
Worker/wrapper for a Better Life
Extended Abstract

Brad Torrence Mike Stees Andrew Gill
Information and Telecommunication Technology Center

The University of Kansas
{brad.torrence,mstees,andygill}@ittc.ku.edu

Abstract
In Software Engineering, an implementation, and its model, can fall
out of step. If we can connect the implementation and model, then
development of both artifacts can continue, while retaining confi-
dence in the overall design and implementation. In this paper, we
show it is possible in practice to connect together an executable
specification of Conway’s Game of Life, and a number of imple-
mentations, using the worker/wrapper transformation. In particular,
we use the rewrite tool HERMIT to apply post-hoc transformations
to replace a linked-list based description with other data structures.
Directed optimizations allow for highly-efficient executable speci-
fications, where the model becomes the implementation. This work
is the first time programmer-directed worker/wrapper has been at-
tempted on a whole application, rather than simply on individual
functions. Beyond data representation improvement, we translate
our model such that we can execute on a CPU/GPU hybrid, by tar-
geting the accelerate DSL.

1. Introduction
The concepts of the worker/wrapper methodology introduced
by Gill and Hutton in [6] are the driving force behind the ex-
amples demonstrated in this paper. We have implemented the
worker/wrapper methodology in the Haskell Equational Reason-
ing Model to Implementation Tunnel (HERMIT) system. HERMIT
has already demonstrated several examples of its capability of us-
ing the worker/wrapper theory [3, 4, 11]. However, these examples
have only consisted of small transformations usually over a single
function. In this paper, we scale the methodology and tool support
to a larger example – an implementation of the Game of Life.

1.1 Worker/Wrapper
The worker/wrapper transformation is a technique for improving
the performance of a program by changing the underlying im-
plementation. The transformation generates two components: the
“worker”, which performs using the new implementation, and the
“wrapper”, which conceals this new implementation under the orig-
inal API.

Copyright held by author(s). This is an unrefereed extended abstract, distributed for the
purpose of feedback toward submitting a complete paper on the same topic to IFL’14.

When using worker/wrapper, the programmer provides two
functions, abs and rep that translate from the new representation
to the original representation, and from the original representation
to the new representation. When given some specific precondi-
tions on the relationship between abs and rep, we can assume
another condition that creates a provably correct worker/wrapper
transformation [10]. Specifically, given a fix-point of the original
computation,

comp = fix work

as well as abs and rep, and the worker/wrapper preconditions, we
can rewrite comp into a worker and wrapper.

comp = abs worker
worker = fix (rep . work . abs)

Critically, the worker is now acting over a new representation. By
applying laws that relate rep, work, and abs, we can optimize the
worker, giving a more efficient program. The user intervention is
the choice of abs and rep, and demonstrating the pre-conditions,
and we want to use HERMIT to perform both of these steps, as well
as optimize the result.

1.2 HERMIT
HERMIT is a framework that provides tools for interacting with
and transforming GHC Core programs. The primary means of fa-
cilitating this interaction is through the HERMIT Shell, a REPL in-
terface that allows the user to traverse a GHC Core abstract syntax
tree. It is inside this REPL that the user issues commands that con-
struct rewrites from AST to AST [3, 11]. Use of the ‘unfold-rule’
command in particular, in conjunction with GHC RULES pragma
[8], allows the user to construct a rewrite from the given rule [3].

Adding to these capabilities are the new worker/wrapper re-
lated commands, ‘split-1-beta’ and ‘split-2-beta’. These new com-
mands perform the worker/wrapper split using the safe correct-
ness conditions discussed in the previous section. These commands
take a function argument, which is the target of the split, and two
more arguments that comprise a transformation-pair. This pair of
functions are referred to as the ‘abs’ and ‘rep’ functions [10] or
‘work’ and ‘wrap’ functions [6] in previous discussions about the
worker/wrapper theory. If this transformation pair is created to meet
the necessary preconditions to make 1β or 2β true, then they can
be given to a “split” command. The product of a split is a worker,
which implements new functionality, and a wrapper, which simply
calls the new function, maintaining the original interface.

The creation of these commands have given HERMIT users the
ability to transform an entire program using the worker/wrapper
methodology, provided the theory can be applied effectively using
automated mechanisms such as HERMIT to transform an imple-
mentation without changing the source code.

1.3 The Game of Life
To show that worker/wrapper transformations under HERMIT can
be accomplished for complex programs composed of multiple
source files, a suitable program had to be selected that was com-
plex enough to have merit, but not so complex as to provide an
overly involved example. An example program that contains these
features is the Game of Life.

The Game of Life was created by the British mathematician
John Horton Conway [5]. Technically, it’s a simulation. A player
creates the initial state of the board and the rules of the game
determine how the board evolves, the player can only observe once
the game has begun.

The game board is made of cells arranged in a two dimensional
grid. A cell can either be in an alive or dead state, and depending
on the state of neighboring cells a cell may change its state. The
neighbors of a cell are simply those immediately adjacent to the
the target cell in any direction. The rules of the game are simple
and as follows:

1. Under-population – A living cell dies if it has fewer than two
living neighbors.

2. Stable-population – A living cell remains alive if it has 2 or 3
living neighbors.

3. Over-population – A living cell dies if it has more than three
living neighbors.

4. Reproduction – A new cell is born if it is empty and has exactly
three living neighbors.

The combination of these simple rules allows for surprisingly
interesting and complex patterns to emerge from the game.

The first image in the following figure shows a popular pattern
in the game known as the Glider. This pattern replicates through
generations. Due to the rules of the game, the pattern moves across
the game board in a specific direction. The second image shows the
pattern with each cell imprinted with the number of living neighbor
cells. These numbers determine the pattern of the next generation,
displayed in the third image. The white cells die due to under-
population, the dark cells are newly born due to reproduction, and
the lightly colored cells remain from the previous generation due
to stable-population numbers. These five cells represent the new
generation in the game and are used to calculate the next pattern.

1 1 1

1 1 3 2

1 5 3

1 2 2

1 2 2 1

3

1

2

3

1

The game has been implemented many times. Graham Hutton
implemented the Game of Life in Haskell using a simple list-
based implementation in a terminal console[7, p. 94-97]. It was
from Hutton’s original implementation that our implementation
was derived.

The implementation used in this experiment still uses Hutton’s
original design, however it has been slightly modified. The new
design restricts the implementation to use a sorted-list. This created
an isomorphic structure to transform, making the task of proving
code equivalence simpler. The sorted-list is made of two-tuples of
integers. Each pair represents a location on the two-dimensional
board structure and has a type synonym, Pos. The pairs featured in
the list represent the position of living cells in each generation of

the game. Therefore, when a cell dies that position is removed from
the list, and the reverse is true when a new cell is born.

Another difference in Hutton’s Life is that the dimensions of
the game board were hard coded into the source code. The program
has been modified in a way to allow the board configuration to be
altered by user input. Through these modifications, the user can
change the board dimensions, represented as an integer pair. The
user can also dictate whether or not the edges of the board wrap
around to the opposite edge, represented as a boolean value. This
information is stored into a new type created called a Config. It
is simply a two-tuple of an integer pair and a boolean. This con-
figuration and the data structure containing the game data are con-
tained in a new structure called a LifeBoard, and it is a new data
type with a constructor and accessing functions for the board and
configuration fields. It also aided in another change to the original
program. Hutton’s Life source code was also divided. The part of
the code that calculates each generation of the game (the engine)
has been separated from the part of the code that visualizes each
generation (the display). The reason was to allow new engine and
display mechanisms to be created and connected. The class which
merges the engine and the display elements is the Life class. This
abstract interface contains functions that allow the combination of
any engine that implements the Life class functions with any dis-
play that utilizes the Life class interface. This section shows the
module Life.Types which contains the types described.

type Pos = (Int,Int)
type Size = (Int,Int)
type Config = (Size,Bool)

class Life b where
empty :: Config -> b
diff :: b -> b -> b
next :: b -> b
inv :: Pos -> b -> b
dims :: b -> Size
alive :: b -> [Pos]

scene :: Life board => Config -> [Pos] -> board
scene = foldr inv . empty

data LifeBoard c b = LifeBoard{ config :: c, board :: b }
deriving Show

The module contains the abstract definition of the Life class
mentioned as well as the LifeBoard structure. In addition, the
scene function is also defined there. It provides a standard way
to transform a [Pos] into an implementation-specific board. And
the following section shows the Life.Engine.Hutton module which
is derived from Hutton’s Life.

type Board = LifeBoard Config [Pos]

neighbs :: Config -> Pos -> Board
neighbs c@((w,h),warp) (x,y) = LifeBoard c $ sort $ if warp

then map (\(x,y) -> (x ‘mod‘ w, y ‘mod‘ h)) neighbors
else filter

(\(x,y) -> (x >= 0 && x < w) && (y >= 0 && y < h))
neighbors

where neighbors =[(x-1,y-1), (x,y-1), (x+1,y-1), (x-1,y),
(x+1,y), (x-1,y+1), (x,y+1), (x+1,y+1)]

isAlive :: Board -> Pos -> Bool
isAlive b p = elem p $ board b

isEmpty :: Board -> Pos -> Bool
isEmpty b = not . (isAlive b)

liveneighbs :: Board -> Pos -> Int

liveneighbs b =
length . filter (isAlive b) . board . (neighbs (config b))

survivors :: Board -> Board
survivors b = LifeBoard (config b) $

filter (\p -> elem (liveneighbs b p) [2,3]) $
board b

births :: Board -> Board
births b = LifeBoard (config b) $

filter (\p -> isEmpty b p && liveneighbs b p == 3) $
nub $ concatMap (board . (neighbs (config b))) $

board b

nextgen :: Board -> Board
nextgen b = LifeBoard (config b) $

sort $ board (survivors b) ++ board (births b)

instance Life Board where
next b = nextgen b
alive b = board b
empty c = LifeBoard c []
dims b = fst $ config b
diff b1 b2 = LifeBoard (config b1) $

board b1 \\ board b2
inv p b = LifeBoard (config b) $

if isAlive b p
then filter ((/=) p) $ board b
else sort $ p : board b

Although the top-level program module is loaded into HERMIT,
only this engine module is targeted for transformation, leaving the
original display mechanisms unchanged and still effective through
worker/wrapper methodology.

2. HERMIT Worker/Wrapper Examples
The goal of this experiment is to confirm that an entire program can
be transformed with HERMIT using the worker/wrapper method-
ology. The examples take a slighly-modified version Hutton’s orig-
inal implementation of the game, which uses lists as the data struc-
ture for representing the game board, and modify it using HERMIT.
This was done by applying the worker/wrapper concept through
HERMIT in an effort to change the underlying data structures used
in the program.

The following sections describe the examples and the meth-
ods used in HERMIT to accomplish a worker/wrapper transforma-
tion. Each experiment involved changing Hutton’s Life (the list-
based implementation) into an implementation using another pri-
mary data structure, such as a QuadTree, a Set, and an Unboxed
Vector. Along with changing the representation of the game, we
found it is also possible to change the hardware used by the pro-
gram with the inclusion of certain DSLs (like Accelerate, which
gives program access to a GPU). First, lets explore the preparation
process required to do these transformations within HERMIT.

As outlined in previous worker/wrapper example transforma-
tions using HERMIT [11], the process requires the creation of spe-
cific GHC rules and a set of transformation functions.

The module that contains this information is referred to as the
transformation-module. This module must be tailored specifically
to each conversion. A transformation-module requires one pair of
conversion functions for each function targeted. When approaching
the problem, it is best to start by creating the most basic transfor-
mations first. Transformation pairs can be stacked, using more basic
pairs in their definitions.

The transformation-module is also where a series of GHC Rules
will be written to allow HERMIT to equate sections of Core code
between old and new implementations. This is accomplished via

the use of GHC rules that are added to the conversion file using the
GHC RULES pragma and compiled into the HERMIT session.

Once a worker/wrapper split is made within HERMIT, the pro-
cess requires making transformations to segments of code in an ef-
fort to match the AST with a GHC rule that swaps equivalent code
statements.

It is most likely that a HERMIT user will not know all the
needed rules to accomplish the transformation before the process
begins. At this stage in HERMIT development, it is easiest to
take a more organic approach when performing a worker/wrapper
conversion. By that, one should create the needed transformation-
pairs and a few rules that will be known to be useful to start,
then add new rules as they are needed. Adding a new GHC rule
to a HERMIT session requires exiting HERMIT and reentering
to add any newly created rules to the environment. This was the
process used to complete these transformations. That being said
the finished product is a HERMIT script that can perform the entire
transformation. This script makes a perfect guide to lead through
the following examples.

These examples were performed with GHC 7.8 in combination
with the latest version of HERMIT. All of them target the same
program described in the previous section.

2.1 Example: List-to-Set implementation transform
The first example uses the same data representation for the board
structure. The goal of the transformation was to implement the
game engine using the Set data structure featured in the standard
library Data.Set. The transformation replaces the use of the stan-
dard Haskell list with the use of the set in the engine module. This
transformation is isomorphic because we have restricted the use
of the Set to maintain order of its elements. Therefore, relation-
ship of a sorted-list to a sorted-set is trivially equivalent, swapping
the containers used by the engine produces an equivalent program.
The representation remains the same, both containers contain pairs
of integers that correspond to living cells on the board. The con-
taining LifeBoard structure is maintained except it is morphed to
contain a set rather than a list.

2.1.1 Transform Preparation
The transformation-module should contain all the transformation
functions necessary to complete the process. To make the type def-
initions shorter and relate to the list-based engine, the module also
includes type synonyms for the Board (copied from the source) and
Board’ (the transformed type). These type definitions as well as all
the necessary transformation pairs are displayed here for reference.

type Board = LifeBoard Config [Pos]
type Board’ = LifeBoard Config (Set Pos)

{-# NOINLINE absb #-}
absb :: Set Pos -> [Pos]
absb = toAscList

{-# NOINLINE repb #-}
repb :: [Pos] -> Set Pos
repb = fromDistinctAscList

{-# NOINLINE absB #-}
absB :: Board’ -> Board
absB b = LifeBoard (config b) $ absb (board b)

{-# NOINLINE repB #-}
repB :: Board -> Board’
repB b = LifeBoard (config b) $ repb (board b)

absBx :: (Board’ -> a) -> Board -> a
absBx f = f . repB

repBx :: (Board -> a) -> Board’ -> a
repBx f = f . absB

absxB :: (a -> Board’) -> a -> Board
absxB f = absB . f

repxB :: (a -> Board) -> a -> Board’
repxB f = repB . f

absCPB :: (Config -> Pos -> Board’) -> Config -> Pos -> Board
absCPB f = absxB . f

repCPB :: (Config -> Pos -> Board) -> Config -> Pos -> Board’
repCPB f = repxB . f

absBB :: (Board’ -> Board’) -> Board -> Board
absBB = absBx . absxB

repBB :: (Board -> Board) -> Board’ -> Board’
repBB = repBx . repxB

absPBB :: (Pos -> Board’ -> Board’)-> Pos -> Board -> Board
absPBB f = absBB . f

repPBB :: (Pos -> Board -> Board) -> Pos -> Board’ -> Board’
repPBB f = repBB . f

absBBB :: (Board’ -> Board’ -> Board’) -> Board -> Board -> Board
absBBB f = absBB . f . repB

repBBB :: (Board -> Board -> Board) -> Board’ -> Board’ -> Board’
repBBB f = repBB . f . absB

The purpose of the transformation is to replace the use of lists
with the use of sets. The most basic transformation function pair,
and the first that should be created, is the pair that transforms the
data structure. In staying true to the worker/wrapper methodol-
ogy the function names begin with abs and rep. These abs-rep
pairs need to be designed to perform bidirectional transformations,
where the abs function returns the original form and the rep func-
tion returns the new form.

The base pair are named absb and repb. Both make use of
the Data.Set functions that transform a set to/from an ordered
list, the fromDistinctAscList and toAscList functions. Each
function of the pair should reverse the results of the other. The
compiler directives above these functions are directions that notify
GHC to not automatically inline these functions. GHC will do this
automatically for some code in an optimization effort. Without
these directives the absb and repb functions would not appear in
HERMIT session.

To continue, the base pair only transforms the underlying data
structure. There also needs to be a pair of functions that will
transform the containing data structure LifeBoard. Notice how
they simply replace one of the contained structures using of the
predefined absb or repb functions. This stacking trend continues
through all of the transformation-pairs.

Analyzing the source code of the Hutton’s Life helps to know
what other transformations are necessary. We start with the Life
class function dims. This function simply returns the board dimen-
sions that are originally entered by the user. The output of the dims
function is a Size, which doesn’t require any transformation be-
cause the new implementation retains this original structure. The
absBx-repBx pair is defined is polymorphic because with its simple
definition it can be used for several conversions. Since the function-
types of the alive, isAlive, isEmpty, and liveneighbs func-
tions, are similar to the dims function, this pair can also be used in
their conversion processes.

Next we turn to the function empty. This function simply cre-
ates an empty board structure. To convert this function the func-

tions, absxB and repxB would be used. This pair is polymorphic
for reasons similar to the absBx-repBx pair, it can be used in several
worker/wrapper splits.

Now consider the neighbs function. It is used to create a list of
neighboring locations depending on the board configuration. This
function will require the absCPB-repCPB pair for conversion. The
previous polymorphic functions are used in their definitions. This
aids the unfolding and code reduction process inside a HERMIT
session.

Probably the most crucial function in the Life class for our pur-
poses is the ”next” function. This function is used to calculate the
next generation of the game from the current board structure. It re-
quires the functions, absBB and repBB. Upon inspecting the source
code, one will note that this type of transformation will be neces-
sary for the engine functions nextgen, births, and survivors.
Reusing transformation pairs is useful, and since these functions
have the same type, there is no need to create a polymorphic trans-
formation function.

Now consider the inv function of the Life class. It takes a board
position and inverts the cell status on the given board. The absPBB
and repPBB functions are required for its transformation.

The last function to consider is diff. It is used to compare two
boards and get return the differences between them in a new board.
The absBBB repBBB definitions are used to convert this function.
It has the most complex definition because all of its arguments are
of type Board or Board’, and so requires the most transformation.

With the function pairs completed, we move on to the transfor-
mation process within HERMIT. But first, we can assume a few
necessary GHC Rules that will definitely be useful, like the follow-
ing.

{-# RULES "repB-absB" [~] forall b. repB (absB b) = b #-}

{-# RULES "LifeBoard-absb" [~] forall c b.
LifeBoard c (absb b) = absB (LifeBoard c b) #-}

{-# RULES "config-absB" [~] forall b.
config (absB b) = config b #-}

{-# RULES "board-absB" [~] forall b.
board (absB b) = absb (board b) #-}

{-# RULES "repB-LifeBoard" [~] forall c b.
repB (LifeBoard c b) = LifeBoard c (repb b) #-}

These rules are known to be useful because they all simply perform
a code transformation designed to move the transformation func-
tion node in the AST. For instance, the ‘repB-absB’ rule is used to
eliminate an transformation pair once they have been syntactically
juxtaposed. Since the goal is to remove unnecessary transforma-
tions, this rule is almost necessity. The other rules shown above are
useful for similar reasons, they either eliminate or move a trans-
former in the AST. Typically one won’t know all the rules needed
prior to starting a worker/wrapper conversion due to the fact that
one may not know what form the Core syntax will take during the
process. However, the following rules were discovered and are nec-
essary to complete this example.

{-# RULES "repb-null" [~] forall c.
LifeBoard c (repb []) = LifeBoard c Set.empty #-}

{-# RULES "not-elem-absb" [~] forall p b.
not (elem p (absb b)) = notMember p b #-}

{-# RULES "elem-absb" [~] forall p b.
elem p (absb b) = member p b #-}

{-# RULES "length-absb" [~] forall b.
length (absb b) = size b #-}

{-# RULES "filter-absb" [~] forall f b.
Prelude.filter f (absb b) = absb (Set.filter f b) #-}

{-# RULES "sort-++-absb" [~] forall b1 b2.
sort (absb b1 ++ absb b2) = absb (union b1 b2) #-}

{-# RULES "ncm-absb" [~] forall f b.
nub (concatMap (\p -> absb (board (f p))) (absb b)) =
absb (unions (toList (Set.map (\p -> board (f p)) b))) #-}

{-# RULES "diff-absb" [~] forall b1 b2.
absb b1 List.\\ absb b2 = absb (b1 Set.\\ b2) #-}

{-# RULES "insertion" [~] forall b p.
sort (p : absb b) = absb (insert p b) #-}

{-# RULES "deletion" [~] forall b p.
Prelude.filter ((/=) p) (absb b) = absb (delete p b) #-}

Notice that each of these rules replaces some list-based implemen-
tation with an equivalent implementation that uses the set data-
structure.

Once the transformation functions are created, a HERMIT ses-
sion can be started and the worker/wrapper conversion attempted.
If all of the rules are known prior to start then the conversion can be
completed in one session. Most likely one will have to exit a ses-
sion to create rules to continue the process. This is where HERMIT
scripts are useful. Commands in HERMIT can be saved as scripts,
which is especially useful for replaying sessions after modifying
HERMIT.

2.1.2 Transform Process
The order that the transformation occurs is important, one should
focus on the functions that have the no dependence on other target
functions first. One must also consider the transformed result when
deciding since the dependencies may change during the process.
Transforming one function before you have transformed another
function on which the first depends will only create more work,
and most likely a poor transformation result.

With these facts in mind, we begin with the Life class functions
for the Board type. Consider first, the empty function, its defini-
tion is very simple and it doesn’t depend on other functions. The
result that is desired would instead use an empty set rather than an
empty list. The desired function will also not depend on any of the
other module functions. This is a great function to start the trans-
formation. From the worker/wrapper method we know that at some
point the definition will be repB (LifeBoard c []), which after
unfolding repB will be LifeBoard c (repb []). This indicates
that the rule called ‘repb-null’ is necessary. Since we have a trans-
formation rule ready for the empty function the process can begin.

The script used to convert the empty function is shown here as
an example.

binding-of ’$cempty
fix-intro
down
split-1-beta $cempty [|absxB|] [|repxB|]
{

rhs-of ’g
repeat (any-call (unfold [’repxB, ’repB]))
bash
any-call (unfold-rule repb-null)

}

let-subst
alpha-let [’$cempty’]
{ let-bind ; nonrec-rhs ; unfold ; bash }
top
innermost let-float

The first and last few lines of each conversion script are identical,
the first few commands focus HERMIT on the proper function then
perform the worker/wrapper split. The last few commands move the
new function to the top-level of the program so that it becomes a
part of the API. Most of these commands are common HERMIT
commands that are used to manipulate the Core AST. For brevity,
these commands will not be covered in detail. The interesting com-
mand that may differ each script is the split-1-beta command.

The arguments for this command will vary with each script, here
the command is split-1-beta $cempty [|absxB|] [|repxB|].
This command performs a worker/wrapper split on the named func-
tion ($cempty) using the given transformation-pair (absxB and
repxB). This command is what performs the worker/wrapper split,
producing the wrapper, which retains the original name $cempty,
and the worker, which is always named g. The rest of the com-
mands that are unique to the script are shown between the { and }
commands. Except the rhs-of g, this command is common to all
the scripts.

The first step in all the scripts is to unfold the transformation
functions. How far they are unfolded depends on the particular
function being converted. The bash command is commonly used
to reduce code to a form more suitable for using GHC rules. The
definition of empty is not complex and does not require much
manipulation. That is why there are few commands present in this
script. Typically following the unfolding of the transformers there
are a series of Core manipulations that would put the AST in a form
that matches a predefined GHC rule. However, for this conversion
the bash command was sufficient.

The application of a GHC rule is done with the unfold-rule
command. As seen in this script, only the ‘repb-null’ rule was
needed and applied. After the application of this script the function
empty’ is available through the API. The equivalent definition in
Haskell would be empty’ c = LifeBoard c Data.Set.empty.

Focusing on the alive conversion script, the absBx-repBx pair
are used to perform the worker/wrapper split, and repBx is the
only function unfolded. The original alive function is synony-
mous with the board access function. But in our new program
board will return a (Set Pos), and alive still returns a [Pos].
So, it is necessary to leave a transform function in the new def-
inition. This is one instance where one does not wish to elimi-
nate all of the transformation functions from the definition. The
toAscList function will appear by simply unfolding the absb
function, when it is in the right position. This produces the defini-
tion alive’ b = toAscList (board b), completing this trans-
form.

The dims function, also uses the absBx-repBx pair. And similar
to the previous conversion, it only needs to unfold the repBx func-
tion. After the application of the ‘config-absB’ rule to eliminate
the transform-function. The function is in the desired form since
the dims definition should not change. After applying this rule the
conversion is complete, and ”dims’” will be accessible.

The diff function conversion requires the absBBB-repBBB
pair to perform the worker/wrapper split. And after unfolding the
repBBB function, a few rules are needed to complete the trans-
formation, which requires swapping the use of Data.List.\\ to
Data.Set.\\ via the ‘diff-absb’ rule.

The neighbs conversion makes use of the absCPB-repCPB pair
for its split. The process is similar to the process for alive, in that
it requires leaving a transformation in place. For this function, the

implementation is left alone and the structure is converted before
being returned.

The worker/wrapper split is performed on the next three func-
tions using the absBx-repBx pair. The function isEmpty is con-
sidered next. Its definition is simple but it is important that this
function be converted before isAlive because isEmpty de-
pends on it. However, when converted it will no longer have
this dependency. The resulting definition of isEmpty uses the
Data.Set.notMember function and is created with the ‘not-elem-
absb’ rule.

Once that is complete the process moves to isAlive. The
process is similar to isEmpty’s but uses the ‘elem-absb’ rule to
produce a function that uses the Data.Set.member function.

The liveneighbs function uses the ‘filter-absb’ and ‘length-
absb’ rules to complete its conversion which replaces Prelude.filter
and Prelude.lengthwith Data.Set.filter and Data.Set.size
respectively.

The functions survivors, births, nextgen, and next all re-
quire the use of the absBB-repBB pair. The survivors function
only needs to swap its filter function from the Prelude to Set
implementation. But births requires this transformation in addi-
tion to the use of the ‘ncm-absb’ rule, which changes the list-based
implementation to a set-based one.

The nextgen function requires the use of the ‘sort-++-absb’
rule, which changes concatenation into a set union. While next
is a special case an only requires changing the function to call
nextgen’ rather than nextgen.

The final function in the conversion is inv. This conversion
requires that isAlive be transformed first so that isAlive’ is
accessible. Although, inv is not dependent on isAlive, inv’
will depend on isAlive’. This function is a little more complex
to convert because it has two branches that must be accounted
during the transformation. It requires the use of both ‘insertion’
and ‘deletion’ rules to replace the code in each branch.

When all the necessary functions have been converted the HER-
MIT command continue can be given to complete compilation of
the new program.

In addition to the example above, the final paper will discuss
similar transformations from List to QuadTree, and List to Un-
boxed Vector.

2.2 Example: List-to-Accelerate implementation transform
The Accelerate language is a Haskell embedded DSL that provides
arrays and scalars, and a collection of collective operations applied
to arrays. These operations are algorithmic skeletons that target
CUDA implementations via the Accelerate code generator [2]. For
more information about Accelerate and its implementation, consult
[2, 9].

2.2.1 Transform Process
For this transformation, we again use the definition of Board from
our earlier examples, but we choose an interesting type for Board’.

type Board = LifeBoard Config [Pos]
type Board’ = LifeBoard Config (Acc (Array DIM2 Int))

Additionally, the types and implementations of absb and repb are
more involved than the previous ones we have seen.

repb :: Size -> [Pos] -> Acc (Array DIM2 Int)
repb (w,h) xs =

A.reshape (A.index2 (lift w) (lift h))
(A.scatter to def src)

where sz = List.length xs
to = A.map (\pr -> let (x,y) = unlift pr

in (x * (lift w)) + y)
(A.use $ A.fromList (Z :. sz) xs)

src = A.fill (A.index1 (lift sz)) 1
def = A.fill (A.index1 (lift $ w * h)) 0

absb :: Size -> Acc (Array DIM2 Int) -> [Pos]
absb (w,h) arr =

let prs = A.reshape (A.index1 (lift (w * h)))
$ A.generate (index2 (lift w) (lift h))

(\ix -> let Z :. i :. j = unlift ix
in lift (i :: Exp Int, j :: Exp Int))

res = A.filter (\pr -> let (i,j) =
unlift pr :: (Exp Int, Exp Int)
in (arr A.! (index2 i j)) ==* 1) prs

in toList $ run res

These choices, along with a comparison of this implementation to
the other implementations will be discussed in the final paper.

3. Related works
The HERMIT toolkit has experienced success in a wide variety
of applications. Some of those applications include applying the
worker/wrapper transformation to optimize functions like reverse
and last [3, 11]. Additionally, HERMIT has also been used to
mechanize an optimization pass for SYB [1], and to enable stream
fusion for concatMap [4].

The full paper will contain a detailed literature survey of related
works.

4. Conclusion
Earlier work in [3, 11] showed that worker/wrapper can be success-
fully mechanized in the small. We extended that work to include the
transformation of an entire program. In choosing our target appli-
cation, Game of Life, we wanted an application that was complex
enough to require several functions and potentially multiple mod-
ules, but simple enough that it could be conceptually understood
quickly.

Through the course of our investigation into applying worker/wrapper
to the Game of Life, we transformed the original List based version
into versions that used Sets, Unboxed Vectors, and Quad Trees. In
addition to changing the underlying structure, we also wanted to
leverage the GPU. By targeting the Accelerate DSL, we were able
to transform the List based version into a version that performed
all of the population calculations on the GPU. Ultimately, our ex-
periences in this exploration have shown us that application wide
worker/wrapper transformations can in fact be mechanized, and
that HERMIT is a valuable tool for doing such a mechanization.

Acknowledgments
We would like the thank Andrew Farmer for help with HERMIT.
This material is based upon work supported by the National Science
Foundation under Grant No. 1117569.

References
[1] M. D. Adams, A. Farmer, and J. P. Magalhães. Optimizing syb is

easy! In Proceedings of the ACM SIGPLAN 2014 Workshop on Partial
Evaluation and Program Manipulation, PEPM ’14, pages 71–82, New
York, NY, USA, 2014. ACM. ISBN 978-1-4503-2619-3. . URL
http://doi.acm.org/10.1145/2543728.2543730.

[2] M. M. Chakravarty, G. Keller, S. Lee, T. L. McDonell, and V. Grover.
Accelerating haskell array codes with multicore gpus. In Proceedings
of the sixth workshop on Declarative aspects of multicore program-
ming, pages 3–14. ACM, 2011.

[3] A. Farmer, A. Gill, E. Komp, and N. Sculthorpe. The HER-
MIT in the machine: A plugin for the interactive transforma-
tion of GHC core language programs. In Proceedings of

the ACM SIGPLAN Haskell Symposium, Haskell ’12, pages 1–
12. ACM, 2012. ISBN 978-1-4503-1574-6. . URL
http://doi.acm.org/10.1145/2364506.2364508.

[4] A. Farmer, C. Höner zu Siederdissen, and A. Gill. The her-
mit in the stream: Fusing stream fusion’s concatmap. In Pro-
ceedings of the ACM SIGPLAN 2014 Workshop on Partial Evalu-
ation and Program Manipulation, PEPM ’14, pages 97–108, New
York, NY, USA, 2014. ACM. ISBN 978-1-4503-2619-3. . URL
http://doi.acm.org/10.1145/2543728.2543736.

[5] M. Gardner. Mathematical games – the fantastic combinators of john
conway’s new solitaire game ”life”. Scientific American, 223:120–
123, 1970.

[6] A. Gill and G. Hutton. The worker/wrapper transformation. Journal
of Functional Programming, 19(02):227–251, 2009.

[7] G. Hutton. Programming in Haskell. Cambridge University Press,
2007.

[8] S. P. Jones, A. Tolmach, and T. Hoare. Playing by the rules: rewriting
as a practical optimisation technique in GHC. In Haskell Workshop,
volume 1, pages 203–233, 2001.

[9] T. L. McDonell, M. M. Chakravarty, G. Keller, and B. Lippmeier. Op-
timising purely functional gpu programs. In Proceedings of the 18th
ACM SIGPLAN international conference on Functional programming,
pages 49–60. ACM, 2013.

[10] N. Sculthorpe and G. Hutton. Work it, wrap it, fix it, fold it.
Journal of Functional Programming, 24(1):113–127, 2014. URL
http://dx.doi.org/10.1017/S0956796814000045.

[11] N. Sculthorpe, A. Farmer, and A. Gill. The HERMIT in the
tree: Mechanizing program transformations in the GHC core lan-
guage. In Proceedings of the 24th Symposium on Implementa-
tion and Application of Functional Languages, volume 8241 of
Lecture Notes in Computer Science, pages 86–103, 2013. URL
http://dx.doi.org/10.1007/978-3-642-41582-1 6.

