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Abstract

A benefit of pure functional programming is that it encourages
equational reasoning. However, the Haskell language currently
lacks direct tool support for such reasoning. Consequently, rea-
soning about Haskell programs is either performed manually, or in
another language that does provide tool support (e.g. Agda). HER-
MIT is a Haskell-specific toolkit designed to support equational
reasoning and user-guided program transformation, and to do so
as part of the GHC compilation pipeline. This extended abstract
presents a detailed case study of HERMIT usage in practice: mech-
anising Bird’s classic “Making a Century” pearl. We also use the
mechanised pearl to introduce recent HERMIT developments for
supporting for equational reasoning.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Applicative (functional) lan-
guages; F.3.1 [Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs—Mechanical verification

Keywords HERMIT, Equational Reasoning, Optimisation

1. Introduction

Currently, most equational reasoning on Haskell programs is per-
formed manually, using pen-and-paper or text editors, because
of the lack of up-to-date tool support. While some equational-
reasoning tools do exist for Haskell [14, 35], they either target
Haskell 98 or some subset thereof, and have not attempted to keep
pace with the (frequently advancing) GHC-extended version of
Haskell that is widely used in practice. They also work at the syn-
tactical level, without access to the results of the type inference
performed by the Haskell compiler. This is unfortunate, as pen-
and-paper reasoning is slow, error prone, and allows the reasoner
to neglect details of the semantics. For example, a common mis-
take is to neglect to consider partial and infinite values, which are
notoriously tricky [7]. This was recently demonstrated by Jeuring
et al. [18], who showed that the standard implementations of the
state monad do not satisfy the monad laws.
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An alternative approach is to transliterate a Haskell program
into a language or proof assistant that does provide support for
equational reasoning, such as Agda [22] or Coq [33]. The de-
sired transformations and proofs can then be performed in that lan-
guage, and the resultant program or property transliterated back
into Haskell. However, the semantics of these languages differ
from Haskell, sometimes in subtle ways, so the transformations and
proofs used may not carry over to Haskell. Again, partial and infi-
nite values are a particular concern.

To address this situation, we have implemented a GHC plugin
called HERMIT [9, 10, 29]. HERMIT is a toolkit that supports in-
teractive equational reasoning on Haskell programs, and the me-
chanical verification of proof scripts. HERMIT operates on GHC’s
internal core language, part-way through the compilation process.
User proofs of program properties are checked, and user-specified
transformations are applied to the program being compiled. By per-
forming proof checking during compilation, HERMIT ensures not
only that the proof is correct, but that it corresponds to the current
implementation of the program, in the context of the language ex-
tensions currently being used.

The initial HERMIT implementation [9] only supported equa-
tional reasoning that was transformational in nature; that is, HER-
MIT allowed the user to apply a sequence of correctness-preserving
transformations to the Haskell program, resulting in an equivalent
but (hopefully) more efficient program. This was sufficient to al-
low some specific instances of known program transformations to
be mechanised [29], as well as for encoding prototypes of new op-
timisation techniques [1, 11]. However, some of the transformation
steps used were only valid in certain contexts, and HERMIT had no
facility for checking the necessary preconditions. Thus these pre-
conditions had to verified by hand. Furthermore, it was not possible
to state and prove auxiliary lemmas, or to use inductive proof tech-
niques. This extended abstract describes the addition of these facil-
ities to HERMIT, and discusses our experiences of using them on a
case study. Specifically, the two main contributions of this extended
abstract are:

• We describe the new equational reasoning infrastructure pro-
vided by HERMIT, discussing the challanges that arose dur-
ing implementation, and the design choices we made for pro-
viding equational-reasoning support to Haskell programmers.
(Section 2).

• Using our new infrastructure, we present a case study of equa-
tional reasoning in HERMIT, by mechanising a chapter from
Pearls of Functional Algorithm Design [2], a recent textbook
about deriving Haskell programs by calculation (Section 3).



2. Equational Reasoning using HERMIT

HERMIT is a GHC plugin that allows a user to apply custom trans-
formations to a Haskell program amid GHC’s optimisation passes.
HERMIT operates on the program after it has been translated into
GHC Core, GHC’s internal intermediate language. GHC Core is

an implementation of System F�

C
, which is System F [16, 25] ex-

tended with let-binding, constructors, and first-class type equalities
[32]. Type checking is performed during the translation, and GHC
Core retains the typing information as annotations.

HERMIT provides commands for navigating a GHC Core ab-
stract syntax tree, applying transformations, version control, select-
ing different pretty printers, and invoking GHC analyses and opti-
misation passes. To direct and combine transformations, HERMIT
uses the strategic programming language KURE [30] to provide a
family of rewriting combinators. HERMIT offers three main inter-
faces:

• An interactive read-eval-print loop (REPL). This allows a user
to view and explore the program code, as well as to experiment
with transformations.

• HERMIT scripts. These are sequences of REPL commands,
which can either be loaded and run from within the REPL, or
automatically applied by GHC during compilation.

• A domain-specific language for transformation [30], embedded
in Haskell. This allows the user to construct a custom GHC plu-
gin using all of HERMIT’s capabilities. The user can run trans-
formations in different stages of GHC’s optimisation pipeline,
and add custom transformations to the REPL. New transforma-
tions can be encoded by defining Haskell functions directly on
the Haskell data type representing the GHC Core abstract syn-
tax, rather than using the more limited (but safer), monomor-
phically typed combinator language available to the REPL and
scripts.

This extended abstract describes HERMIT’s new equational
reasoning infrastructure, but will not otherwise discuss its imple-
mentation or existing commands. Interested readers should consult
the previous HERMIT publications [9, 29], or try out the HERMIT
toolkit [10] for themselves.

2.1 Stating and Proving Lemmas

As discussed in Section 1, the HERMIT toolkit initially only sup-
ported program transformation, and any equational reasoning had
to be structured as a sequence of transformation steps applied to the
original source program [e.g. 29]. This was limiting, as it is often
necessary to state and prove auxiliary lemmas, which can then be
used to validate the transformation steps.

To address this, we have added support for auxiliary lemmas in
HERMIT. As encoding a complete logic in HERMIT is a substan-
tial task, we have begun with the simplest form of lemma that al-
lows us to perform some interesting equational reasoning. A HER-
MIT lemma is (currently) an equality between two GHC Core ex-
pressions, which may contain universally quantified variables. For
example:

Map Fusion

∀ f g . map f ◦map g ≡ map (f ◦ g)

HERMIT maintains a set of lemmas, and records which have
been proven and which have not. Proven lemmas can be applied as
transformations (left-to-right or right-to-left), or used to validate
transformation steps that have preconditions. A user can prove
a lemma by providing a sequence of transformations on either
(or both) sides of the lemma. HERMIT then checks the proof
by comparing both sides of the transformed lemma using alpha

equality. This proof can either be performed interactively, or loaded
from a script.

Currently, we generate lemmas by exploiting GHC rewrite-rule
pragmas [23]. For example, the Map Fusion lemma above can be
expressed using the following RULES pragma:

{-# RULES “map-fusion”[∼]

∀ f g . map f ◦map g = map (f ◦ g)
#-}

HERMIT previously allowed any rewrite rule in scope to be
utilised directly as a unidirectional HERMIT transformation [9].
Any such rule can now also be converted into a HERMIT lemma,
and thence proved. A side-benefit of this is that a user can experi-
ment with applying GHC rewrite rules backwards, which was not
possible previously. Note that there are some restrictions on the
form of the left-hand-side of a GHC rewrite rule [23, Section 2.2],
so this approach can only generate a subset of all possible lemmas.

Rewrite rules that are not intended to be used by GHC’s opti-
miser can be annotated with the notation [∼], as we did for map-
fusion above. This causes GHC to consider the rule as always in-
active, and never attempt to use it for optimisation [12, Section
7.21.1]. In the long term, we aim to add a specific HERMIT pragma
to GHC, allowing HERMIT lemmas to be stated in the source file
yet be clearly distinguished from any rewrite rules. We could then
be more liberal with the lemmas that can be stated than the limita-
tions of GHC rewrite rules.

2.2 Structural Induction

Haskell programs usually contain recursive functions defined over
(co)inductive data types. Proving even simple properties of such
programs often requires the use of an induction principle. For
example, consider this standard definition of list concatenation:

(++) :: [a ] → [a ] → [a ]
[ ] ++ ys = ys

(x : xs) ++ ys = x : (xs ++ ys)

While [ ] ++ xs ≡ xs can be proved simply by unfolding the
definition of ++, proving the similar property xs++[ ] ≡ xs requires
reasoning inductively about the structure of xs .

Inductive reasoning cannot be expressed as a sequence of trans-
formation steps: both the source and target expression must be
known in advance, and the validity of rewriting one to the other
is established by verifying the inductive and base cases. There are
several induction principles that are relevant to Haskell programs.
Thus far, we have encoded only one such principle in HERMIT:
structural induction. This is implemented as a built-in proof tech-
nique that can be used to prove a lemma. Structural induction has
been sufficient to prove all of the lemmas in our cases studies, but
we anticipate that we will need to add other forms of induction
when attempting more complex examples. The remainder of this
section will formalise the structural-induction inference rule that
HERMIT provides.

We first introduce some notation. Given a1, a2 :: A for any
type A, then let a1 ≡ a2 denote that a1 and a2 are semantically
equivalent. We write −→

vs to denote a sequence of variables, and
∀(C −→

vs ::A) to quantify over all constructors C of the data type A,
fully applied to a sequence −→

vs of length matching the arity of C .
Let C : A  B denote that C is an expression context containing
one or more holes of type A, and having an overall type B . For any
expression a :: A, then CJaK denotes the context C with all holes
filled with the expression a .

The structural-induction inference rule provided by HERMIT
is defined in Figure 1. The conclusion of the rule is called the
induction hypothesis. Informally, the premises require that:

• the induction hypothesis holds for undefined values;



Given contexts C,D : A B , for any types A and B , then structural-induction provides the following inference rule:

CJ⊥K ≡ DJ⊥K ∀(C −→
vs :: A) . (∀(v ∈ −→

vs, v :: A) . CJvK ≡ DJvK) ⇒ (CJC −→
vsK ≡ DJC −→

vsK)

∀(a :: A) . CJaK ≡ DJaK
STRUCTURAL INDUCTION

Figure 1: Structural induction.

Given contexts C,D : [A ] B , for any types A and B , then:

CJ⊥K ≡ DJ⊥K CJ[ ]K ≡ DJ[ ]K ∀(a :: A, as :: [A ]) . (CJasK ≡ DJasK) ⇒ (CJa : asK ≡ DJa : asK)

∀(xs :: [A ]) . CJxsK ≡ DJxsK
LIST INDUCTION

Figure 2: Structural induction on lists.

• the induction hypothesis holds for any fully applied constructor,
given that it holds for any argument of that constructor (of
matching type).

As a concrete example, specialising structural induction to the list
data type gives the inference rule in Figure 2.

This form of structural induction is somewhat limited in that
it only allows the induction hypothesis to be applied to a variable
one constructor deep. While this is sufficient for the case study we
describe in this extended abstract, it does not allow inductive proofs
over recursive types where the recursion is deeper in the data type.
The following type of rose trees is one such type, having a recursive
call that is two constructors deep:

data RoseTree a = Node a [RoseTree a ]

As future work we need to generalise HERMIT’s structural induc-
tion principle to n constructors deep.

3. Case Study: Making a Century

To assess how well HERMIT supports general-purpose equational
reasoning, we decided to mechanise some existing textbook reason-
ing as a case study. We selected the chapter Making a Century from
the textbook Pearls of Functional Algorithm Design [2, Chapter
6]. The book is entirely dedicated to reasoning about Haskell pro-
grams, with each chapter calculating an efficient program from an
inefficient specification program. Additionally, many of the trans-
formation steps used have preconditions, and thus there are several
proof obligations along the way.

The program in Making a Century computes the list of all arith-
metic expressions formed from ascending digits, where juxtaposi-
tion, addition, and multiplication evaluate to 100. For example, one
possible solution is

100 = 12 + 34 + 5× 6 + 7 + 8 + 9

The details of the program are not overly important to the case
study, and we refer the interested reader to the textbook for de-
tails [2, Chapter 6]. What is important, is that the derivation of
an efficient program involves a substantial amount of equational
reasoning, and the use of a variety of proof techniques, including
fold/unfold transformation [4], structural induction (Section 2.2),
fold fusion [21], and numerous auxiliary lemmas.

We will not present the entire case study here. Instead, we will
give a representative extract, and then discuss the aspects of the
mechanisation that proved challenging. The complete case study is
available on the authors’ web pages.

3.1 HERMIT Scripts

Our approach to mechanisation was to first state any auxiliary lem-
mas as (inactive) rewrite rules in the Haskell source file (as dis-

cussed in Section 2.1). To verify these lemmas, we first worked
in HERMIT’s interactive mode until the proof was successful, and
then saved the final proof to a script that could be invoked there-
after. Finally, we developed the main transformation interactively,
invoking these auxiliary proof scripts as necessary. For this case
study the proofs were simply transliterations of the proofs in the
textbook, but we expect developing new proofs would proceed in
a similar manner, but with more experimentation and backtracking
during the interactive phases.

As an example, we present the proof of Lemma 6.8, comparing
the textbook proof with the HERMIT script. Figure 3a presents the
proof extracted verbatim from the textbook [2, Page 36], and Fig-
ure 3b presents the corresponding HERMIT script. Note that lines
beginning “--” in a HERMIT script are comments, and for readabil-
ity we have typeset them differently to the (monospace) HERMIT
code. These comments represent the current expression between
transformation steps, and correspond to the output of the HERMIT
REPL when performing the proof interactively. We manually added
these comments to the HERMIT proof scripts to help readability
and maintenance of the scripts.

When translating the textbook proof into HERMIT, we decided
to split the middle step into two steps, as we felt that made the
proof easier to read, but this is purely stylistic. Otherwise, the
main difference between the two calculations is that in HERMIT
we must specify where, and in which direction, to apply a lemma,
whereas in the textbook the lemma is merely named, relying on
the reader to be able to deduce how it was applied. Here, one-td
(once, traversing top-down) and any-td (anywhere, traversing top-
down) are strategy combinators from KURE [30], the strategic
programming language that underlies HERMIT.

In this proof, and most others in the case study, we think that
the HERMIT scripts are as clear, and not much more verbose,
than the textbook calculations. There is one notable exception
though, which involves manipulating terms containing adjacent
occurrences of the function composition operator.

3.2 Associative Operators

On paper, associative binary operators such as function composi-
tion are typically written without parentheses. However, in HER-
MIT, a term is represented as an abstract syntax tree, with no special
representation for associative operators. Terms that are equivalent
semantically because of associativity properties can thus be repre-
sented by different trees. Consequently, it is sometimes necessary
to perform a tedious restructuring of the abstract syntax tree before
a transformation can match the term.

One way to avoid this is to work with eta-expanded terms and
unfold all occurrences of function composition, as this always pro-
duces an abstract syntax tree consisting of a left-nested sequence of



unzip ·map (fork (f , g))

= {definition of unzip }

fork (map fst ,map snd) ·map (fork (f , g))

= {(6.6) and map (f · g) = map f ·map g }

fork (map (fst · fork (f , g)),map (snd · fork (f , g)))

= {(6.5) }

fork (map f ,map g)

(a) Textbook extract.

-- unzip ·map (fork (f , g))

one-td (unfold ’unzip)

-- fork (map fst ,map snd) ·map (fork (f , g))

forward (lemma "6.6")

-- fork (map fst ·map (fork (f , g)),map snd ·map (fork (f , g)))

any-td (forward (lemma "map-fusion"))

-- fork (map (fst · fork (f , g)),map (snd · fork (f , g)))

one-td (forward (lemma "6.5a"))

one-td (forward (lemma "6.5b"))

-- fork (map f ,map g)

(b) HERMIT script.

Figure 3: Comparison of HERMIT script with textbook calculations for Lemma 6.8 (fork (map f ,map g) ≡ unzip ◦map (fork (f , g))).

applications. However, we did not do so for this case study, as the
textbook proofs are written in a point-free style, and we wanted to
match those proofs as closely as possible.

More generally, rewriting terms containing associative (and
commutative) operators is a well-studied problem [e.g. 3, 8, 19],
and it remains as future work to provide better support for manipu-
lating such operators in HERMIT.

3.3 Proofs Omitted in the Textbook

During mechanisation we discovered that several auxiliary proper-
ties in the textbook (Lemmas 6.2, 6.3, 6.4, 6.5, 6.6, 6.7 and 6.10,
and several minor unnamed properties) are stated as assumptions
without proof. The lack of proofs is not commented on in the text-
book, but we suspect that they are deemed either “obvious” or
“uninteresting”, as is common practice with pen-and-paper proofs.
While performing reasoning beyond that presented in the textbook
was not intended to be part of the case study, we decided to inves-
tigate how easy it is to prove these auxiliary properties.

In most cases, these properties had fairly straightforward induc-
tive proofs, which were easy to encode in HERMIT. This mostly
consisted of inlining definitions and then simplifying the resultant
expressions as much as possible. Systematic proofs such as these
are ripe for mechanisation, and HERMIT provides several strate-
gies that perform a suite of basic simplifications to help with this.
Consequently, the proof scripts were short and concise.

Assumption 6.2 also had a simple proof, but it relied on arith-
metic properties of Haskell’s built-in Int type (specifically, that m
≡ n ⇒ m 6 n). HERMIT does not yet provide any support for
reasoning about built-in types, so we were not able to encode this
proof. This is a clear deficiency of HERMIT, and adding such sup-
port is important future work. We found that assumptions 6.3 and
6.4 were non-trivial properties, without (to us) obvious proofs.

Additionally, the simplification of the definition of expand is
stated in the textbook without presenting the transformation steps
[2, Page 40]. This simplification is non-trivial, and involves chang-
ing the type of an auxiliary function, and we did not find an easy
way to encode this in HERMIT.

3.4 Proof Techniques Unsupported by HERMIT

Two proof techniques are used in the textbook that HERMIT does
not directly support. The first is the fold fusion law [21]. Specialised
to lists, fold fusion gives the following inference rule:

f⊥ ≡ ⊥ f a ≡ b ∀x , y . f (g x y) ≡ h x (f y)

f ◦ foldr g a ≡ foldr h b

This cannot be expressed as a HERMIT lemma, as HERMIT (cur-
rently) only supports equality lemmas, not implications. We there-
fore encoded foldr-fusion as a new primitive transformation using
HERMIT’s transformation DSL. We were able to reuse a substan-
tial amount of existing HERMIT infrastructure to encode this rule,
and so the encoding of the rule was only 20 lines of Haskell code.
The plugin as a whole took another 30 lines of Haskell code, but
that involved reusable auxiliary functions and plugin infrastructure
that would be shared with any other user-added transformations.
While this approach is only recommended for experienced HER-
MIT users, we think this is a viable approach for encoding custom
transformations in HERMIT.

The second (unsupported) proof technique that the textbook
uses is to postulate the existence of an auxiliary function (expand ),
use that function in the foldr-fusion rule, and then calculate a defini-
tion for that function starting from the foldr-fusion pre-conditions.
This style of reasoning is not supported by HERMIT, nor is there
an easy way to encode it. However, we were able to verify the cal-
culation by working in reverse: starting from the definition in the
textbook, we proceeded to prove the foldr-fusion pre-condition and
thus validate the use of fold-fusion.

3.5 Calculation Sizes

As demonstrated by Figure 3, the HERMIT proof scripts are
roughly the same size as the textbook calculations. It is difficult
to give a precise comparison, as the textbook uses both formal
calculation and natural language. We present some statistics in Ta-
ble 1, but we don’t recommend extrapolating anything from them
beyond a rough approximation of the scale of the proofs. We give
the size of the two main calculations (transforming solutions and
deriving expand ), as well as the named auxiliary lemmas. In the
textbook we measure lines of natural language reasoning as well
lines of formal calculation, but not definitions, statement of lem-
mas, or surrounding discussion. In the HERMIT scripts, we mea-
sure the number of transformations applied, and the number of
navigation and strategy combinators used to direct the transfor-
mations to the desired location in the term. We do not measure
HERMIT commands for stating lemmas, loading files, switching
between transformation and proof mode, or similar, as we consider
these comparable to the surrounding discussion in the textbook.
To get a feel for the scale of the numbers given, we recommend
that the user compares Lemma 6.8 in Table 1 to the calculation in
Figure 3.



Calculation
Textbook HERMIT Commands

Lines Transformation Navigation Total

solutions 16 12 7 19
expand 19 18 20 38
Lemma 6.5 not given 4 4 8
Lemma 6.6 not given 2 1 3
Lemma 6.7 not given 2 0 2
Lemma 6.8 7 5 8 13
Lemma 6.9 1 4 4 8
Lemma 6.10 not given 23 13 36
Total 43 70 57 127

Table 1: Comparison of calculation sizes.

3.6 Summary

Our overall experience was that mechanising the textbook calcula-
tions was fairly straightforward, and it was pleasing that we could
translate most steps of the textbook reasoning into an equivalent
HERMIT command. The only annoyance was the need to manu-
ally apply associativity occasionally (see Section 3.2), so that the
structure of the term would match the transformation we were ap-
plying.

While having to specify where in a term each lemma must be
applied does result in more complicated proof scripts than in the
textbook, we don’t actually consider that to be more work. Rather,
we view a pen-and-paper proof that doesn’t specify the location
as passing on the work to the reader, who must determine for
herself where, and in which direction, the lemma is intended to
be applied. Furthermore, when desired, strategic combinators such
as any-td (apply the lemma anywhere it matches) can be used to
avoid specifying precisely which sub-term the lemma should be
applied to.

Encoding the foldr-fusion rule (Section 3.4) was a non-trivial
amount of work, but once encoded, it was a reusable transforma-
tion. Furthermore, in the future we plan to extend HERMIT’s rep-
resentation of lemmas with logical connectives. This would allow
rules such as foldr-fusion to be represented as lemmas rather than
as primitive transformations, which would greatly simplify encod-
ing them in HERMIT.

During the case study we also discovered one error in the text-
book. Specifically, the inferred type of the modify function [2, Page
39] does not match its usage in the program. We believe that its def-
inition should include a concatMap, which would correct the type
mismatch and give the program its intended semantics, so we have
modified the function accordingly in our source code. However, we
cannot claim this as detecting an error in a pen-and-paper proof, as
this was caught by GHC’s type checker, not by HERMIT.

4. Related Work

Equational reasoning is used both to prove properties of Haskell
programs and to validate the correctness of program transforma-
tions. Most equational reasoning about Haskell programs is per-
formed manually with pen-and-paper or text editors, of which there
are numerous examples in the literature [e.g. 2, 7, 13, 15]. Prior to
HERMIT there have been several tools for mechanical equational
reasoning on Haskell programs, including the Programming As-
sistant for Transforming Haskell (PATH) [35], the Ulm Transfor-
mation System (Ultra) [17], and the Haskell Equational Reasoning
Assistant (HERA) [14]. However, to our knowledge, none of these
tools is currently being maintained. Furthermore, these tools all op-
erate on Haskell source code (or some variant thereof), and do not
attempt to support GHC-extended Haskell.

Another similar tool is the Haskell Refactorer (HaRe) [20, 34],
which supports user-guided refactoring of Haskell programs. How-
ever, the objective of HaRe is slightly different, as refactoring is
concerned with program transformation, whereas HERMIT sup-
ports both transformation and proof. The original version of HaRe
targets Haskell 98 source code, but recently work has begun on a
re-implementation of HaRe that targets GHC-extended Haskell.

Other than equational reasoning, there have been two main ap-
proaches taken to verifying properties of Haskell programs: testing
and automated theorem proving. The most prominent testing tool is
QuickCheck [5], which automatically generates large quantities of
test cases in an attempt to find a counterexample. Other testing tools
include SmallCheck [27], which exhaustively generates test values
of increasing size so that it can find minimal counter examples, and
Lazy SmallCheck [24, 27], which also tests partial values. Jeuring
et al. [18] have recently developed infrastructure to support using
QuickCheck to test type class laws, as well as to test the individual
steps of user-provided equational-reasoning proofs of those laws.
Of course testing does not constitute a proof, but it is lightweight
and effective at finding counter-examples for false properties.

There are several tools that attempt to automatically prove prop-
erties of Haskell programs, by interfacing with an automated the-
orem prover and passing it (a translation of) the Haskell program
and the desired properties. These include Liquid Haskell [36], Zeno
[31] and the Haskell Inductive Prover (Hip) [26]. Properties in Liq-
uid Haskell are refinement types, which the user may add as type
annotations in the source file. Like HERMIT, Liquid Haskell and
Zeno operate on GHC Core, whereas Hip translates Haskell source
code directly into first-order logic. These tools can all support in-
ductive proofs, but a limitation of Hip is that it only attempts to
apply induction to user-specified conjectures, not to any intermedi-
ate lemmas that may be needed to complete the proof. HipSpec [6]
is a tool built on Hip that addresses this limitation by exhaustively
generating conjectures (up to a fixed term size) about the involved
functions. These conjectures are first passed to Hip to prove, and
any successes are then made available when attempting the main
proof. Thus the user need not state the exact properties to which
induction needs to be applied.

5. Future Work and Conclusions

While HERMIT has been used to successfully prototype GHC op-
timisations [1, 11], it is still very much an experimental tool, and
development is ongoing. The next step is to add different modes
to HERMIT that will limit the commands that are available. This
will include a “read-only” mode, a “safe” mode, and a “super-
user” mode. The read-only mode will allow navigation and alpha-
renaming, but prohibit any other modifications to the code. The
safe mode will only allow transformations that are known to be
semantics preserving, and thus any rewrite rules or unproven lem-
mas will be prohibited. The super-user mode will correspond to the
current capabilities of HERMIT, with no imposed limitations. We
also anticipate the need for additional modes, perhaps with more
fine-grained notions of safety. For example, a transformation that
could potentially transform a terminating program into a diverging
program should not be available in the safe mode, but a converse
transformation that may introduce termination might be acceptable.

Thus far, structural induction (Section 2.2) is HERMIT’s only
proof technique for reasoning directly about recursive definitions,
and it is limited to induction hypotheses that are one constructor
deep. Future work includes generalising this to n constructors deep,
and adding support for corecursive proof techniques [13].

We have successfully encoded some high-level transformation
techniques as primitive HERMIT transformations with precondi-
tions. The foldr-fusion rule in Section 3.4 is one example of this,
and the worker/wrapper transformation [15, 28] is another. In a



prior publication [29] we described encoding worker/wrapper in
HERMIT, but at the time HERMIT had no means of verifying
the preconditions, so they were not mechanically enforced. Us-
ing HERMIT’s new equational reasoning infrastructure described
in this extended abstract, we have updated the worker/wrapper en-
coding such that it checks a proof that the preconditions hold be-
fore performing the transformation. All of the preconditions for the
examples in that previous publication have now been verified by
HERMIT, and the proofs are bundled with the HERMIT package
[10]. However, encoding primitive transformations in HERMIT is
a non-trivial task for the user, so our long-term goal is to build up
a library of such high-level transformations, to complement HER-
MIT’s existing library of low-level transformations.

HERMIT continues to prove useful for developing compile-
time program transformation and reasoning capabilities that can
be used on real Haskell programs. By mechanising proofs dur-
ing compilation, HERMIT enforces the connection between the
source, proof, and compiled program. GHC plugins developed us-
ing HERMIT can be deployed with Haskell’s Cabal packaging sys-
tem, meaning they integrate with a developer’s normal work-flow.
HERMIT development is on-going, and we seek to target ever-
larger examples.
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