
Dynamic resource adaptation for coordinating runtime systems
Extended Abstract

Stuart Gordon
Heriot-Watt University

sg315@hw.ac.uk

Sven-Bodo Scholz
Heriot-Watt University
S.Scholz@hw.ac.uk

Abstract
In this paper we propose a new approach towards negotiat-
ing resource distributions between several parallel applica-
tions running on a single multi-core machine. Typically, this
negotiation process is delegated to the operating system or
a common managed runtime layer. Alternatively, we have
formulated a modest extension for arbitrary runtime systems
that enables dynamic resource adaptations to be triggered
from the outside, i.e., through a separate coordination appli-
cation.

We demonstrate the effectiveness of the approach in the
context of SaC. The paper delineates the required exten-
sions of SaC’s runtime system and it discusses how the func-
tional setting substantially eases the process. Furthermore,
we demonstrate the effectiveness of our approach when it
comes to maximising the overall performance of several par-
allel applications that share a single multi-core system.

1. Introduction & motivation
As multi-core architectures have now become the norm, an
application must not only be able to perform well, it must
also have the ability to scale well over parallel architec-
tures and operate in harmony alongside other parallel ap-
plications. One might hope that such a negotiation of shared
resources can be delegated to the operating system as this
traditionally happens when several single-threaded applica-
tions share a machine. Although in principle this is possible,
the joint performance of several parallel applications on a
shared multi-core system typically is rather unsatisfactory.
This effect has various technical reasons; in the end these
boil down to the fact that the operating system has little if
any knowledge about the side conditions that exist in the

[Copyright notice will appear here once ’preprint’ option is removed.]

individual parallel applications: As soon as the parallel ap-
plications jointly request more resources than available this
over-subscription is resolved by the operating system with-
out taking possible interdependencies into account. To make
matters worse, different runtime systems typically have dif-
ferent interdependencies.

An ideal solution would be to express all parallelism as
a high-level abstraction open to all languages. Attractive in
principle, it has so far proven to be an elusive goal. This is
evident by the rapid onset of parallel language implemen-
tations and programming models, with no consensus as to
which is best. Expressing parallelism may require specific
domain, or application knowledge in order to be expressed in
an optimal form. Alternatively, language implementations,
such as Lithe (Pan et al. 2010), attempt to provide low-level
abstractions, with an emphasize efficient parallelism imple-
mented using a standard interface, to implement runtime sys-
tems. But however affective this maybe, it requires codes to
be heavily modified and reimplemented. A technique also
offered by Callisto (Harris et al. 2014), a resource manage-
ment layer for parallel runtimes, that relies on heavy adap-
tation in order to be implemented and used as a basis for all
runtime systems.

In this paper we propose a radically different approach.
Instead of coordinating low-level threads bottom up we pro-
pose to coordinate them top-down. The whole approach
builds on the idea that it suffices to enable runtime systems
to dynamically adapt the number of resources used in order
to avoid an over-subscription of resources. That way, the par-
allel applications can be executed almost entirely indepen-
dently guaranteeing efficient performance of each individual
application.

The contributions of this paper are as follows:

• We propose a generic programming interface to facilitate
the negotiation of shared resources.

• A web based application that serves as the user interface.
• We provide a detailed analysis of:

SaC’s extended runtime system, providing details of
the implementation, outlining the relevant benefits of
a functional setting.

1 2014/9/9



we demonstrate the effectiveness of our approach de-
tailing the the overall performance variations of sev-
eral parallel applications that share a single multi-core
system.

Acknowledgments
This work was supported in part by grant EP/L00058X/1
from the UK Engineering and Physical Sciences Research
Council (EPSRC).

References
T. Harris, M. Maas, and V. J. Marathe. Callisto: Co-

scheduling parallel runtime systems. In Proceedings of
the Ninth European Conference on Computer Systems,
EuroSys ’14, pages 24:1–24:14, New York, NY, USA,
2014. ACM. ISBN 978-1-4503-2704-6. . URL
http://doi.acm.org/10.1145/2592798.2592807.

H. Pan, B. Hindman, and K. Asanović. Composing parallel
software efficiently with lithe. In Proceedings of the 2010
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI ’10, pages 376–387, New York,
NY, USA, 2010. ACM. ISBN 978-1-4503-0019-3. . URL
http://doi.acm.org/10.1145/1806596.1806639.

2 2014/9/9


