2KUρ∪[i=r−1] if JSKUρ = r ≥ 1.

JR̂1 + R̂2KUρ := JR̂1Kρ + JR̂2KUρ
JR̂1 · R̂2KUρ := JR̂1KUρ · JR̂2KUρ

JRKUρ := JRKUρ otherwise.

We first show that this uniform semantics is an extension of the
standard semantics.

Lemma 12. Suppose R is a standard sensitivity term, typed under
context φ. Then, for any standard valuation φ |= ρ, we have

JRKUρ = JRKρ.

Proof. Immediate from the definition of the interpretation.

Now, we can define the uniform interpretation of constraints. A
constraint

|=U ∀φ.Φ⇒ R ≥ R′

is true exactly when for all real-valued valuations φ |=U ρ satisfying
Φ, we have JRKUρ ≥ JR′KUρ .

We are now ready to prove that the uniform interpretation of
constraints is sound with respect to the original interpretation.

Theorem 13. Suppose R,R′ are well-typed in context φ. Suppose
that

|=U ∀φ.Φ⇒ R ≥ R′,
for R a standard sensitivity term. Then,

|=U ∀φ.Φ⇒ R ≥ R′.

Proof. It suffices to show that for any standard valuation φ |= ρ, we
have JR′KUρ ≥ JR′Kρ. (We defer the proof of this claim to the long
version.) Assuming this, the theorem assumption shows that for all
standard valuation φ |= ρ, we have

JRKUρ ≥ JR′KUρ ≥ JR′Kρ.

But R is a standard sensitivity, so JRKUρ = JRKρ by Lemma 12, and
we are done.

Hence, the subtype relation of UDFuzz is a subrelation of the
subtype relation in EDFuzz. By reasoning analgous to Lemma 7,
we can show that relaxing the first order translation of constraints
captures this uniform interpretation. More formally:

Lemma 14. For every sensitivity term R, let TU (R) be a unary
predicate defined exactly as in Figure 5, but replacing quantification
over N with quantificiation over S and with the modified case
translation:

TU (case(S,R0, i, Rs))(r) :=
∃rs : N, T (S)(rs) ∧ (rs = 0 ∧ T (R0)(r))

∨ (0 < rs < 1 ∧ r = 0)
∨ (∃i : N, rs = i+ 1 ∧ T (Rs)(r))

Then, r ∈ S, and for every uniform valuation ρ whose domain
contains the free variables of R, JTU (R)(r)KUρ ⇐⇒ r = JRKUρ .

By this lemma, we can give a sound, complete and decidable
type-checking algorithm for UDFuzz.

Theorem 15. Suppose we use our algorithmic system, with the
constraints

|=U ∀φ.Φ⇒ R1 ≥ R2

handled by translation to the first order formula

∀φ,Φ⇒ ∃r : S, TU (R2)(r) ∧R1 ≥ r,
where all quantifiers are over S. Since the theory of S is decidable,
this gives an effective type-checking procedure for UDFuzz.

Proof. Note that R1 is a standard sensitivity term, so the translated
formula is indeed a first order formula over the theory of S. By
Lemma 14, the translated formula is logically equivalent to

JΦKUρ ⇒ JR1KUρ ≥ JR2KUρ

for all uniform valuations φ |=U ρ, which in turn implies φ; Φ |=
R1 ≥ R2 by Theorem 13. This shows that the algorithmic system
is sound and complete with respect to UDFuzz.

Remark 16. UDFuzz is a strict subset of EDFuzz; informally, it
contains EDFuzz programs with typing derivations that do not use
facts true over N but not over R. One key way that subtyping is
used in EDFuzz is for equational manipulations of the indices; for
instance, subtyping may be needed to change the index expression
3(i+ 1) to 3i+ 3. This reasoning is available in UDFuzz as well;
indeed, most of the example programs in DFuzz are typeable under
UDFuzz as well. (The only exception is k-medians, which extends
the index language with a division function that we do not handle.)

However, there are many programs that lie in EDFuzz but not
in UDFuzz—constraints as simple as ∀i. i2 ≥ i are true when
quantifing over the naturals but not when quantifying over the reals.
Valid EDFuzz programs that use these facts in their typing derivation
will not lie in UDFuzz.

8.2 Constraint Simplification
Rather than restricting the subtype relation, we can also try to gen-
erate simpler constraints when type-checking EDFuzz. While the
translation of extended constraints to first order real theory is con-
ceptually simple, the translation generates complex constraints; in
particular, they may have many alternating quantifiers. In this sec-
tion, present a rewriting procedure for reducing extended sensitivity
terms, leading to simpler constraints. We continue to require that all
source annotations must be standard sensitivity terms.

To begin, we generalize our three extended constructs with a
new constrained least upper bound (club) operation, with form
club{(φ1; Φ1;R1), . . . , (φn; Φn;Rn)}. Here, φ is a size and sen-
sitivity variable context, Φ is a constraint context, and R is a sensi-
tivity term, extended or standard. The judgment for a well-formed



club is

φ |= club{(φ1; Φ1;R1), . . . , (φn; Φn;Rn)},
where each Rj has kind r under φ, φj ; Φj , and φ, {φj}j have dis-
joint domain. Intuitively, club is a maximum over a set of sensi-
tivities, restricting to sensitivities where the associated constraint
is satisfied. Sensitivities where the constraints are not satisfied are
ignored. Formally, let φ contain the free variables of club, and
let φ |= ρ be any standard valuation. We can give the following
interpretation of club:

Lclub{(φ1; Φ1;R1), . . . , (φn; Φn;Rn)}Mρ :=

max
j∈[n]

max{JRjKρ∪ρj | φj |= ρj and ρ, ρj |= Φj}.

We define the maximum over an empty set to be 0.
Now, we can encode the extended sensitivity terms using only

club, through the following translation function:

C(max(R̂1, R̂2)) := club{(∅; ∅;C(R̂1)), (∅; ∅;C(R̂2))}
C(sup(i, R̂)) := club{(i; ∅;C(R̂))}

C(case(S, i, R̂0, R̂s)) := club{(∅;S = 0;C(R̂0)),

(i;S = i+ 1;C(R̂s))}
C(R̂1 + R̂2) := C(R̂1) + C(R̂2)

C(R̂1 · R̂2) := C(R̂1) · C(R̂2)

C(R) := R otherwise.

While we may now have nested club, we extend the interpretation in
the natural way. We can show that the translation faithfully preserves
the semantics of the extended terms, with the following lemma.

Lemma 17. Suppose φ |= R and φ |= ρ is a standard valuation.
Then, LC(R)Mρ = JRKρ.

Proof. By induction on R.

Now, we can simplify the compiled constraints. First, we can
push all standard sensitivity terms to the leaves of the expression.
More formally, we have the following lemma.

Lemma 18. Suppose φ |= R · club{(φi; Φi;Ci)}i + R′, where
R,R′ are standard sensitivity terms, and Ci is an arbitrary sensi-
tivity term possibly involving club. Then, for any standard closing
valuation φ |= ρ,

LR·club{(φi; Φi;Ci)}i+R
′Mρ = Lclub{(φi; Φi;R · Ci +R′)}iMρ.

Proof. By the definition of the interpretations, and the mathematical
fact

a ·max
i
{bi}+ c = max

i
{a · bi + c},

for a, b, c ≥ 0.

Thus, without loss of generality we may reduce the compiled
sensitivity constraint to an expression of the form Q, with grammar

Q ::= ∅ | Q1+Q2 | Q1·Q2 | club{(φi; Φi;Qi)} | club{(φi; Φi;Ri)},
where Ri are standard sensitivity terms. We will use the metavari-
able V to denote an arbitrary (possibly empty) collection of triples
(φi; Φi;Ri)i, and the metavariable W to denote an arbitrary (pos-
sibly empty) collection of triples (φi; Φi;Qi)i. Throughout, we
will implicitly work up to permutation of the arguments to club:
for instance, club{(X), (Y )} will be considered the same as
club{(Y ), (X)}. We will also work up to commutativity of ad-
dition and multiplication: Q1 +Q2 will be considered the same as
Q2+Q1, and likewise with multiplication. We present the constraint
simplification rules as a rewrite relation 7→. As typical, we will write

7→∗ for the reflexive, transitive closure of 7→. The full rules are in
Figure 6.

We can prove correctness of our constraint simplification with
the following lemma.

Lemma 19. Suppose Q 7→ Q′, and suppose φ |= Q and φ |= Q′.
Then, for any standard valuation φ |= ρ, we have LQMρ = LQ′Mρ.

Proof. By induction on the derivation of Q 7→ Q′. The cases Plus,
Mult and Red are immediate by induction. The other cases all follow
by the semantics of club; details are in the Appendix.

The simplification relation terminates in the following particular
simple form.

Lemma 20. Let Q be a sensitivity term involving club. Along any
reduction path, Q reduces in finitely many steps to a term of the
form

club{V } = club{(φ1; Φ1;R1), . . . , (φn; Φn;Rn)}.

Proof. First, note that any reduction of Q must terminate in finitely
many steps: by induction on the derivation of the reduction, it’s clear
that each reduction removes one club subterm, and no reductions
introduce club subterms. So, suppose that Q is a term with no
possible reductions.

By induction on the structure of Q, we claim that Q is of the
desired form. Say if Q = Q1 + Q2, if either Q1, Q2 can reduce,
then Plus applies. If not, then by induction, CPlus applies. The same
reasoning follows for Q = Q1 ·Q2: either Mult applies, or CMult
does. Finally, if Q is a single club term, if Red and Flat both don’t
apply, then Q is of the desired form.

Finally, checking a constraint ∀φ.Φ ⇒ R ≥ club{V } is
simple.

Lemma 21. Let R be a standard sensitivity term, and let V be

V = (φ1; Φ1;R1), . . . , (φn; Φn;Rn)

where each Rj is a standard sensitivity term without club. Then,
|= ∀φ.Φ⇒ R ≥ club{V } is logically equivalent to

∀j∈[n]φ, φj . Φ⇒
∧
k∈[n]

(Φk ⇒ R ≥ Rk) .

Proof. Immediate by the semantics of club{V }.

Putting together all the pieces, for a constraint

|= ∀φ.Φ⇒ R ≥ R′,
with R standard, we can transform C(R′) to a term of the form Q
by pushing all standard sensitivity terms to the leaves. Then, we
normalizeQ 7→∗ club{V } by Lemma 20 arbitrarily. By Lemma 19,
the interpretation of Q and club{V } are the same, so we can
reduce the constraint |= ∀φ. φ ⇒ R ≥ club{V } to a first order
formula over mixed naturals and S, with no alternating quantifiers,
by Lemma 21.

9. Related work
There is a vast literature on type checking for various combinations
of indexed types, linear types, dependent types and subtyping.
A distinctive feature of our approach is that our index language
represents natural and real number expressions. As we have shown
in the previous sections, this makes type checking non-trivial.

The work most closely related to ours is Dal Lago et al. [6], who
studied the type inference problem for d`PCF, a relatively-complete
type system for complexity analysis introduced in Dal Lago and
Gaboardi [4]. d`PCF uses ideas similar to DFuzz but brings the idea



club{(φ; Φ; club{(φi; Φi;Ri)}i), V } 7→ club{(φ ∪ φi; Φ ∧ Φi;Ri), V } i
Flat

club{(φi; Φi;Ri)}i + club{(φ′j ; Φ′j ;R
′
j)}j 7→ club{(φi ∪ φ′j ; Φi ∧ Φ′j ;Ri +R′j)}ij

CPlus

club{(φi; Φi;Ri)}i · club{(φ′j ; Φ′j ;R
′
j)}j 7→ club{(φi ∪ φ′j ; Φi ∧ Φ′j ;Ri ·R′j)}ij

CMult

Q1 7→ Q′1

Q1 +Q2 7→ Q′1 +Q′2
Plus

Q1 7→ Q′1

Q1 ·Q2 7→ Q′1 ·Q2

Mult
Q 7→ Q′

club{(φ; Φ;Q),W} 7→ club{(φ; Φ;Q′),W}
Red

Figure 6. club Reduction

of linear dependent types to the limit. Indeed, d`PCF index language
contains function symbols that are given meaning by an equational
program. The equational program then plays the role of an oracle
for the type system—d`PCF is in fact a family of type systems
parametrized over the equational program. The main contribution
of Dal Lago et al. [6] is an algorithm that, given a PCF program,
generates a type and the set of constraints that must be satisfied in
order to assign the return type to the input term.

In our terminology, their work is similar to the top-down ap-
proach we detailed in Section 3. As we discussed there, the compli-
cation of this approach is that it requires solving constraints over
expressions—with possible function symbols—of the index-level
language. As shown by Dal Lago and Petit, a clear advantage of
the d`PCF formulation is that instead of introducing an existential
variable over expressions, one can introduce a new function symbol
that will then be given meaning by the equational program gener-
ated by the constraints—i.e., the constraints give a description of
the semantics of the program, which can be turned in an equational
program, that in turn gives meaning to the function symbols of the
index language appearing in the type. Clearly, this approach cannot
be reduced to numeric resolution and need instead a combination of
numeric and symbolic solving technology. The authors show that
these constraints can be anyway handled by using the WHY3 frame-
work. Some constraints are discharged automatically by some of
the solvers available in WHY3 while others requires an interactive
resolution using Coq.

As explained in Section 3, the situation with DFuzz is different.
Indeed, DFuzz can be seen as a simplified version of d`PCF—
simplifying in particular the typing for the fixpoint and without
variable bindings in !-types—extended however to deal with indices
representing real numbers and using quantifications over index
variables. A key distinction of DFuzz is that the set of constructors
for the language of sensitivity is fixed—one cannot add arbitrary
functions. Moreover, the extension to real numbers gives a different
behavior from how natural numbers are used in d`PCF—e.g., our
example for the lack of minimal type would make no sense in
d`PCF. These distinctions make the type checking problem very
different.

For another approach that is closely related to our work, recall
that DFuzz is an extension of Fuzz. The sensitivity inference
and sensitivity checking problems for Fuzz have been studied
in D’Antoni et al. [7]. These problems are simpler than the one
studied here since in Fuzz there is no dependency, no quantification
and no subtyping. Indeed, the constraints generated are much
simpler and can be solved quickly by an SMT solver.

Similarly, Eigner and Maffei [9] have studied an extension of
Fuzz for modeling protocols. In their work they also give an algo-
rithmic version of their type system. Their type system presents
challenges similar to Fuzz, which they handle with algebraic manip-
ulations. More precisely, their algorithmic version uses a technique

similar to the one developed in Cervesato et al. [2] for the splitting
of resources: when a rule with multiple premises is encountered the
algorithmic system, first allocate all the resources to the first branch
and then allocate the remaining resources to the second branch. Un-
fortunately, this approach cannot be easily applied to DFuzz due to
the presence of index variables and dependent pattern matching.

From a different direction, recent works [1, 13] have shown how
linear indexed type systems can be made more abstract and useful
to analyze abstract resources. In particular, this kind of analyses
is connected to comonadic notions of computations [20]. The type
inference algorithm described in Ghica and Smith [13] is parametric
on an abstract notion of resource. This resource can be instantiated
on a language for sensitivities similar to the one in Fuzz. So, this
abstract type inference procedure could be also used for sensitivity
analysis.

DFuzz is one of several languages combining linear and depen-
dent types. For example, ATS [3] is designed around a dependent
type system enriched with a notion of resources that is a type-level
representation of memory locations; these resources are managed
using a linear discipline. ATS uses these features to verify the cor-
rectness of memory and pointer management.

Even if the use of linear types in ATS is very different from
the one presented here, our type checking algorithm shares some
similarities with ATS’s one. The main difference is that ATS uses
interactive theorem proving to discharge proof obligations while,
thanks to the restricted scope of our analysis, our constraints can be
handled by numeric solvers. In contrast, DML [26]—a predecessor
of ATS which did not use linear types—uses an approach similar
to ours by solving proof obligations using automatic numeric
resolution. This required limitations on the operations available
in the index language, similar to DFuzz.

Another work considering lightweight dependent types is the one
by Zhu and Jagannathan [27]. In particular they propose a technique
based on dependent types to reduce the verification of higher order
programs to the verification of a first order language. While the goal
of their work is similar in spirit to ours, their technique has only
superficial similarities with the one presented here.

Finally, our work has been informed by the wide literature on
type-checking, far too large to summarize here. For instance, the
problem of dealing with subtyping rules by using syntax-directed
systems has been studied by Pierce and Steffen [21], and others.

10. Conclusions and Future Work
We have presented a type-checking and inference algorithm for
EDFuzz—a simple extension of DFuzz—featuring a linear indexed
dependent type system. While we have shown that DFuzz type-
checking is undecidable in the general case, our approach generates
constraints over the first order theory over the reals and naturals, for
which there are standard (though necessarily incomplete) solvers.



We are currently experimenting with a prototype implementation;3

more investigation is needed in order to assess the difficulty of these
constraints on real examples.

Overall, our design was guided by two principles: to stay as
close to DFuzz as possible, and to provide a practical type checking
procedure. While we do require extensions to DFuzz, there is a clear
motivation for the introduction of each new construct. The idea
of making a limited enrichment of the index language in order to
simplify type-checking may be applicable to other linear indexed
type systems. Furthermore, designers of such systems would do well
to keep implementability in mind: seemingly unimportant decisions
that simplify the metatheory may have a serious impact on type-
checking.
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φ; Φ | ∆ ` e : σ φ; Φ |= Γ v ∆

φ; Φ | Γ ` e : σ
(v .L)

φ; Φ | Γ ` e : σ φ; Φ |= σ v τ
φ; Φ | Γ ` e : τ

(v .R)
φ; Φ | Γ ` r : R

(ConstR)

n = JSK
φ; Φ | Γ ` n : N[S]

(ConstN)
φ; Φ | Γ, x :[1] σ ` x : σ

(Var)
φ; Φ | Γ1 ` e1 : σ φ; Φ | Γ2 ` e2 : τ

φ; Φ | Γ1 + Γ2 ` (e1, e2) : σ ⊗ τ (⊗I)

φ; Φ | ∆ ` e : σ ⊗ τ φ; Φ | Γ, x :[R] σ, y :[R] τ ` e′ : µ R 6= 2

φ; Φ | Γ +R ·∆ ` let(x, y) = e in e′ : µ
(⊗E)

φ; Φ | Γ ` e1 : σ φ; Φ | Γ ` e2 : τ

φ; Φ | Γ ` 〈e1, e2〉 : σ N τ
(N I)

φ; Φ | Γ ` e : σ1 N σ2
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(N E)
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φ; Φ | Γ +R ·∆ ` e1 e2 : τ
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φ, i : κ; Φ | Γ ` e : σ i fresh in Φ,Γ
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(∀I)

φ; Φ | Γ ` e : ∀i : κ. σ φ |= S : κ

φ; Φ | Γ ` e[S] : σ[S/i]
(∀E)

φ; Φ | Γ, x :[∞] σ ` e : σ

φ; Φ | ∞ · Γ ` fixx : σ. e : σ
(Fix)

φ; Φ | Γ ` e : N[S]

φ; Φ | Γ ` e+ 1 : N[S + 1]
(S I)

φ; Φ | ∆ ` e : N[S] φ; Φ, S = 0 | Γ ` e0 : σ
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φ; Φ | Γ +R ·∆ ` case e returnσ of 0⇒ e0 | n[i] + 1⇒ es : σ

(N E)

Figure 7. DFuzz 2 Type Judgment

A. Differences Compared to Gaboardi et al. [10]
While we hew closely to the presentation of DFuzz in Gaboardi et al. [10], we make a few technical changes.

• The context weakening operation Γ v Γ′ in DFuzz allows the types to change. That is, a binding x :[R] σ ∈ Γ can be weakened to
x :[R′] σ

′ for σ v σ′ two syntactically different types. We take a more restricted weakening rule, where the types must be syntactically the
same; we are unaware of any programs that need the more general rule.

• We take the interpretation of∞ · 0 to be∞, rather than 0.
• We assume some additional type annotations in the source language, as discussed in Section 5

B. The DFuzz 2 system
The first system has the goal to enjoy “context” uniformity, in the sense that sensitivity information in the contexts may be missing. We denote
such an assignment x :2 σ. This is a subtle technical point for crucial to enable syntax-directed typability.

We modify subtyping for environments such that Γ v ∆ requires Γ, ∆ to have the same domain. The new rule is:

∀(xi :[Ri] σi, xi :[R′i] σi) ∈ (Γ,∆)

dom(∆) = dom(Γ) |= ∀φ. (Φ⇒ Ri ≥ R′i) ∨R′i = 2
φ; Φ |= Γ v ∆

v-Env

This subsumes regular variable weakening. Context operations must be aware of 2, with 2 + i = i, i · 2 = 2 for the annotations.

Definition 22 (Box erasure). For any context Γ, we define the 2-erasure operation |Γ| = {x :[R] σ | x :[R] σ ∈ Γ ∧R 6= 2}.
We introduce the 2 system in Figure 7.
We prove that derivations in a system with 2 are in direct correspondence with derivation in a system without it.

Lemma 23. Assume φ; Φ | Γ ` e : σ in the 2 system, then φ; Φ | |Γ| ` e : σ in the system without it.

Proof. By induction on the typing derivation. The base cases and cases where the context is not modified are immediate. Subtyping on the left
is proven by weakening.

The rest of cases are split in two:

• All cases featuring variables in the top rule, also have the condition R 6= 2, this is enough.
• For the cases involving context operations, the proofs is completed by following properties:

|R · Γ| = R · |Γ| |Γ + ∆| = |Γ|+ |∆|

Lemma 24. Assume φ; Φ | Γ ` e : σ in the system without 2, then φ; Φ | Γ ` e : σ in the system with it.



Proof. The proof is mostly routine by induction on the derivation, but relies in the following fact of the 2 system: φ; Φ | Γ ` e : σ implies
φ; Φ | Γ, x :2 τ ` e : σ. Then, using this lemma we can adjust the contexts so that subtyping goes through in the system with 2.

A 2-elimination operation R2↑, which sends context annotations to sensitivities will prove useful in the the syntax directed system. It is
defined as 22↑ = 0, R2↑ = R otherwise. Remember that 2 doesn’t belong to the sensitivity language, so any annotation that is used in places
where a sensitivity is expected must be wrapped with −2↑.

Definition 25 (Extension to environments operations). Operations on extended sensitivites that were extended to environments in a pointwise
fashion, now must take into account the presence of 2.

• max(R1, R2) operates now as max(2,2) = 2, max(2, R) = R, max(R,2) = R, the original term otherwise.
• sup(i, R) is extended in the natural way sup(i,2) = 2, the original term otherwise.
• case(S, i, R0, Rs) operates now case(S, i,2,2) = 2, case(S, i, R0, Rs) = case(S, i, R02↑, Rs2↑) otherwise.

C. Subtyping Proofs
From now on we can consider only contexts of similar length. We prove a few necessary facts about subtyping.

Lemma 26 (Context manipulation). Context subtyping is preserved by addition and scalar multiplication. More formally:

• If φ; Φ |= Γ v Γ′ ∧∆ v ∆′, then φ; Φ |= Γ + ∆ v Γ′ + ∆′; and
• if φ; Φ |= Γ v Γ′ ∧R ≥ R′, then φ; Φ |= R · Γ v R′ · Γ′.

Proof. These follow from the interpretation of subtyping assertions. Note that the subtyping relation preserves the skeleton of the environments,
thus making sure that the operations are always defined.

Lemma 27 (Properties of extended sensitivities). Extended sensitivities satisfy the following properties:

• φ; Φ |= R ≥max(R1, R2) if and only if φ; Φ |= R ≥ R1 ∧R ≥ R2;
• φ; Φ |= R ≥ sup(i, R′) with i#φ if and only if φ, i; Φ |= R ≥ R′; and
• φ; Φ |= R ≥ case(S, i, R0, Rs) with i#φ if and only if

φ; Φ, S = 0 |= R ≥ R0 and φ, i; Φ, S = i+ 1 |= R ≥ Rs.
As an immediate corollary, setting R to be max(R1, R2), sup(i, R′), case(S, i, R0, Rs) yields

• φ; Φ |= max(R1, R2) ≥ R1 ∧R ≥ R2;
• φ, i; Φ |= sup(i, R′) ≥ R′; and
• φ; Φ, S = 0 |= case(S, i, R0, Rs) ≥ R0 and φ, i; Φ, S = i+ 1 |= case(S, i, R0, Rs) ≥ Rs.

Proof. These follow from the interpretation of extended sensitivities.

Lemma 28. Suppose φ, i : κ; Φ |= σ v τ and i#Φ. Then for any φ |= S : κ, we have

φ; Φ |= σ[S/i] v τ [S/i].

Proof. By induction on the subtype derivation. For the base cases, we know

∀φ, i : κ. (Φ⇒ R ≥ R′),
and we need to prove

∀φ. (Φ⇒ R[S/i] ≥ R′[S/i]),
but this is clear from the interpretation of R,R′.

D. The Syntax-Directed system
The syntax-directed system is presented in Figure 8. It works over a uniform context, using 2 annotations to “mark”, variables not occurring in
the original DFuzz derivation.

We first prove the system sound with respect the non syntax-directed one.

Lemma 29 (Syntax-directed soundness). If φ; Φ | Γ `S e : σ has a derivation, then φ; Φ | Γ ` e : σ.

Proof. By induction on the derivation proving φ; Φ | Γ `S e : σ.

Case: (Var)

φ; Φ | Ectx(Γ•), x :[1] σ `S x : σ
(Var)

Immediate, the same rule applies.
Case: (⊗I)

φ; Φ | Γ1 `S e1 : σ φ; Φ | Γ2 `S e2 : τ

φ; Φ | Γ1 + Γ2 `S (e1, e2) : σ ⊗ τ (⊗I)

Immediate by induction; the same rule applies.



φ; Φ | Ectx(Γ•) `S r : R
(ConstR)

φ; Φ | Ectx(Γ•), x :[1] σ `S x : σ
(Var)

φ; Φ | Γ1 `S e1 : σ φ; Φ | Γ2 `S e2 : τ

φ; Φ | Γ1 + Γ2 `S (e1, e2) : σ ⊗ τ (⊗I)
φ; Φ | ∆ `S e : σ ⊗ τ φ; Φ | Γ, x :[R1] σ, y :[R2] τ `S e

′ : µ

φ; Φ | Γ + max(R12↑, R22↑) ·∆ `S let(x, y) = e in e′ : µ
(⊗E)

φ; Φ | Γ1 `S e1 : σ φ; Φ | Γ2 `S e2 : τ

φ; Φ |max(Γ1,Γ2) `S 〈e1, e2〉 : σ N τ
(N I)

φ; Φ | Γ `S e : σ1 N σ2

φ; Φ | Γ `S πie : σi
(N E)

φ; Φ | Γ, x :[R•] σ `S e : τ |= ∀φ. (Φ⇒ R ≥ R•2↑)

φ; Φ | Γ `S λ(x :[R] σ). e : !Rσ ( τ
(( I)

φ; Φ | Γ `S e1 : !Rσ ( τ
φ; Φ | ∆ `S e2 : σ′ φ; Φ |= σ′ v σ

φ; Φ | Γ +R ·∆ `S e1 e2 : τ
(( E)

φ, i : κ; Φ | Γ `S e : σ i fresh in Φ

φ; Φ | sup(i,Γ) `S Λi : κ. e : ∀i : κ. σ
(∀I)

φ; Φ | Γ `S e : ∀i : κ. σ φ |= S : κ

φ; Φ | Γ `S e[S] : σ[S/i]
(∀E)

φ; Φ | Γ, x :[R] σ `S e : σ′ φ; Φ |= σ′ v σ
φ; Φ | ∞ · Γ `S fixx : σ. e : σ

(Fix)

φ; Φ | ∆ `S e : N[S] φ; Φ, S = 0 | Γ0 `S e0 : σ0

φ, i : n; Φ, S = i+ 1 | Γs, n :[R] N[i] `S es : σs
φ; Φ, S = 0 |= σ0 v σ φ, i : n; Φ, S = i+ 1 |= σs v σ

φ; Φ | case(S, i,Γ0,Γs) + case(S, i, 0, R2↑) ·∆ `S case e returnσ of 0⇒ e0 | n[i] + 1⇒ es : σ
(N E)

Ectx(Γ•) := ∆ with
{

dom(Γ•) = dom(∆)
∆(b) ≡ _ :2 _ for all b ∈ dom(Γ•)

Figure 8. DFuzz Type Judgment, Syntax-directed Version

Case: (⊗E)

φ; Φ | ∆ `S e : σ ⊗ τ φ; Φ | Γ, x :[R1] σ, y :[R2] τ `S e
′ : µ

φ; Φ | Γ + max(R12↑, R22↑) ·∆ `S let(x, y) = e in e′ : µ
(⊗E)

By induction, we have
φ; Φ | ∆ ` e : σ ⊗ τ and φ; Φ | Γ, x :[R1] σ, y :[R2] σ ` e

′ : µ

By Lemma 27, φ; Φ |= max(R12↑, R22↑) ≥ Ri2↑ for i = 1, 2. Abbreviating R• := max(R12↑, R22↑) and applying weakening we
have:

φ; Φ | Γ, x :[R•] σ, y :[R•] τ ` e′ : µ

with R• 6= 2 so we have exactly what we need to apply (⊗E).
Case: (N I)

φ; Φ | Γ1 `S e1 : σ φ; Φ | Γ2 `S e2 : τ

φ; Φ |max(Γ1,Γ2) `S 〈e1, e2〉 : σ N τ
(N I)

By induction, we have
φ; Φ | Γ1 ` e1 : σ and φ; Φ | Γ2 ` e2 : τ.

By Lemma 27, we have
φ; Φ |= max(Γ1,Γ2) v Γ1 and φ; Φ |= max(Γ1,Γ2) v Γ2.

By weakening, we can derive

φ; Φ |max(Γ1,Γ2) ` e1 : σ and φ; Φ |max(Γ1,Γ2) ` e2 : τ,

when we can conclude by (N I).
Case: (N E)

φ; Φ | Γ `S e : σ1 N σ2

φ; Φ | Γ `S πie : σi
(N E)

Immediate; the same rule applies.
Case: (( I)

φ; Φ | Γ, x :[R•] σ `S e : τ |= ∀φ. (Φ⇒ R ≥ R•2↑)

φ; Φ | Γ `S λ(x :[R] σ). e : !Rσ ( τ
(( I)



By induction, we have
φ; Φ | Γ, x :[R•] σ ` e : τ

and we know R 6= 2 and:
φ; Φ |= R ≥ R•.

By weakening, we have
φ; Φ | Γ, x : !Rσ ` e : τ,

and we can conclude by (( I).
Case: (( E)

φ; Φ | Γ `S e1 : !Rσ ( τ
φ; Φ | ∆ `S e2 : σ′ φ; Φ |= σ′ v σ

φ; Φ | Γ +R ·∆ `S e1 e2 : τ
(( E)

By induction, we have
φ; Φ | Γ ` e1 : !Rσ ( τ and φ; Φ | ∆ ` e2 : σ′

and we also know
φ; Φ |= σ′ v σ.

By subtyping on the right, we can derive
φ; Φ | ∆ ` e2 : σ,

and we can conclude with (( E).
Case: (∀I)

φ, i : κ; Φ | Γ `S e : σ i fresh in Φ

φ; Φ | sup(i,Γ) `S Λi : κ. e : ∀i : κ. σ
(∀I)

By induction, we have
φ; i : κ; Φ | Γ ` e : σ

and i fresh in Φ. By Lemma 27, we have
φ; Φ |= sup(i,Γ) v Γ,

and so by weakening, we have
φ, i : κ; Φ | sup(i,Γ) ` e : σ.

Now, we can conclude with (∀I).
Case: (∀E)

φ; Φ | Γ `S e : ∀i : κ. σ φ |= S : κ

φ; Φ | Γ `S e[S] : σ[S/i]
(∀E)

Immediate; the same rule applies.
Case: (Fix)

φ; Φ | Γ, x :[R] σ `S e : σ′ φ; Φ |= σ′ v σ
φ; Φ | ∞ · Γ `S fixx : σ. e : σ

(Fix)

By induction; we have
φ; Φ | Γ, x : !Rσ ` e : σ′.

But we also have φ; Φ |= σ′ v σ. By subtyping, we get

φ; Φ | Γ, x : !Rσ ` e : σ

and we can conclude with (Fix).
Case: (N E)

φ; Φ | ∆ `S e : N[S] φ; Φ, S = 0 | Γ0 `S e0 : σ0

φ, i : n; Φ, S = i+ 1 | Γs, n :[R] N[i] `S es : σs
φ; Φ, S = 0 |= σ0 v σ φ, i : n; Φ, S = i+ 1 |= σs v σ

φ; Φ | case(S, i,Γ0,Γs) + case(S, i, 0, R2↑) ·∆ `S case e returnσ of 0⇒ e0 | n[i] + 1⇒ es : σ
(N E)

By induction, we have

φ; Φ | ∆ ` e : N[S]

φ; Φ, S = 0 | Γ0 ` e0 : σ0

φ, i : n; Φ, S = i+ 1 | Γs, n : !RN[i] ` es : σs.

By Lemma 27, we have

φ; Φ, S = 0 |= case(S, i,Γ0,Γs) v Γ0

φ, i : n; Φ, S = i+ 1 |= case(S, i,Γ0,Γs) v Γs

φ, i : n; Φ, S = i+ 1 |= case(S, i, 0, R2↑) ≥ R2↑



with R2↑ 6= 2, and we also know

φ; Φ, S = 0 |= σ0 v σ
φ, i : n; Φ, S = i+ 1 |= σs v σ.

By subtyping on the left and right, we have

φ; Φ | ∆ ` e : N[S]

φ; Φ, S = 0 | case(S, i,Γ0,Γs) ` e0 : σ

φ, i : n; Φ, S = i+ 1 | case(S, i,Γ0,Γs), n : !R•N[i] ` es : σ,

where R• = case(S, i, 0, R2↑). We can then conclude by (N E).

φ; Φ | ∆ ` e : N[S] φ; Φ, S = 0 | Γ ` e0 : σ
φ, i : n; Φ, S = i+ 1 | Γ, n :[R] N[i] ` es : σ i#R R 6= 2
φ; Φ | Γ +R ·∆ ` case e returnσ of 0⇒ e0 | n[i] + 1⇒ es : σ

(N E)

We now prove completeness, that is to say, for every derivation in the original system, the syntax-directed one will have a derivation,
possibly even a better from a subtype point of view.

We first need a few auxiliary lemmas:

Lemma 30. Suppose that φ; Φ | Γ `S e : σ is derivable. Then, for any logically equivalent Ψ such that φ |= Φ⇔ Ψ, there is a derivation of
φ; Ψ | Γ `S e : σ with the same height.

Proof. By induction on the derivation. The only place the constraint context is used is when checking constraints of the form

φ; Φ |= R ≥ R′.
But since Ψ and Φ are logically equivalent, we evidently have

φ; Ψ |= R ≥ R′

as well.

Lemma 31 (Inner Weakening for the Syntax-directed system). Assume a derivation Γ, x :[R] σ `S e : τ , a type σ′ such that σ′ v σ. Then,
there exists a type τ ′ and a derivation Γ, x :[R] σ

′ `S e : τ ′ such that τ ′ v τ .

Proof. By induction over the typing derivation. The base cases are immediate. In the induction hypothesis we get to pick the appropriate type
and we get a better type in all the cases.

Lemma 32 (Syntax-directed completeness). If φ; Φ | Γ ` e : σ has a derivation, then there exists Γ′, σ′ such that φ; Φ | Γ′ `S e : σ′ has a
derivation, φ; Φ |= Γ v Γ′, φ; Φ |= σ′ v σ.

Proof. By induction on the derivation proving φ; Φ | Γ ` e : σ.

Case: (v .L)

φ; Φ | ∆ ` e : σ φ; Φ |= Γ v ∆

φ; Φ | Γ ` e : σ
(v .L)

Immediate, by induction; the desired context is ∆.
Case: (v .R)

φ; Φ | Γ ` e : σ φ; Φ |= σ v τ
φ; Φ | Γ ` e : τ

(v .R)

Immediate, by induction; the desired subtype is σ.
Case: (Var)

φ; Φ | Γ, x :[1] σ ` x : σ
(Var)

Immediate; the same rule applies.
Case: (⊗I)

φ; Φ | Γ1 ` e1 : σ φ; Φ | Γ2 ` e2 : τ

φ; Φ | Γ1 + Γ2 ` (e1, e2) : σ ⊗ τ (⊗I)

By induction, we have Γ′1,Γ
′
2, σ
′, τ ′ such that

φ; Φ |= Γ1 v Γ′1 ∧ Γ2 v Γ′2 and φ; Φ |= σ′ v σ ∧ τ ′ v τ
and derivations

φ; Φ | Γ′1 `S e1 : σ′ and φ; Φ | Γ′2 `S e2 : τ ′.

Then we can conclude by (⊗I), since Lemma 26 shows

φ; Φ |= Γ1 + Γ2 v Γ′1 + Γ′2 and φ; Φ |= σ′ ⊗ τ ′ v σ ⊗ τ.



Case: (⊗E)

φ; Φ | ∆ ` e : σ ⊗ τ φ; Φ | Γ, x :[R] σ, y :[R] τ ` e′ : µ R 6= 2

φ; Φ | Γ +R ·∆ ` let(x, y) = e in e′ : µ
(⊗E)

By induction and inversion on the subtype relation, we have ∆′,Γ′, σ′, σ′′, τ ′, τ ′′, µ′, R1, R2 such that

φ; Φ |= ∆ v ∆′

φ; Φ |= Γ, x :[R] σ, y :[R] τ v Γ′, x :[R1] σ
′′, y :[R2] τ

′′

φ; Φ |= σ′ v σ ∧ τ ′ v τ

this implies σ′ v σ′′, τ ′ v τ ′′, R ≥ R12↑, and R ≥ R22↑. We have derivations:

φ; Φ | ∆′ `S e : σ′ ⊗ τ ′ and φ; Φ | Γ′, x :[R1] σ
′′, y :[R2] τ

′′ `S e′ : µ′

By Lemma 31, we have a derivation:
φ; Φ | Γ′, x :[R1] σ

′, y :[R2] τ
′ `S e′ : µ′′

with µ′′ v µ′. Hence, we can produce a syntax-directed derivation now:

φ; Φ | Γ′ + max(R′12↑, R
′
22↑) ·∆

′ `S let(x, y) = e in e′ : µ′′.

By Lemma 27, we have that φ; Φ |= R ≥max(R′12↑, R22↑) and by Lemma 26,

φ; Φ |= Γ +R ·∆ v Γ′ + max(R′12↑, R22↑) ·∆′,

so we are done: the context Γ′ + max(R′12↑, R
′
22↑) ·∆′ and subtype τ ′′ suffice.

Case: (N I)

φ; Φ | Γ ` e1 : σ φ; Φ | Γ ` e2 : τ

φ; Φ | Γ ` 〈e1, e2〉 : σ N τ
(N I)

By induction, there exists

φ; Φ |= Γ v Γ′1 and φ; Φ |= Γ v Γ′2

φ; Φ |= σ′ v σ and φ; Φ |= τ ′ v τ

such that
φ; Φ | Γ′1 `S e1 : σ′ and φ; Φ | Γ′2 `S e2 : τ ′.

By (N I), we have

φ; Φ |max(Γ′1,Γ
′
2) `S 〈e1, e2〉 : σ′ N τ ′.

We are done, since by Lemmas 26 and 27,

φ; Φ |= σ′ N τ ′ v σ N τ and φ; Φ |= Γ vmax(Γ′1,Γ
′
2) v Γ′i.

So, the desired context is max(Γ′1,Γ
′
2), and the desired subtype is σ′ N τ ′.

Case: (N E)

φ; Φ | Γ ` e : σ1 N σ2

φ; Φ | Γ ` πi e : σi
(N E)

Immediate, by induction.
Case: (( I)

φ; Φ | Γ, x :[R] σ ` e : τ R 6= 2
φ; Φ | Γ ` λ(x :[R] σ).e : !Rσ ( τ

(( I)

By induction, there exists
φ; Φ |= Γ, x :[R] σ v Γ′, x : !R′σ and φ; Φ |= τ ′ v τ

such that
φ; Φ | Γ′, x :[R′] σ `S e : τ ′.

By inversion on the subtype relation, we have
φ; Φ |= R ≥ R′2↑ ∧ τ ′ v τ.

and we are done, since
φ; Φ |= !R′2↑σ ( τ ′ v !Rσ ( τ and φ; Φ |= Γ v Γ′.

φ; Φ | Γ, x :[R•] σ `S e : τ |= ∀φ. (Φ⇒ R ≥ R•2↑)

φ; Φ | Γ `S λ(x :[R] σ). e : !Rσ ( τ
(( I)



Case: (( E)

φ; Φ | Γ ` e1 : !Rσ ( τ φ; Φ | ∆ ` e2 : σ

φ; Φ | Γ +R ·∆ ` e1 e2 : τ
(( E)

By induction, there exists Γ′,∆′, R′, σ′, τ ′, σ′′ such that

φ; Φ |= Γ v Γ′

φ; Φ |= ∆ v ∆′

φ; Φ |= !R′σ
′ ( τ ′ v !Rσ ( τ

φ; Φ |= σ′′ v σ,
and derivations

φ; Φ | Γ′ `S e1 : !R′σ
′ ( τ ′ and φ; Φ | ∆′ `S e2 : σ′′.

By inversion on the subtype relation, we have

φ; Φ |= R ≥ R′ and φ; Φ |= σ′′ v σ v σ′ and φ; Φ |= τ ′ v τ.
By Lemma 27, the context Γ′ +R′ ·∆′ and subtype τ ′ suffice.

Case: (∀I)

φ, i : κ; Φ | Γ ` e : σ i fresh in Φ,Γ

φ; Φ | Γ ` Λi : κ. e : ∀i : κ. σ
(∀I)

By induction, there exist
φ, i : κ; Φ |= σ′ v σ and φ, i : κ; Φ |= Γ v Γ′

such that
φ, i : κ; Φ | Γ′ `S e : σ′.

Thus, we have the derivation
φ; Φ | sup(i,Γ′) `S Λi : κ. e : ∀i : κ. σ′

and
φ; Φ |= ∀i : κ. σ′ v ∀i : κ. σ.

By Lemma 27, we actually have
φ; Φ |= Γ v sup(i,Γ′) v Γ′,

so the context sup(i,Γ′) and subtype ∀i : κ. σ′ suffices.
Case: (∀E)

φ; Φ | Γ ` e : ∀i : κ. σ φ |= S : κ

φ; Φ | Γ ` e[S] : σ[S/i]
(∀E)

By induction, there exists
φ; Φ |= Γ v Γ′ and φ; Φ |= ∀i : κ. σ′ v ∀i : κ. σ

such that
φ; Φ | Γ′ `S e : ∀i : κ. σ′.

So, we have a derivation
φ; Φ | Γ′′ `S e[S/i] : σ′[S/i].

By Lemma 28,
φ; Φ |= σ′[S/i] v σ[S/i],

so the context Γ′ and subtype σ′[S/i] suffice.
Case: (Fix)

φ; Φ | Γ, x :[∞] σ ` e : σ

φ; Φ | ∞ · Γ ` fixx : σ. e : σ
(Fix)

By induction, we have
φ; Φ |= Γ, x : !∞σ v Γ′, x : !Rσ and φ; Φ |= σ′ v σ

such that
φ; Φ | Γ′, x : !Rσ `S e : σ′.

We can then conclude by (Fix): the desired context is∞ · Γ′ and the desired type is σ.
Case: (N E)

φ; Φ | ∆ ` e : N[S] φ; Φ, S = 0 | Γ ` e0 : σ
φ, i : n; Φ, S = i+ 1 | Γ, n :[R] N[i] ` es : σ i#R R 6= 2
φ; Φ | Γ +R ·∆ ` case e returnσ of 0⇒ e0 | n[i] + 1⇒ es : σ

(N E)



By induction, there exists

φ; Φ |= ∆ v ∆′ and φ; Φ | ∆′ `S e : N[S′] and φ; Φ |= N[S′] v N[S].

By inversion, φ; Φ |= S = S′. Also by induction,

φ; Φ, S = 0 |= Γ v Γ′0

φ, i : n; Φ, S = i+ 1 |= Γ, n : !RN[i] v Γ′s, n : !R′N[i]

φ; Φ, S = 0 |= σ′0 v σ
φ, i : n; Φ, S = i+ 1 |= σ′s v σ

such that

φ; Φ, S = 0 | Γ′0 `S e0 : σ′0

φ, i : n; Φ, S = i+ 1 | Γ′s, n : !R′N[i] `S es : σ′s.

By Lemma 30, we also have derivations

φ; Φ, S′ = 0 | Γ′0 `S e0 : σ′0

φ, i : n; Φ, S′ = i+ 1 | Γ′s, n : !R′N[i] `S es : σ′s

since φ; Φ |= S = S′.
Hence, we have a derivation

φ; Φ | case(S′, i,Γ′0,Γ
′
s) +R• ·∆′

`S case e returnσ of 0⇒ e0 | n[i] + 1⇒ es : σ,

where R• is case(S′, i, 0, R′2↑). We have

φ; Φ, S′ = 0 |= case(S′, i,Γ′0,Γ
′
s) v Γ′0

φ, i : n; Φ, S′ = i+ 1 |= case(S′, i,Γ′0,Γ
′
s) v Γ′s

so by Lemma 27
φ; Φ |= Γ v case(S′, i,Γ′0,Γ

′
s),

and
φ, i : n; Φ, S′ = i+ 1 |= R ≥ R• ≥ R′2↑ and φ,Φ |= R ≥ R•

thanks to R 6= 2.
By weakening, we have

φ; Φ | ∆′ `S e : N[S′]

φ; Φ, S = 0 | case(S′, i,Γ′0,Γ
′
s) `S e0 : σ

φ, i : n; Φ, S′ = i+ 1 | case(S′, i,Γ′0,Γ
′
s), n : !R•N[i] `S es : σ,

so we can conlude with (N E). The context case(S′, i,Γ′0,Γ
′
s) + R• · ∆′ and type σ suffice (recall that φ; Φ |= R ≥ R•, and

φ; Φ |= R ·∆ v R• ·∆′ by Lemma 26).

D.1 Algorithm Proofs
Theorem 33 (Algorithmic Soundness). Suppose φ; Φ; Γ•; e =⇒ Γ;σ. Then, there is a derivation of φ; Φ; Γ `S e : σ.

Proof. By induction on the algorithmic derivations we see that every algorithmic step has an exact correspondence with a syntax-directed
derivation. We do a few representative cases:

Case (Var)

φ; Φ; Γ•, x : σ;x =⇒ Ectx(Γ•), x :[1] σ;σ
(Var)

φ; Φ | Ectx(Γ•), x :[1] σ `S x : σ
(Var)

Case (( E)

φ; Φ; Γ•; e1 =⇒ Γ; !Rσ ( τ
φ; Φ; ∆•; e2 =⇒ ∆;σ′

φ; Φ |= σ′ v σ
φ; Φ; Γ•; e1 e2 =⇒ Γ +R ·∆; τ

(( E)

φ; Φ | Γ `S e1 : !Rσ ( τ
φ; Φ | ∆ `S e2 : σ′ φ; Φ |= σ′ v σ

φ; Φ | Γ +R ·∆ `S e1 e2 : τ
(( E)



Case (⊗E)

φ; Φ; Γ•; e =⇒ ∆;σ ⊗ τ
φ; Φ; Γ•, x : σ, y : τ ; e′ =⇒ Γ, x :[R1] σ, y :[R2] τ ;µ

φ; Φ; Γ•; let(x, y) = e in e′ =⇒ Γ + max(R12↑, R22↑) ·∆;µ
(⊗E)

φ; Φ | ∆ `S e : σ ⊗ τ φ; Φ | Γ, x :[R1] σ, y :[R2] τ `S e
′ : µ

φ; Φ | Γ + max(R12↑, R22↑) ·∆ `S let(x, y) = e in e′ : µ
(⊗E)

Theorem 34 (Algorithmic Completeness). Suppose φ; Φ; Γ `S e : σ is derivable. Then φ; Φ; Γ•; e =⇒ Γ;σ.

Proof. By induction on the syntax-directed derivation. The proof is mostly direct, we show a few representative cases.

Case (( E)

φ; Φ | Γ `S e1 : !Rσ ( τ
φ; Φ | ∆ `S e2 : σ′ φ; Φ |= σ′ v σ

φ; Φ | Γ +R ·∆ `S e1 e2 : τ
(( E)

By induction, we have derivations

φ; Φ; Γ•; e1 =⇒ Γ; !Rσ ( τ and φ; Φ; ∆•; e2 =⇒ ∆;σ′.

Note that Γ• = ∆• for the syntax-directed derivation to be defined, so we can apply the algorithmic rule (( E):

φ; Φ; Γ•; e1 =⇒ Γ; !Rσ ( τ
φ; Φ; ∆•; e2 =⇒ ∆;σ′

φ; Φ |= σ′ v σ
φ; Φ; Γ•; e1 e2 =⇒ Γ +R ·∆; τ

(( E)

Case (Fix)

φ; Φ | Γ, x :[R] σ `S e : σ′ φ; Φ |= σ′ v σ
φ; Φ | ∞ · Γ `S fixx : σ. e : σ

(Fix)

By induction, we have
φ; Φ; Γ•, x : σ; e =⇒ Γ, x :[R] σ;σ′

and we can apply the algorithm rule (Fix):

φ; Φ; Γ•, x : σ; e =⇒ Γ, x :[R] σ;σ′

φ; Φ |= σ′ v σ
φ; Φ; Γ•; fixx : σ. e : σ =⇒∞ · Γ;σ

(Fix)

Case (⊗E)

φ; Φ | ∆ `S e : σ ⊗ τ φ; Φ | Γ, x :[R1] σ, y :[R2] τ `S e
′ : µ

φ; Φ | Γ + max(R12↑, R22↑) ·∆ `S let(x, y) = e in e′ : µ
(⊗E)

We know that Γ• = ∆•. By induction, we know that:

φ; Φ; Γ•; e =⇒ ∆;σ′1 ⊗ σ′2
φ; Φ; Γ•, x1 : σ1, x2 : σ2; e′ =⇒ Γ, x :[R1] σ1, y :[R2] σ2; τ

and we know φ; Φ |= σ′1 v σ1 ∧ σ′2 v σ2, so we apply the algorithmic case (⊗E):

φ; Φ; Γ•; e =⇒ ∆;σ ⊗ τ
φ; Φ; Γ•, x : σ, y : τ ; e′ =⇒ Γ, x :[R1] σ, y :[R2] τ ;µ

φ; Φ; Γ•; let(x, y) = e in e′ =⇒ Γ + max(R12↑, R22↑) ·∆;µ
(⊗E)

Case (N E)

φ; Φ | ∆ `S e : N[S] φ; Φ, S = 0 | Γ0 `S e0 : σ0

φ, i : n; Φ, S = i+ 1 | Γs, n :[R] N[i] `S es : σs
φ; Φ, S = 0 |= σ0 v σ φ, i : n; Φ, S = i+ 1 |= σs v σ

φ; Φ | case(S, i,Γ0,Γs) + case(S, i, 0, R2↑) ·∆ `S case e returnσ of 0⇒ e0 | n[i] + 1⇒ es : σ
(N E)

We know that Γ• = ∆•. By induction, we know that:

φ; Φ; Γ•; e =⇒ ∆;N[S]

φ; Φ, S = 0; Γ•; e0 =⇒ Γ0;σ0

φ, i : n; Φ, S = i+ 1; Γ•, x : N[i]; es =⇒ Γs, x :[R′] N[i];σs



and we know
φ; Φ, S = 0 |= σ0 v σ and φ, i : n; Φ, S = i+ 1 |= σs v σ.

We can conclude with the algorithmic rule (N E):

φ; Φ; Γ•; e =⇒ ∆;N[S] φ; Φ, S = 0; Γ•; e0 =⇒ Γ0;σ0

φ, i : n; Φ, S = i+ 1; Γ•, x : N[i]; es =⇒ Γs, x :[R′] N[i];σs
φ; Φ, S = 0 |= σ0 v σ φ, i : n; Φ, S = i+ 1 |= σs v σ
φ; Φ; Γ•; case e returnσ of 0 7→ e0 | x[i] + 1 7→ es
=⇒ case(S,Γ0, i,Γs) + case(S, 0, i, R′2↑) ·∆;σ

(N E)

E. Auxiliary Lemmas
Lemma 35 (Standard Annotations). Assume annotations in a term e range over regular sensitivities and φ; Φ | Γ `S e : σ. Then:

• σ has no extended sensitivities; and
• all the constraints are of the form |= ∀φ. (Φ⇒ R ≥ R′) where R is a standard sensitivity term.

This directly implies Lemma 11.

Proof. The first point is clear by inspecting the rules in Figure 8: by induction, the type of any expression has only regular sensitivities. The
second point is also clear: in all subtype checks in Figure 8, both types have no extended sensitivities by the first point. The only place where
we check against an extended sensitivity is in rule (( I), with constraint

|= ∀φ. (Φ⇒ R ≥ R′).
Here, the R is a standard sensitivity term since it is an annotation, but the R′ may be an extended sensitivity.
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