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1. Introduction
In recent years algebraic effects and effect handlers emerged as a
compelling alternative to monads as a basis for effectful program-
ming in functional programming languages. This approach pro-
vides language primitives for defining new abstract effectful oper-
ations, which the programmer uses to write his own programs, and
effect handlers that instantiate the abstract operations with concrete
implementations.

Abstract operations are composable and each effect handler
instantiates a specific subset of the operations of a computation.
Thus this approach yields modular abstraction and modular instan-
tiation of effects similar to monad transformers and monad type
classes. Transporting monads and monad transformers to different
languages is possible but difficult or awkward. Some monads, like
for example monadic parser combinators, crucially rely on infinite
recursion and lazy evaluation. Modular abstraction with monads is
achieved by means of type classes for each kind of effect and mod-
ular instantiation is achieved by type class instances that lift monad
type classes over monad transformers. This crucially relies on au-
tomatic type class resolution.

Effect handlers are one possible alternative to monads and
monad transformers for getting modularity in the handling of
effects into a variety of functional programming languages, es-
pecially those that use strict evaluation and do not provide type
classes.

2. Effect handlers
We present the general use of effect handlers using pseudo-syntax
that is similar to the Frank language by Lindley and McBride [9].
The first step is to declare the signature of the abstract operations of
an effect. The state effect for instance has two abstract operations:
1. get that retrieves the current state and 2. put that updates the
state.

[Copyright notice will appear here once ’preprint’ option is removed.]

sig State S
= get : [ ] S
| put : S → [ ] Unit

This declares get to be an effectful operation that results in
a value of type S . put is an effectful operation that takes an a
and returns a unit value. We use the notation [ ] X to denote
computations that upon execution return a value of type X .

We can write computations using these abstract operations. The
next computation performs state effects to increment a natural
number. The first line is the type signature of next which states
that next results in a value of type Nat and can perform State Nat
effects. The second line is the implementation of next in terms of
the abstract operations.

next : [State Nat ] Nat
next = get → n; put (suc n);n

The second step is to define a handler state that implements
the operations of the State S effect. The handler state takes as
parameters an initial state s and a suspended computation on which
it ‘pattern matches‘. The first two lines of the implementation
handle the cases of the abstract operations get and put . The third
line handles the case of a finished computation that resulted in a
value v where we allow the handler to transform the result value.

state : S → [State S ?X ] → [ ] X
state s [get ? k ] = state s ? k s
state [put s ? k ] = state s ? k ()
state [v ] = v

3. Problem statement
If effect handlers are to be used as the principal paradigm of a
language to model side-effects, their efficient implementation be-
comes an important point. The focus of existing work on languages
[1, 9] and embedded domain-specific languages [3, 8] for program-
ming with effect handlers is still to explore the expressivity of
this alternative approach to effects. It should come as no surprise
that benchmarking existing implementations shows that the perfor-
mance of these systems is not yet competitive to monad transform-
ers.

One of the main reasons for this is that these systems implement
effect handlers indirectly, either by reducing them to a free-monad
implementation in lazy languages or to (delimited) continuations in
strict languages. This leaves a lot of room for improvement.

It is easier for a direct implementation to avoid technical pitfalls
that impact performance and to leverage the structure of effect
handlers to perform optimizations. More specifically the following
concerns can be addressed in a better way.

1 2014/9/9



1. The shift/reset operators are the most popular way to describe
delimited continuations and are also the most commonly pro-
vided primitives by languages that implement delimited contin-
uations. However, there is an impedance mismatch between ef-
fect handlers and delimited continuations using the shift/reset
operators. In exception and effect handlers the delimiter de-
scribes the handling of the effectful operation in contrast to
shift/reset where shift determines the handler. This also means
for each reset delimiter there can be different handlers provided
to different invocations of shift. As a consequence an indirect
implementation might lose the opportunity to optimize using
the fact that there is a constant handler for each effect han-
dler. A conceptually better fit are delimited continuations using
run/fcontrol [11].

2. State is an important concept that arises very often in the im-
plementation of handlers of a variety of effects. Each handler
invocation can potentially alter the state of the handler and the
state needs to be threaded properly between invocations.
Brady [3] treats the state of handlers explicitly by keeping track
of a list of resources for a given handler stack. Kammar et al. [6]
allow handlers to be parameterized and alter the parameters for
handling the operations of the continuation.
In the reduction of effect handlers to delimited control opera-
tors, the state of handlers is captured inside a closure that im-
plements the handlers. A direct implementation of effect han-
dlers should keep track of state explicitly to make state passing
more efficient. Ideally, passing the state should be as efficient
as passing an argument to a function.

3. Direct implementations of delimited continuations for call-by-
value languages [7, 10] capture the continuation by copying
the part of the stack up to the delimiter to the heap. When
the continuation is invoked, this copy is pushed back onto the
control stack. A direct implementation of effect handlers will
necessarily perform comparable operations.
However, if the implementation of a handler uses the continu-
ation in a restricted way several optimizations are possible. If
a continuation is only used in tail positions, the copying of the
stack segment is unnecessary[7]; if the handler does not use
the continuation at all, e.g. traditional exceptions, we can un-
wind the stack immediately before passing control to the han-
dler function and thus free resources early.
As it turns out, in practice a lot of effects fall into this these
restricted categories [2]. It is therefore important to perform an
analysis and optimize accordingly.

4. Towards efficient handlers
We want to address the performance concerns of effect handlers to
help their adoption. Specifically we want to address the implemen-
tation and optimization of common cases that do not use the full
power of effect handlers.

To this end, we are developing a definitional machine for effect
handlers based on a definitional machine for delimited continua-
tions [4, 7] that provides generic low-level primitives for the imple-
mentation of effect-handlers and a small call-by-value λ-calculus
with effect handlers. In our development we address the following
performance concerns:

4.1 Handler resolution
At the invocation point of an abstraction operation control is passed
to handler for the effect. For this the concrete handler needs to
be looked up. One of the problems appearing is how to do this
efficiently.

In the implementation of exception handlers, the delimiter try
is either pushing exception-handler marks explicitly on the control
stack or is creating a table that maps code return addresses to
exception handling code [5]. The throwing of an exception will
unwind the control stack – executing cleanup code along the way
– and use runtime-type information about the thrown value and the
type of exception handlers to find the matching handler.

Obviously this dynamic lookup of effect handlers and the use
of type-information is utterly slow. Using effect typing we can
explicitly resolve the possible handlers statically and keep track
of stack marks, handler functions and handler state explicitly and
efficiently.

4.2 Fast linear code
We perform an analyses to detect handlers that invoke the continua-
tions only tail position and handlers that discard the continuations.
In these two cases we can avoid unnecessary work for capturing
the continuation and also avoid duplicating state which would be
necessary for potentially different continuations.

In this restricted setting the specialization of code for a specific
set of handlers also becomes easier. We envision the inlining of
known handlers to remove any overhead introduced by abstractions
as much as possible.
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