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Abstract
Type classes and type families are key ingredients to Haskell pro-
gramming. Type classes were introduced to deal with ad-hoc poly-
morphism, although with the introduction of functional dependen-
cies, their use expanded to type-level programming. Type families
also allow encoding type-level functions, now as rewrite rules, but
they lack one important feature of type classes: elaboration, that
is, generating code from the derivation of a rewriting. This paper
looks at the interplay of type classes and type families, how to deal
with shortcomings in both of them, and discusses further relations
on the assumption that type families support elaboration.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications – Functional Languages; F.3.3
[Logics and Meanings of Programs]: Studies of Program Con-
structs – Type Structure

Keywords Type classes; Type families; Haskell; Elaboration;
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1. Introduction
Type classes are one of the distinguishing features of Haskell, and
are widely used and studied (Peyton Jones et al. 1997). The initial
aim was to support ad-hoc polymorphism (Wadler and Blott 1989):
a type class gives a name to a set of operations along with their
types; subsequently, a type may become an instance of such class
by giving the code for such operations. Furthermore, an instance for
a type may depend on other instances (its context). The following is
a classic example of the Show type class and the instance for lists
which illustrate these features in action:

class Show a where
show :: a→ String

instance Show a⇒ Show [a ] where
show lst = "["++ intersperse ’,’ (map show lst) ++ "]"

For each call to an operation such as show , the compiler must re-
solve what code corresponds to that call. Note that the search is
needed to find the correct code: above, show for type [a ] depends
on the code for type a. The search and combination of code per-
formed by the compiler is called elaboration.

[Copyright notice will appear here once ’preprint’ option is removed.]

We remark at this point that we consider type classes without
support for overlapping instances. Overlapping instances are used
to override an instance declaration in a more specific scenario. The
best example is Show for strings, which are represented in Haskell
as [Char ], and for which we usually want a different way to print
them:

instance [Char ] where
show str = ... -- show between quotes

Overlapping instances make reasoning about programs more diffi-
cult, since the resolution of instances may change by later overlap-
ping declarations. Furthermore, their common usage patterns can
be express by using type families as shown in Section 4.

Type classes have been later extended to support multiple pa-
rameters: unary type classes describe a subset of types supporting
an operation, multi-parameter ones describe a relation over types.
For example, you can declare a Convertible class which describes
those pairs of types for which the first can be safely converted into
the second:

class Convertible a b where
convert :: a→ b

In many cases, though, parameters in such a class cannot be given
freely. For example, if we define a Collection class which relates
types of collections and the type of elements, it does not make sense
to have more than one instance per collection type. Such constraints
can be expressed using functional dependencies (Jones 2000), a
concept borrowed from database theory:

class Collection c e | c → e where
empty :: c
add :: e → c → c

instance Collection [a ] a where
empty = [ ]
add = (:)

If we try to add a new instance for [a ], the compiler does not allow
it, since for each type of collection c , you can only have one e.

Using functional dependencies, functions can also be defined at
the level of types. Since their inception, functional dependencies
have been abused in that way, and it is now common folklore how
to do it: given a type level function of n parameters you want to
encode, define a type class with an extra parameter (the result)
and include a dependency of it on the rest. Each instance will then
define a rule in the function. Here is the archetypical Add function
defined as a type class:1

data Zero
data Succ a

1 Note that this example needs the UndecidableInstances extension to
work in GHC.
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class AddC m n r | m n→ r
instance AddC Zero n n
instance AddC m n r ⇒ AddC (Succ m) n (Succ r)

Type families (Schrijvers et al. 2007) were introduced as a more
direct way to define type functions in Haskell. Each family is
introduced by a declaration of its arguments (and optionally its
return kind) and the rules for the function are stated in a series of
type instance declarations. The Add function now becomes:

type family AddF m n
type instance AddF Zero n = n
type instance AddF (Succ m) n = Succ (AddF m n)

Type families have one important feature in common with type
classes: they are open. This means that in any other module, a new
rule can be added to the family, given that it does not overlap with
previously defined ones.

However, when thinking in terms of functions, we are not used
to wear our open-world hat. In a case like Add , we would want
to define a complete function, with a restricted domain. Eisenberg
et al. (2014) introduced closed type families to bridge this gap.
Closed families are matched in order, each rule is only tried when
the previous one is assured never to match. Thus, overlapping
between rules is not a problem. On the other hand, these families
cannot be extended in a different declaration. In GHC, closed type
families are introduced using the following syntax:

type family AddF ′ m n where
AddF ′ Zero n = n
AddF ′ (Succ m) n = Succ (AddF ′ m n)

As an aside, families can be associated with a type class. In that
way, for each class instance you need to define also a set of types
local to such instance. The Collection class is a good candidate to
be given an associated type, namely the type of elements:

class Collection2 c where
type Element c
empty2 :: c
add2 :: Element c → c → c

instance Collection2 [a ] where
type Element [a ] = a
empty2 = [ ]
add2 = (:)

The discussion above illustrates that type classes and type fami-
lies have a lot of things in common, and in many cases choosing one
over the other for a task is a matter of convenience or style. In other
cases, though, their features differ. The following table summarizes
the similarities and differences between classes and families:

type classes type families
open X X
closed X
elaboration X
context X

The goal of this paper is to discuss whether it is possible to bridge
the gap, and bring type classes and type families even closer in
terms of functionality (Sections 2 and 3). Most of the techniques
presented in the those sections are folklore or have been used
as part of a larger technique, but we expect to show the tight
connection between them by focusing only in the tricks without
a larger problem behind it. We have already seen how to simulate
type families with functional dependencies.

Our main contribution, discussed in Section 4, is dealing with
the opposite situation: using type families to express type classes.
We shall see that a key ingredient for making type families as pow-

erful as type classes is to equip type families with an elaboration
mechanism. This extension does not only level the power of type
classes and families, but yields new use cases that are impossible
or difficult to express in terms of type classes.

2. Shortcomings of type families
Type families are usually described as a rewriting mechanism at
the level of types. By writing family instances, the compiler is able
to apply equalities between types to simplify them. As discussed
above, the main distinguishing feature of type families is their
support for closed definitions. At first sight, they lack the useful
feature of elaboration, and also the ability to depend on contexts;
here we show that we can simulate both of these aspects.

2.1 Elaboration
When the compiler resolves a specific instance of a type class, it
checks that typing is correct, and also generates the correspond-
ing code for the operations in the class. This second process is
called elaboration, and is the main reason for the usefulness of type
classes. Type families, on the other hand, only introduce type equal-
ities. Any witnesses of these equalities at the term level are erased.
Is it possible, however, to trick the compiler into elaborating a term
from a family application?

The solution has already been pointed out in several places,
e.g. by Bahr (2014), who uses it to implement a subtyping oper-
ator for compositional data types. Let us illustrate this idea with
an example: we want to define a function mkConst that creates
a constant function with a variable number of arguments. For in-
stance, given the type a → b → Bool , we want a function
mkConst :: Bool → (a→ b → Bool).

To start, we need a type-level function which returns the result
type of a curried function type of arbitrary arity:

type family Result f where
Result (s → r) = Result r
Result r = r

This is the point where, if we could elaborate a function during
rewriting, deriving our mkConst would be quite easy. Instead, we
have to define an auxiliary type family that computes the witness
of the rewriting of Result. The first step is creating a data type to
encode such witness. By using data type promotion (Yorgey et al.
2012) we can move a common data type “one level up” such that
its constructors are turned into types, and the type itself is turned
into a kind. 2

data ResultWitness = End | Step ResultWitness

We then define the closed type family Result′, which is responsible
for computing the witness. Note the use of a kind signature to
restrict its result to the types promoted before.

type family Result′ f :: ResultWitness where
Result′ (s → m) = Step (Result′ m)
Result′ r = End

Here comes the trick: using a type class that elaborates the desired
function in terms of the witness. The witness will be supplied via a
zero-data constructor Proxy , which serves the purpose of recording
the witness information:

data Proxy a = Proxy

class ResultE f r (w :: ResultWitness) where
mkConstE :: Proxy w → r → f

2 In GHC, this behavior is enabled by the DataKinds extension.
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Each instance of ResultE will correspond to a way in which
ResultWitness could have been constructed. Note that in the re-
curring cases, we need to provide a specific type argument using
Proxy :

instance ResultE r r End where
mkConstE r = r

instance ResultE m r l ⇒ ResultE (s → m) r (Step l) where
mkConstE r = λ(x :: s)→ mkConstE (Proxy :: Proxy l) r

However, we do not want the user to provide the value of Proxy w
in each case, because we can construct it via the Result′ type
family. The final touch is thus to create the mkConst function
which uses mkConstElab by providing the correct Proxy :

mkConst :: ∀ f r w .(r ∼ Result f ,w ∼ Result′ f ,
ResultE f r w)⇒ r → f

mkConst x = mkConstE (Proxy :: Proxy w) x

The main idea of this trick is to get hold of a witness for the type
family rewriting. This is usually produced by Haskell compilers as
a coercion, but the user does not have direct access to it. By reifying
it and promoting its constructors to the type-level, we become
able to use the normal type class machinery to define elaborated
operations.

2.2 Context
Within Haskell, instances may depend on a certain context being
available (for example, Show [a ] holds if and only if 3 Show a),
whereas rewriting via type families does not allow any precondi-
tions. But once again, we can encode it with a bit more work, as-
suming we are using closed type families. Let us consider the case
of a serialization library. As part of its functionality, the library
must decide which representation to use for a specific data type.
Normally, the type will remain the same in this representation, but
for some special cases of “list-like” types (which are to be encoded
in the same way as lists) and “function-like” (whose domain and
target types must be recursively encoded). Those special cases are
recognized by the following families:4

type family IsListLike l :: Maybe ∗
type instance IsListLike [e ] = Just e
type instance IsListLike (Set e) = Just e

type family IsFunctionLike f :: Maybe (∗, ∗) where
IsFunctionLike (s → r) = Just (s, r)
IsFunctionLike t = Nothing

The type family that constructs representations is intuitively
formulated by matching on the result of the previously introduced
families:

type family Repr t where
IsFunctionLike t ∼ Just (s, r)⇒ Repr t = Repr s → Repr r
IsListLike t ∼ Just e ⇒ Repr t = [Repr e ]

Repr t = t

But the above definition is not valid Haskell syntax. Instead we
have to encode the conditional equations using a chain of auxiliary
type families, each of which treats a single context. As extra argu-
ments to the auxiliary type families, we incorporate the check that
should be done next. The Repr type family thus becomes:

3 We shall remind here that we are considering type classes without over-
lapping instances. If overlapping instances were allowed, the implication
would hold only in one direction.
4 In some cases, GHC needs a quote sign in front of type-level tuples to
distinguish them from the term-level tuples.

type family Repr t where
Repr t = Repr1 t (IsFunctionLike t)

type family Repr1 t l where
Repr1 t (Just (s, r)) = Repr s → Repr r
Repr1 t f = Repr2 t (IsListLike t)

type family Repr2 t l where
Repr2 t (Just e) = [Repr e ]
Repr2 t l = t

Even though the code becomes larger, the translation could be made
automatically by the compiler. The main problem in this case is the
error reporting. Let us define a simple function that only works on
types which are already in their representative form:

alreadyNormalized :: (t ∼ Repr t)⇒ t → t
alreadyNormalized = id

If we try to use it on a Map, the compiler will complain:

*> alreadyNormalized Data.Map.empty
<interactive>:7:1:
Couldn’t match expected type ’Map k0 a0’
with actual type
Repr2 (Map k0 a0) (IsListLike (Map k0 a0))’

The type variables ’k0’, ’a0’ are ambiguous

The source of this problem is that we have not declared whether
Map is ListLike or not. However, the inner details of our imple-
mentation now escape to the outside world in this error message. If
contexts were added to type families, it would greatly benefit users
to treat them especially in terms of error reporting.

2.3 Open-closed families
An interesting pattern with type families is the combination of
open and closed type families to create a type-level function whose
domain can be enlarged, but where some extra magic happens at
each specific type. As a guiding example, let us construct a type
family to obtain the spiciness of certain type-level dishes:

data Water
data Nacho
data TikkaMasala
data Vindaloo

data SpicinessR = Mild | BitSpicy | VerySpicy
type family Spiciness f :: SpicinessR

The family instances for the dishes are straightforward to write:

type instance Spiciness Water = Mild
type instance Spiciness TikkaMasala = Mild
type instance Spiciness Nacho = BitSpicy
type instance Spiciness Vindaloo = VerySpicy

However, when we have lists of a certain food, we want to behave
in a more sophisticated way. In particular, if one is taking a list of
dishes which are a bit spicy, the final result be definitely be very
spicy. To rule this special case, we defer the Spiciness of a list to
an auxiliary type family SpicinessL:

type instance Spiciness [a ] = SpicinessL (Spiciness a)

type family SpicinessL lst where
SpicinessL BitSpicy = VerySpicy
SpicinessL a = a

This trick has been used for more mundane purposes, such as
creating lenses at the type level (Izbicki 2014). The key point is
that the non-overlapping rules for open type families allow us to
add new instances for those types for which one is not yet defined.
But by calling a closed type family at a type instance rule, you can
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refine the behaviour of a particular instance. Section 4 will show
other interesting uses of this pattern.

3. Shortcomings of type classes
We have looked at one side of the coin, discussing idioms to deal
with shortcomings of type families with respect to type classes.
Looking back at our original table in Section 1, the only function-
ality unsupported by type classes is closedness. We shall see how
taking into account our previous results on type families, we can
handle that situation.

3.1 Closed type classes
In some cases, you know that for a certain type class only a limited
and known set of instances should be available. This is a situation
where Haskell does not have an inmediate solution: exposing a type
class without also allowing new instances to be defined. However,
this sort of functionality has received some attention in the litera-
ture: Heeren and Hage (2005) discuss a close type class directive
with this specific purpose in the framework of better error diagno-
sis; and Morris and Jones (2010) illustrate that their instance chains
also handle this case.

There is a handful of techniques to get closed type classes
known by Haskell practitioners (StackOverflow 2013). These tech-
niques boil down to the same idea: define a secret entity of some
sort (we shall see that this entity can either be a type class or a type
family), define an alias and export only this alias to the world.

Heeren and Hage (2005) present an example of closing the
Integral type class to only admit Int and Integer as instances,
which we use as a running example. Following the “secret class
+ type alias” idea, a first attempt is:5

module ClosedIntegral (Integral) where

class Integral ′ i
instance Integral ′ Int
instance Integral ′ Integer

type Integral i = Integral ′ i

Note that to create such an alias, we need the ConstraintKind ex-
tension in GHC, which allows treating instance and type equality
constraints as simple elements of the kind Constraint. This solu-
tion works fine until the moment of writing a new instance:

instance Integral Char

At that point, synonyms are expanded, and that code effectively
translates to a new instance of Integral ′. In conclusion, this method
does not work.

The core problem is that, by exposing Integral ′ via a synonym,
we have given access to it. Instead, we can use another type class,
and make the one we want to close be a prerequisite:

class Integral ′ i ⇒ Integral i
instance Integral ′ i ⇒ Integral i

If you now try to define a new instance of Integral in another file,
you get an error message:

Not in scope: type constructor or class Integral’

Once again, a disadvantage of this method is that error messages
are worded in terms of the internal elements, in this case Integral ′.

Instead of another type class, you can use a type family. In that
case, we combine the idea from Section 2.1 with the alias approach.
The first thing to do is to write a type family Integral ′ responsible
for building the witness – of type IntegralW – for the elaboration

5 We elided the methods to be elaborated in order to make the presentation
more concise.

phase. This encoding allows us to use the fact that type families can
be closed:

data IntegralW = None | IntW | IntegerW

type family Integral ′ i :: IntegralW where
Integral ′ Int = IntW
Integral ′ Integer = IntegerW
Integral ′ other = None

Note that we have included a final catch-all case for those types
which should not be in the type class. The next step is defining a
new type class which takes care of elaboration. In our case, this is
IntegralE :

class IntegralE i (witness :: IntegralW )

instance IntegralE Int IntW
instance IntegralE Integer (IntegerW )

An important remark at this point is that we do not have any
instance for the None case. Additionally, if the module in which
Integral is defined does not export IntegralE , no new case can
be added, effectively closing the set of possible cases, as we did
before by hiding Integral ′. The final step is generating the alias,
the one visible to the user, which takes care of calling Integral ′ and
elaborating based on the witness:

type Integral i = IntegralE i (Integral ′ i)

This alias connects the elaboration type class with the type family
responsible of building the witness.

As previously, internals of the implementation escape to the
outside world in case of error. For example, if a function f with
an Integral constraint is used with a Char value, the message
produced by GHC reads:

No instance for (IntegralE Char ’None)
arising from a use of ’f’

A solution which also involves type families, but in a different
way, uses in its core the ConstraintKind extension found in GHC.
Since Constraint is a kind like ∗ or any other promoted type,
writing a type family which returns one constraint is possible. This
family would work as an alias for a restricted set of types:

type family Integral i :: Constraint where
Integral Int = Integral ′ Int
Integral Integer = Integral ′ Integer

For those types which are stated in the type family, having Integral
is equivalent to Integral ′. But for those which are not members,
family rewriting gets stuck:

Could not deduce (Integral Float)

One nice effect of this type family is that error messages are termed
using the Integral type family, so fewer internals are exposed to the
programmer.

4. Type families with elaboration
In (Schrijvers et al. 2007), one of the earliest papers about type
families in Haskell, the authors did already consider how to express
type families using type classes and functional dependencies. Thus,
the question whether both sorts of type-level programming are
neccessary and desirable is posed since the very beginning. We
sketch in this section a new answer: type classes may not be needed,
given that we give type families some elaboration mechanism.

4.1 Encoding type classes
Let us skip for a moment the issue of elaborating functions in type
classes, and just focus on the typing parts. The aim is to find a
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translation of type classes into type families such that an instance
for a type is found if and only if the corresponding type family
rewrites to a certain type. For this latest type, which describes
whether an instance is defined, we shall use the promoted version
of Defined :

data Defined = Yes | No

For each type class C that we want to convert, we declare a new
type family IsC whose result is of kind Defined . Throughout the
section, Eq will be used as a guiding example:

type family IsEq (t :: ∗) :: Defined

Furthermore, each function which declares an instance constraint
must be changed to work with the new IsC type family. Now,
the constraint is an equality between an IsEq application and Yes .
The following code declares an identity function whose domain is
restricted only to those types which have Eq:

eqIdentity :: IsEq t ∼ Yes ⇒ t → t
eqIdentity = id

Of course, the whole point of declaring a type class is to pop-
ulate it with instances. The most simple cases, such as Char , are
dealt simply by defining a type instance which rewrites to Yes:

type instance IsEq Char = Yes
type instance IsEq Int = Yes
type instance IsEq Bool = Yes

Those cases whose definition depend on a context, such as Eq on
lists, can call IsC on a smaller argument to defer the choice:

type instance IsEq [a ] = IsEq a

In the case of a more complex context, such as Eq on tuples, which
needs to check both of its type variables, we introduce a type family
And which checks for definedness of all its arguments:

type family And (a :: Defined) (b :: Defined) :: Defined where
And Yes Yes = Yes
And a b = No

type instance IsEq (a, b) = And (IsEq a) (IsEq b)

As with type classes, we are not constrained to ground types in
our type families, we can also use type constructors. A translation
of the Functor type class and some instances in this style reads:

type family IsFunctor (t :: ∗ → ∗) :: Defined
type instance IsFunctor [ ] = Yes
type instance IsFunctor Maybe = Yes

At this point it is important to remark that in some cases GHC needs
explicit kind signatures on some of the arguments of a type class.
If they are not included, GHC defaults to kind ∗ instead of giving
an ambiguity error, so the problem may be unnoticed until later
on. Having said so, in most of the cases where the declaration and
instances of a type family are written together, the compiler is able
to infer kinds correctly.

Finally, we are able to encode multi-parameter type classes in
the same way, as the Collection class in the introduction:

type family Collection t e :: Defined
type instance Collection [e ] e = Yes
type instance Collection (Set e) e = Yes

We discuss the translation of functional dependencies into this new
scheme in Section 4.6. For a formal treatment of the full translation,
the reader is referred to Appendix A.

4.2 Elaboration at rewriting
The previous translation works well from a typing perspective, but
does not generate any code, and we do expect so when we use a
type class. Since our main goal is to get rid of classes, we cannot
use the same trick as we did in Section 2. Furthermore, in that case
type families rewrote to different witnesses depending on the rule
that was applied. But in this case we want all instances to return
the same Yes result. If that was not the case, we could not declare
a constraint such as IsEq t ∼ Yes which would not depend on the
type itself.

For those reasons, we propose the concept of elaboration at
rewriting. The idea is that at each rewriting step, the compiler
generates a dictionary of values (similar to the one for type classes),
which may depend on values from other inner rewritings. Part of
this idea is already in place when GHC generates coercions from
family applications.

The shape of dictionaries must be the same across all type
instances of a family. Thus, as with type classes, it makes sense to
declare the signature of such dictionary in the same place within
a type family. Without any special preference, we shall use the
dictionary keyword to introduce it.6 For example, the following
declaration adds an eq function to the IsEq type family:

type family IsEq (t :: ∗) :: Defined
dictionary eq :: t → t → Bool

A type instance declaration should now define a value for each
element in the dictionary, as shown below:

type instance IsEq Int = Defined
dictionary eq = primEqInt -- the primitive Int comparison

In the case of calling other type families on its right-hand side, a
given instance can access the value of its dictionaries to build its
own. As concrete syntax, we propose using name@ to give a name
to a dictionary in the rule itself, or to refer to an element of the
dictionary in the construction of the larger one. This idea is seen in
action in the declaration of IsEq for lists:

type instance IsEq [a ] = e@(IsEq a) where
dictionary eq [ ] [ ] = True

eq (x : xs) (y : ys) = e@eq x y ∧ eq xs ys
eq = False

The same syntax can be used to access the dictionary in a function
which has an equality constraint. One example of this syntax is the
definition of non-equality in terms of the eq operation in the IsEq
family:

notEq :: e@(IsEq a) ∼ Yes ⇒ a→ a→ Bool
notEq x y = ¬ (e@eq x y)

We use e@ prefixes to make clear which dictionary we are using,
but it would be possible to drop the entire prefixes when there
is only one available possibility. Another option is making eq a
globally visible name, as type classes do.

As we have seen, elaboration at rewriting is possible and opens
new possibilities for type families. It is also the only piece missing
that we cannot directly encode in type families. In the rest of the
paper, though, we shall just focus on the typing perspective, which
in contrast with elaboration is available in Haskell compilers.

4.3 Type class directives
The good news about our encoding of type classes is that it brings
with it ways to encode some constraints over type classes that were
previously considered separate extensions of Haskell. We shall

6 We would have preferred the where keyword in consonance with type
classes, but this syntax is already used for closed type families.
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focus first on the type class directives of (Heeren and Hage 2005).
In short, these directives introduce new constructs to describe more
sharply the set of types which are instances of a type class, with the
aim of producing better error messages for the programmers.

The first of these directives is never: as its name suggests, a
declaration of the form never Eq (a → b) forbids any instance
of Eq for a function. Since by convention we translated Eq t as
IsEq t ∼ Yes , we only need to ensure that IsEq (a → b) does not
rewrite to Yes . We can do that easily with the following:

type instance IsEq (a→ b) = No

If we try to use Eq over a function, the compiler will complain:

Couldn’t match type ’No with ’Yes
Expected type: ’Yes

Actual type: IsEq (t -> t)

Furthermore, since compilers do not allow overlapping rules for a
type family, this also disallows anybody to write an instance for any
instantiation of a→ b, as we wanted.

The second directive is close, which limits the set of instances
for a type class to those which have been defined until that point.
We have already discussed how to deal with closed type classes in
Section 3.1, but with this new encoding, it becomes even easier. We
only need to define a closed type family which rewrites to No for
any forbidden instance. The example used above where Integral
has only Int and Integer is written as:

type family IsIntegral t where
IsIntegral Int = Yes
IsIntegral Integer = Yes
IsIntegral t = No

The main difference with the close directive is that we need to
define all instances in one place, whereas the directive defines a
point after which no more instances can be added. It is possible to
define a source-to-source processor which would rewrite an open
type family into a closed one with a fallback default case, which
would behave similarly to close if applied to those families which
simulate type classes.

Another directive available in (Heeren and Hage 2005) is
disjoint C D, which constraints any instance of C not to be in-
stance of D, and vice versa. For example, we could forbid a type
to be at the same instance of both Integral and Rational . A naive
encoding of this directive is done as follows for Integral , with a
similar structure for Rational :7

type family IsIntegral t where
IsIntegral t = IsICheckR t (IsRational t)

type family IsICheckR t (isRational :: Defined) :: Defined where
IsICheckR t Yes = No
IsICheckR t No = IsIntegral ′ t

type family IsIntegral ′ t :: Defined

The idea is that IsIntegral , by calling IsICheckR , checks whether a
Rational instance is present. If not, then it checks whether we have
an explicit Integral instance, represented by IsIntegral ′. Thus, for
adding new instances, the latter needs to be extended.

type instance IsIntegral ′ Int = Yes
type instance IsIntegral ′ Integer = Yes

7 If we try to define IsIntegral and IsRational as type synonyms, we get a
complaint of cyclic definition:

Cycle in type synonym declarations:
type IsIntegral t = IsICheckR t (IsRational t)
type IsRational t = IsRCheckI t (IsIntegral t)

Unfortunately, this naive encoding does not work. When trying
to deduce IsIntegral , the compiler loops: indeed, IsIntegral calls
IsRational , which in turn calls IsIntegral and so on. One possible
solution is changing IsIntegral to:

type family IsIntegral t where
IsIntegral t = IsICheckR t (IsRational ′ t)

The objective of this change is breaking the loop by directly de-
tecting whether we have a Rational instance. This works well in
the case in which we do not have an Integral instance because of a
Rational one, as GHCi shows:

*> :kind! IsIntegral Float
IsIntegral Float :: Defined
= ’No

But in those cases where an explicit IsIntegral rule is provided, the
system is unable to reduce the type, since it does not know what
IsRational ′ rewrites to:

*> :kind! IsIntegral Int
IsIntegral Int :: Defined
= IsICheckR Int (IsRational’ Int)

As a last attempt, we might try to check IsIntegral and IsRational
values at the same time. For this, we introduce an OnlyFirstDefined
closed family which describes the disjointess condition:

type IsIntegral t = OnlyFirstDefined (IsIntegral ′ t) (IsRational ′ t)

type family OnlyFirstDefined yes no :: Defined where
OnlyFirstDefined Yes no = Yes
OnlyFirstDefined yes Yes = No

But once again we encounter the same problem: if the type does not
have a defined IsIntegral ′ rule, the system is not able to continue to
the next branch in the type family. At this point, we admit defeat,
and have not found a good way to encode disjoint directly as type
families, as we have done for never and close.

4.4 Instance chains
Instance chains were introduced in (Morris and Jones 2010) as an
extension to type classes in which to encode certain patterns that
would otherwise require overlapping instances. The new features
are alternation, that is, allowing different branches in an instance
declaration, and explicit failure, which means that you can state
negative information about instances.

One case where overlapping instances are needed in common
Haskell is the definition of the Show instance for lists: in this
case, a special instance is used for strings, that is [Char ]. With this
extension, the exception will be handled as an instance chain:

instance Show [Char ] where
show = ... -- Special case for strings

else instance Show [a ] if Show a where
show = ... -- Common case

Show also gives us an example of explicit failure: in general, we
cannot make an instance for functions a → b. However, if the
domain of the function supports the Enum class, we can give an
instance which traverse the entire set of input values. In any other
case, we want the system to explicitly know that no instance is
possible:

instance Show (a→ b) if (Enum a, Show a, Show b) where
show = ...

else instance Show (a→ b) fails

As we did for type class directives, we can encode these cases
using our type family translation. The first thing we notice is that
the Show instance chain follows the pattern of the open-closed
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type families: we must allow adding new rules for those types not
already covered by other rules, but for some cases we need to make
some ordered distinction, which takes the form of a closed family.
We also apply the transformation of contexts as seen in Section 2.2.
Putting it all together, the corresponding IsShow type family reads:

type family IsShow t :: Defined

type instance IsShow [a ] = IsShowList a
type family IsShowList a where

IsShowList Char = Yes
IsShowList a = IsShow a

type instance IsShow (a→ b)
= IsShowFn (IsEnum a) (IsShow a) (IsShow b)

type family IsShowFn isEnum isShowA isShowB where
IsShowFn Yes Yes Yes = Yes
IsShowFn e a b = No

The family works nicely given some initial IsShow rules for Bool :

type instance IsShow Bool = Yes

*> :kind! IsShow (Bool -> [Char])
IsShow (Bool -> [Char]) :: Defined
= ’Yes

It is interesting to notice what happens if we ask for the information
of a type which we have not explicitly mentioned, such as Int:

*Main> :kind! IsShow (Maybe Bool -> [Char])
IsShow (Int -> [Char]) :: Defined
= IsShowFn (IsEnum Int) (IsShow Int) ’Yes

The rewriting is stuck in the phase of rewriting IsEnum Int and
IsShow Int. Intuitively, we may want the system to instead con-
tinue to the next branch, and return No as result. However, this
poses a threat to the soudness of the system: since the type infer-
ence engine is not complete in the presence of type families, it may
well be that IsEnum Int ∼ Yes , but the proof could not be found. If
we decided to continue, and that proof finally exists, then the infer-
ence step we made is not correct. For this reason, we forbid taking
the next branch until rewriting contradicts the expected results. A
similar reasoning holds for the use of apartness to continue with
the next branch in closed type families (Eisenberg et al. 2014).

Essentially, what we do by rewriting instance chains into type
families is making explicit the backtracking needed in these cases.
In principle, Haskell does not backtrack on type class instances, but
by rewriting across several steps, we simulate it.

4.5 Better error messages
Until now, the only possibilities for a type family corresponding to
a type class were to return Yes or No, or to get stuck. But this is
very uninformative, especially in the case of a negative answer: we
know that there is no instance of a certain class, but why is this
the case? The solution is to add a field to the Defined type to keep
failure information.

data Defined e = Yes | No e

We have decided to keep the error type e open, so each type class
could have its own way to report errors. In the case of a closed
one, it makes sense to have a specific closed data type. But in open
scenarios, like IsShow , we need something more extensible. A
good match is the Symbol kind, which is the type-level equivalent
of strings, and which has special support in GHC for writing type-
level literals. Thus, the IsShow type family is changed to:

import GHC .TypeLits -- defines Symbol
type family IsShow t :: Defined Symbol

An instance like functions could benefit from reporting different
errors depending on the constraint that failed: 8

type instance IsShow (a→ b)
= IsShowFn (IsEnum a) (IsShow a) (IsShow b)

type family IsShowFn (isEnum :: Defined Symbol)
(isShowA :: Defined Symbol)
(isShowB :: Defined Symbol) where

IsShowFn Yes Yes Yes = Yes
IsShowFn (No e) a b

= No "Function with non-enumerable domain"

IsShowFn e (No a) b
= No "Source type must be showable"

IsShowFn e a (No b)
= No "Target type must be showable"

The interpreter will now return the corresponding message if the
function is known to be not showable:

*> :kind! IsShow (Float -> Bool)
IsShow (Float -> Bool) :: Defined Symbol
= ’No "Function with non-enumerable domain"

Currently, Symbol values cannot be easily manipulated. In a sce-
nario where simple functions such as concatenation are present in
the standard libraries, more complete error messages could be ob-
tained by joining information from different sources. For exam-
ple, when IsEnum returns No, its message could be combined in
IsShownFn, assuming the presence of a (: ++ :) type family to
perform string concatenation:

IsShowFn (No e) a b
= No ("Function with non-enumerable domain"

: ++ : "\nbecause " : ++ : e)

In conclusion, the extra control we get by explicitly describing
how to search for Show instances via the IsShow type family also
helps us to better pinpoint to the user where things go wrong. This is
especially important in many scenarios, such as embedded domain-
specific languages (Hage 2014).

4.6 Functional dependencies
There is one feature of type classes that we have not yet covered in
the translation to type families, namely, functional dependencies. A
simple functional dependency, such as that relating c and e in:

class Collection c e | c → e where ...

can be split, as shown in (Schrijvers et al. 2007), into a type class
for the relation (which would in turn be translated into a type family
as discussed in this section), and another type function for defining
e in terms of c:

type family IsCollection′ c e :: Defined
type instance IsCollection′ [e ] e = Yes

type family IsCollectionElement c
type instance IsCollectionElement [e ] = e

However, this split does not guarantee that the types related by
IsCollection′ and IsCollectionElement satisfy any constraint. Of
course, you want the result of IsCollectionElement to be the same
as the e in IsCollection′. This can be enforced by defining a syn-
onym IsCollection which relates both type families via an equality
constraint over the element type:

8 As we discussed earlier, GHC needs kind signatures in some cases. Here,
had we not included Defined Symbol on IsShowFn arguments, GHC
would expect Defined∗ as its kinds, which is not correct.
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type IsCollection c e = And (IsCollection′ c e)
(EqDef e (IsCollectionElement c))

The EqDef type family just reifies type equality into Defined :

type family EqDef a b :: Defined where
EqDef a a = Yes
EqDef a b = No

Most uses of functional dependencies can be translated by the
above schema. The reason is that in most cases, functional depen-
dencies are just used to define type-level functions with instance
arguments.

Some cases are more difficult to cope with, though, like the
dependencies that you may add to addition. Essentially, when you
know two arguments that make up a sum, you know the other one
by simply adding or by cancellation law:

class AddFD m n r | m n→ r , r m→ n, r n→ m

Note that if you try to give instances for this type class, such as:

instance AddFD Zero n n
instance AddFD (Succ m) Zero (Succ m)
instance AddFD m n r
⇒ AddFD (Succ m) (Succ n) (Succ (Succ r))

the compiler will complain because of a conflict in functional
dependencies: if the second and third arguments are given, it cannot
deduce the first one, because there is always some overlap with the
first rule. However, let us suppose for a moment that we could use
functional dependencies in that way: how would it translate into
type families?

To get a complete answer, we need to look at the two different
ways in which functional dependencies influence the type system:9

• FD-improvement: if the context contains AddFD m1 n1 r1 and
AddFD m2 n2 r2 , and we know that m1 ∼ m2 and n1 ∼ n2 ,
then we have r1 ∼ r2 ;

• Instance improvement: if the context contains AddFD m n r ,
and for some substitution of m and n only one instance matches,
then we can use it to rewrite r . For example, if we have
AddFD Zero n r , we know inmediately that n ∼ r .

In type family terms (where we define the corresponding
IsAddFD family as shown above), FD-improvement translates
into obtaining r1 ∼ r2 knowing that m1 ∼ m2 , n1 ∼ n2
and, here comes the crux of the matter, IsAdd m1 n1 r1 ∼
IsAdd m2 n2 r2 . Thus, the functional dependency constraint be-
comes a partial injectivity constraint in the family: if the results of
a function, and some of its arguments (in this case, m and n) agree
for two applications, we know that remaining argument (here, r )
must also agree. A simple form of injectivity for type families has
been considered for GHC, but has not been implemented as of
version 7.8.10

On the other hand, instance improvements correspond to the
ability of defining and inverting type-level functions from the in-
stance relations. The functional dependency m n → r on AddFD
is doing nothing more than defining the addition function in the
type level (as shown in the Introduction), if we want to encode the
other two, we need to invert addition:

type family IsAddRNToM where
IsAddRNToM r Zero = r
IsAddRNToM (Succ r) (Succ n) = IsAddRNToM r n

9 Using the terminology from https://ghc.haskell.org/trac/
haskell-prime/wiki/FunctionalDependencies.
10 GHC Trac ticket on Injective type families: https://ghc.haskell.
org/trac/ghc/ticket/6018.

type family IsAddRMToN where
IsAddRMToN r Zero = r
IsAddRMToN (Succ r) (Succ m) = IsAddRMToN r m

While several approaches to bidirectionalization of functional pro-
grams have been proposed (Foster et al. 2012), it is not always
possible or desirable to use bidirectionalization. Looking at type
classes with our type family glasses can help decide when a certain
functional dependency will be useful: if you cannot get the cor-
responding function out of it, the instance improvement rule may
never be applied.

5. Comparison
5.1 Type families as functional dependencies
Sections 2 and 3 looked at how to deal with features not readily
available in type classes or families. In Section 4 we turned to type
families as an integrating framework for both concepts. In previ-
ous literature (Schrijvers et al. 2007) type classes with functional
dependencies were used as the integrating glue: why is our choice
any better?

The answer lies in the use of instance improvement by func-
tional dependencies, as discussed in 4.6. This type of improvement
makes type inference brittle: it depends on the compiler proving
that only one instance is available for some case, which can be in-
fluenced by the addition of another, not related, instance for a class.

Other different problems with functional dependencies have
been discussed in (Schrijvers et al. 2007; Diatchki 2007), usually
concluding that type-level functions are a better option. In this
paper we agree with that statement, and we show that families could
replace even more features of type classes by using other Haskell
extensions such as data type promotion and closed type functions.

5.2 Implicit arguments
In essence, in Section 4 we are describing a new way to deal
with type-level programming which needs to decide whether a
certain proposition holds while elaborating some piece of code.
This comes close to the instance arguments feature found in Agda
(Devriese and Piessens 2011), which was also proposed to simulate
type classes. Any argument marked as such in a function with
double braces, like:

myFunction : {A : Set } → {{p : Show A}} → A→ String

will be replaced by any value of the corresponding type in the
environment in which it was called. Thus, if you think of Show of
a class, you can provide an instance by constructing such a value:

showInt : Show Int
showInt x = ... -- code for printing an integer

Since these values are constructed at the term level, you can use
any construct available for defining functions. In that sense, it is
close to our use of type families, with the exception that in Haskell
type-level and term-level programming are completely separated. A
difference between both systems is that Agda does not do any proof
search when looking for instance arguments, whereas our solution
can simulate search with backtracking.

5.3 Tactics
The dependently type language Idris (Brady 2013) generalises the
idea of Agda’s instance arguments allowing the programmer to
customise the search strategy for implicit arguments. Similarly
to Coq, Idris has a tactic language to customise proof search.
Unlike Coq, however, Idris allows the programmer to use the same
machinery to customise the search for implicit arguments (The Idris
Community 2014).
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For example we can write a function of the following type,
where t is a tactic script that is used for searching the implicit
argument of type Show a:

myFunction : {default tactics {t } p : Show a} → a→ String

The tactic t itself is typically written using reflection such that it
can inspect the goal type – in this case Show a – and perform the
search accordingly:

myFunction : {default tactics {applyTactic findShow ; solve }
p : Show a} → a→ String

The search strategy is defined by findShow , which is an Idris
function of that takes the goal type and the context as argument
and produces a tactic to construct a term of the goal type.

This setup is similar to closed type families with elaboration as
presented in this paper. However, findShow has to operate on terms
of Idris core type theory TT, which is quite cumbersome. Moreover,
there is no corresponding setup for open type families.

6. Conclusion
Type classes and type families in Haskell have different sets of
features. However, with a little work we can support elaboration
and contexts in families, and closedness in instances. This suggests
that there exists a framework for integrating the two as instances of
a single concept: we show how type families can serve as such a
concept. By creating type families which simulate classes, we get
for free features such as type class directives, instance chains and
control over the search procedure. We have argued that it is possible
to add an elaboration mechanisms to type families to bridge the gap
for its use in ad-hoc polymorphism.
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A. Formal translation from classes to families
In Section 4 we looked at the translation from type classes to fami-
lies, but left out the technical details. This section deals with those
details and the associated soundness and termination properties.
We leave functional dependencies out of this discussion, since they
come with their own set of difficulties, as shown in Section 4.6.

There are three Haskell constructs to translate: classes, contexts
and instances. Type class declarations are of the form class D t1 ...
tn. Each of them gives raise to a new type family encoded as:

type family IsD t1 ... tm :: Defined

Here, Defined is the kind which represents whether an instance is
available. It was introduced in Section 4.1 and refined in Section
4.5 to get better error messages. In addition, types t1 to tm may
include kind annotations inferred from their use in the elaborated
methods.

Note that we have not spoken about superclass contexts: they
do not interfere with instance resolution, just impose a constraint of
having to define an instance of each superclass. In this case, given a
class S ⇒ D, the constraint would translate to having to define IsS
to return Yes each time IsD returns Yes . Thus, superclasses impose
their conditions on a prior stage to type checking.

The second construct to translate are context declarations of the
form Q s1 .. sj , which may appear in function signatures, data types
or other instance declarations. The translation is IsQ s1 ... sj .
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Finally, we need to translate instance declarations. Each in-
stance may have a number of context declarations, say n:

instance (Q1, ...,Qn)⇒ D t1 ... tm

A type family instance is defined for each of them, of the form:

type instance IsD t1 ... tm = Andn Q1 ... Qn

For each number n of context declarations, we have a correspond-
ing Andn closed type family which checks that all the arguments
are Yes . More formally, we have:

type family And0 :: Defined
And0 = Yes

type family And1 d :: Defined
And1 x = x

type family Andn d1 ... dn :: Defined
Andn Yes ... Yes = Yes -- case everything Yes
Andn d1 ... dn = No

In the translation, Q1 to Qn refer to the translation of instance
constraints Q1 to Qn as given above.

A.1 OUTSIDEIN(X)

The current reference for type inference for Haskell, including type
classes, type families and other extensions such as generalized al-
gebraic data types is (Vytiniotis et al. 2011). The authors describe
the inference process in terms of a general framework, called OUT-
SIDEIN(X), which is parametrized by a constraint system X. Each
constraint system defines a concrete entailment Q  W which
gives semantics to certain constraint Q under the axioms in the set
Q. Axioms are the generic name given to declarations such as class
and family instances.

In particular, we are interested in the case X = type classes and
type families, that is also discussed in (Vytiniotis et al. 2011). For
this case, many rules are given for the concrete entailment . Many
of them deal, such are those dealing with reflexivity, symmetry and
transitivity are quite straightforward:

REFLQ  τ ∼ τ
Q  τ1 ∼ τ2

SYMQ  τ2 ∼ τ1

Q  τ1 ∼ τ2 Q  τ2 ∼ τ3
TRANSQ  τ1 ∼ τ3

The rules related to type classes and type families are:

Q 
∧

τ1 ∼ τ2
FCOMPQ  F τ1 ∼ F τ2

Q  D τ1 Q 
∧

τ1 ∼ τ2
DICTEQ

Q  D τ2

∀a.Q1 ⇒ Q2 ∈ Q Q  [a 7→ τ ]Q1
AXIOM

Q  [a 7→ τ ]Q2

The first two rules define how type equality distributes over in-
stance constraints and type family applications. The last one de-
scribes the application of axioms: if we can prove the preconditions
of an axiom for an specific substitution [a 7→ τ ], then we can con-
clude the postcondition in the axiom. Note than in the case of type
family instances, Q1 is always empty, so the rule in that case reads:

∀a.F ρ ∼ σ ∈ Q
AXIOM’

F [a 7→ τ ]ρ ∼ [a 7→ τ ]σ

A.2 Soundness of translation
In OUTSIDEIN(X), entailment relations are parametrized by a set
of axioms Q, which can be either type class or type family in-
stances. We define Qtrans as the set of axioms obtained by trans-
lating each instance axiom as defined above.

Lemma 1. IfQ 
∧

i Di τi ∼ Yes , thenQ  Andn Di τi ∼ Yes .

Proof. By case analysis of the definition of Andn.

Theorem 1. IfQ  D τ , thenQtrans  IsD τ ∼ Yes .

Proof. By inversion of the rule applied to get Q  D τ . There are
only two interesting cases, DICTEQ and AXIOM.

For DICTEQ, taking into account the translation, provingQtrans 
IsD τ ∼ Yes boils down to proving the soundness of this rule:

Q  IsD τ1 Q 
∧

τ1 ∼ τ2

Q  IsD τ2

The following derivation shows how to get it:

Q  IsD τ1

Q 
∧

τ1 ∼ τ2
FCOMPQ  IsD τ1 ∼ IsD τ2 SYM, TRANS

Q  IsD τ2

For AXIOM, first note that instance axioms of the form Q ⇒
Q∗ get translated into type family axioms of the form Q∗ ∼
Andn IsQ q. Thus, we need to prove soundness of the rule:

∀a.IsD σ ∼ Andn IsQ q ∈ Q Q 
∧

IsQ [a 7→ τ ]q ∼ Yes

Q  IsD [a 7→ τ ]σ ∼ Yes

We can derive the first premise by using AXIOM:

∀a.IsD σ ∼ Andn IsQ q ∈ Q
AXIOM

IsD [a 7→ τ ]σ ∼ Andn IsQ [a 7→ τ ]q

For the second premise, first apply the induction hypothesis to
convert the proofs of the context of the rule. Then, use the previous
lemma to get the version with Andn:

Q 
∧

IsQ [a 7→ τ ]q ∼ Yes

Q  Andn IsQ [a 7→ τ ]q ∼ Yes

Using SYM and TRANS we get the desired result.

A.3 Termination
An important issue to consider is whether termination characteris-
tics of class instances are also carried over to the translated fami-
lies. The most lenient conditions imposed by GHC over class in-
stances11 are the so-called Paterson conditions. For each constraint
Q s1 ... sj in the instance context:

1. No type variable has more occurrences in the constraint than in
the instance head.

2. The constraint has fewer constructors and variables (taken to-
gether and counting repetitions) than the head.

In the case of type families F t1 ... tm = s , the conditions imposed
by GHC ask that for each type family application G r1 ... rk

appearing in s , we have:

11 If the user does not turn on the UndecidableInstances , which turns off
any termination checking.

10 2014/9/9



1. Each of the arguments r1 .. rk do not contain any other type
family applications.

2. The total number of data type constructors and variables in
r1 .. rk is strictly smaller than in t1 .. tm.

3. Each variable occurs in r1 .. rk at most as often as in t1 .. tm.

The translation of a class instance which satisfies the Paterson
conditions into a type family instance:

type instance IsD t1 ... tm = Andn Q1 ... Qn

satisfies the terminations conditions (2) and (3) of type families.
However, condition (1) is not satisfied, because Andn contains
nested family applications. Note that these are the only nested
applications generated by the translation.

The key point is observing that each application of Andn adds
just one extra rewriting step. If type families fulfill their termination
conditions (2) and (3), Andn just adds a number of steps bounded
by the size of the derivation tree. Thus, termination is still guaran-
teed.

11 2014/9/9
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