
Reactive Web Applications with Dynamic Dataflow in F#

Anton Tayanovskyy Simon Fowler Loïc Denuzière Adam Granicz
IntelliFactory, http://www.intellifactory.com

{anton.tayanovskyy, simon.fowler, loic.denuziere, granicz.adam}@intellifactory.com

Abstract
Modern web applications depend heavily on data which may change
over the course of the application’s execution: this may be in
response to input from a user, information received from a server, or
DOM events, for example.

Much recent work has been carried out with the hope of im-
proving upon the current callback-driven model: in particular, ap-
proaches such as functional reactive programming and data binding
have proven to be promising models for the creation of reactive
web-based user interfaces.

In this paper, we present a framework, UI.Next, for the creation
of reactive web applications in the functional-first language F#,
using the WebSharper web framework. We provide an elegant
abstraction to integrate a dataflow layer built on the notion of a
dynamic dataflow graph—a dataflow graph which may vary with
time—with a DOM frontend, allowing updates to be automatically
propagated when data changes. Additionally, we provide an interface
for the specification of declarative animations, and show how the
framework can ease the implementation of existing functional web
abstractions such as Flowlets [3] and Piglets [11].

Categories and Subject Descriptors D.3.2 [Language Classifica-
tions]: Data-flow languages; Applicative (functional) languages

Keywords Dataflow; Web Programming; Functional Program-
ming; Graphical User Interfaces; F#

1. Introduction and Background
Modern web applications depend hugely on data which changes dur-
ing the course of the application’s execution. A common approach to
handling this in JavaScript is through the use of callbacks, meaning
that whenever a piece of data changes, a callback is executed which
performs the appropriate updates.

While this suffices for smaller applications, callbacks become
unwieldy as an application grows: inversion of control reduces the
ability to reason about applications, often resulting in concurrency is-
sues such as race conditions. Applications also become increasingly
difficult to structure, as view modification code becomes intertwined
with application logic, decreasing modularity.

The reactive programming paradigm provides a promising solu-
tion to this problem: instead of relying on state which is mutated

[Copyright notice will appear here once ’preprint’ option is removed.]

by callbacks, reactive approaches work by defining interdependent
variables, and rely on a dataflow graph to propagate changes to
dependent elements. Research into functional reactive programming
[12] (FRP) builds upon this by using concepts from functional pro-
gramming to model time-varying data.

FRP systems are based around the notion of a Signal or Be-
haviour—a value which varies with time—and an Event, which can
be thought of as either a discrete occurrence such as a mouse click,
or a predicate event which occurs exactly when a signal satisfies a
set of predicates.

Functional Reactive Programming provides a very expressive
and clear semantics, with powerful higher-order combinators to
work with continuously-varying values. Although the theory is clear,
implementing such systems poses several challenges such as space
leaks, in particular with regard to higher-order stream operations:
the canonical example of this is that by allowing a signal of signals,
it therefore becomes necessary to record the entire history of the
signal after its creation in order to allow future signals to depend on
previous values. This naturally results in a memory leak, as memory
usage must grow linearly with execution time.

To overcome this issue, different approaches have been taken
by different systems. In particular, Arrowised FRP [16] disallows
signals from being treated as first-class altogether, relying instead
on a set of primitive signals and a set of stream combinators to
manipulate these, while the Elm language [10] prohibits the creation
of higher-order signals directly in the type system. Real-time FRP
[32] and event-driven FRP [33] systems further restrict operations
on streams to those which can be implemented in a manner that will
yield acceptable real-time behaviour.

The use of higher-order signals is, however, natural when creat-
ing graphical applications. By ruling out higher-order signals, the
underlying dataflow graph remains static, meaning that it cannot
change during the course of the application’s execution. In practice,
this means that it is difficult to create applications with multiple
sub-pages, such as in the single-page application (SPA) paradigm.

Our alternative solution consists of a dataflow layer which
interacts with a DOM frontend, using F# and the WebSharper 1

functional web framework. We introduce reactive variables, or Vars,
and Views, read-only projection of Vars within the dataflow graph.
A key difference between this and the traditional FRP paradigm is
that the system we propose only makes use of the latest available
value in the system, but as a result supports monadic combinators to
support dynamic composition of Views.

We designed our framework, UI.Next, taking into account the
following key principles:

Modularity: The dataflow graph should be defined separately to
the DOM representation, meaning that it should be possible to
display the same data in different ways on the view layer in a
similar way to the Model-View-Controller architecture. It should

1 http://www.websharper.com

Submission to Preproceedings of IFL 2014 1 2014/9/24

also be possible to perform different transformations to the same
node in the dataflow graph.

Leak-Freedom: A primary design decision was to prevent space
leaks. Traditional pure monadic FRP systems permit the in-
clusion of space leaks by allowing higher-order event stream
combinators, whereas other dataflow systems often keep strong
links between nodes of the dataflow graph and as a result require
manual unsubscription from data sources. Our solution does not
keep strong links between nodes in the dataflow graph, and as
a result prevents this class of leaks. space leaks are avoided by
working purely with the latest value of reactive variables.

Preservation of DOM Node Identity: DOM nodes consist of
more than is described in the DOM tree. State such as whether
an element is currently in focus, or the current text in an input
box, is preserved upon a DOM update, and only subtrees which
have been explicitly marked as time-varying will change on an
update.

Composability and Ease-of-Integration: Elements in the DOM
representation compose easily due to a monoidal interface, and
we introduce an elegant embedding abstraction to allow time-
varying DOM fragments to be integrated with the remainder of
the DOM tree representation.

1.1 Contributions
• An implementation of a dynamic dataflow system which is

amenable to garbage collection by not retaining strong links
between nodes in the dataflow graph through the use of an
approach inspired by Concurrent ML [28] (Section 2).

• A reactive DOM frontend for the WebSharper web framework,
allowing DOM nodes to depend on dataflow nodes and update
automatically (Section 3).

• A declarative animation API which integrates with the DOM
frontend, and can be driven by the dataflow system (Section 4).

• Implementations of functional abstractions such as Flowlets [3]
and Piglets [11] using UI.Next, showing how the framework
can ease the implementation of such abstractions, and how these
abstractions can be used to build larger applications (Section 5).

• Example applications making use of the framework (Section 6).

Source code for the framework can be found at http://www.
bitbucket.org/IntelliFactory/websharper.ui.next, and
a website containing samples and their associated source code can be
found at http://intellifactory.github.io/websharper.
ui.next.

2. Dataflow Layer
The dataflow layer exists to model data dependencies and conse-
quently to perform change propagation. The layer is specified com-
pletely separately from the reactive DOM layer, and as such may be
treated as a render-agnostic data model.

The dataflow layer consists primarily of two primitives: reactive
variables, Vars, and reactive views, Views.

A Var is a time-varying variable, and can be thought of as very
similar to a standard F# ref cell. The difference, however, is that a
Var may be observed by Views: changes to a Var therefore update
any dependent Views in order to trigger change propagation through
the remainder of the dataflow graph.

2.1 Vars
Vars are parameterised over a particular type. The actions that may
be performed on Vars are straightforward: they may be created,

their value may be set, and they may be updated using the current
value.

One additional operation, SetFinal, marks the value as fi-
nalised, meaning that no more writes to that variable are permitted.
This is included in order to prevent a class of memory leaks: if it
is known that a value does not change after a certain point, then
SetFinal may be used to optimise accesses to the variable.

The operations that may be performed on Vars are detailed in
Listing 1.

Listing 1. Basic operations on Vars
type Var =
static member Create : 'T -> Var<'T>
static member Get : Var<'T> -> 'T
static member Set : Var<'T> -> 'T -> unit
static member SetFinal : Var<'T> -> 'T -> unit
static member Update : Var<'T> -> ('T -> 'T) ->

unit

2.2 Views
A View provides a way of observing a Var as it changes. More
specifically, a View can be thought of as a node in the dataflow
graph which is dependent on a data source (Var), or one or more
other dataflow nodes (View).

The power of Views comes as a result of the implementation of
applicative and monadic combinators, allowing multiple views to
be combined: these operations are shown in Listing 2.

Listing 2. Operations on Views
type View =
static member Const : 'T -> View<'T>
static member FromVar : Var<'T> -> View<'T>
static member Sink : ('T -> unit) -> View<'T> ->

unit
static member Map : ('A -> 'B) -> View<'A> -> View

<'B>
static member MapAsync : ('A -> Async<'B>) -> View

<'A> -> View<'B>
static member Map2 : ('A -> 'B -> 'C) -> View<'A>

-> View<'B> -> View<'C>
static member Apply : View<'A -> 'B> -> View<'A>

-> View<'B>
static member Join : View<View<'T>> -> View<'T>
static member Bind : ('A -> View<'B>) -> View<'A>

-> View<'B>

A View can be created from a Var using the FromVar function.
Additionally, it is possible to create a View of a constant value using
the Const function.

The Sink function acts as an imperative observer of the View
– that is, the possibly side-effecting callback function of type
('T -> unit) is executed whenever the value being observed
changes. This function is crucial in the implementation of the
reactive DOM layer described in Section 3.

The remaining abstractions are ubiquitous in the functional
domain: Map allows a function to be applied to the new value
of an observed Var whenever it changes, yielding another view.
In terms of the dataflow graph, this results in an additional node
which depends on the original view. MapAsync is a helper function
which facilitates asynchronous calls as supported within F# and
WebSharper.

The applicative combinators Map2 and Apply, as first exposited
by McBride and Paterson [21], allow for static composition of
Views. Using these combinators, it is possible to apply functions of
arbitrary arity to nodes within the dataflow graph.

Submission to Preproceedings of IFL 2014 2 2014/9/24

Finally, the monadic combinators Join and Bind allow dynamic
composition of graphs – that is, a dataflow graph may consist of
nodes which are themselves time-varying dataflow graphs, allowing
the graph to change during the course of execution. Although this
dynamism is natural in GUI programming, most implementations of
FRP systems do not support this for efficiency reasons as outlined
in Section 7.2.

2.3 Models and Collections
When working with collections which may change with time, it is
often better to work with higher-level models than simple Vars and
Views. A Model<'I, 'M> represents a mutable model, providing a
projection between a mutable type ’M (such as an F# ResizeArray)
and an immutable type ’I (such as an F# list). This proves very
useful when rendering a collection, for example.

A specialisation of the Model type is the ListModel, which
internally represents a time-varying collection as a ResizeArray
but allows the model to be viewed as a list. Additionally, several
operations to modify the collection are provided: these are shown in
Listing 3.

Listing 3. Operations on a ListModel
type ListModel<'Key,'T> with
member Add : 'T -> unit
member Remove : 'T -> unit

type ListModel with
static member Create<'Key,'T when 'Key : equality>

: ('T -> 'Key) -> seq<'T> -> ListModel<'Key,'
T>

static member FromSeq<'T when 'T : equality> : seq
<'T> -> ListModel<'T,'T>

static member View : ListModel<'Key,'T> -> View<
seq<'T>>

A ListModel is created using a function which derives a key to
be used for equality testing, and a sequence of elements. Addition
and removal of elements can be performed with the Add and Remove
functions, but more importantly it is possible to obtain a View of
the collection using the ListModel.View function.

2.4 Implementation
2.4.1 Vars
The implementation of a Var is shown in Listing 4. A value of
type Var<'T>, where ’T is a polymorphic type variable, consists
of mutable value field, a flag to specify whether or not the Var has
been set as final, and a method by which any dependent views may
be notified that the variable has been updated. This is implemented
as a Snap, discussed in Section 2.4.2

Listing 4. Implementation of a Var
type Var<'T> =
{
mutable Const : bool
mutable Current : 'T
mutable Snap : Snap<'T>

}

2.4.2 Snaps
The implementation of the dataflow layer depends largely on the
notion of a Snap: an observable snapshot of a value.

The IVar Abstraction
At its core, a Snap is based on the notion of an immutable variable,
or IVar [28]. An IVar is created as an empty cell, which can be

written to only once: multiple writes to an IVar are not permitted.
Attempting to read from a ‘full’ IVar will immediately yield the
value contained in the cell, whereas attempting to read from an
‘empty’ IVar will result in the thread blocking until such a variable
becomes available. This is shown in Figure 1.

Emptystart

Full

Put (notify
blocked
threads)

Get (queue request)

Get (return value)

Figure 1. State Transition Diagram for an IVar

The IVar abstraction heavily inspires the method by which
change propagation in the graph is handled. In this sense, there
are no explicit links within the dataflow graph: that is, edges in the
dataflow graph are not represented using concrete links – instead,
dependent nodes can be thought of as attempting to retrieve a value
from an IVar indicating obsoleteness. If the value is not obsolete,
indicated in the IVar model as trying to retrieve a value from an
empty cell, then the requests are queued2. As soon as the value
in the dataflow node has been updated, meaning that it should be
propagated through the graph, then all threads are notified with the
latest value and continue execution.

Snap Implementation
While the IVar abstraction encapsulates the essence of a Snap, in
reality the implementation is slightly more complex. A Snap can be
thought of as a state machine consisting of four separate states:

Ready: A Snap containing an up-to-date value, and a list of threads
to notify when the value becomes obsolete.

Waiting: A Snap without a current value. Contains a list of threads
to notify when the value becomes available, and a list of threads
to notify should the Snap become obsolete prior to receiving a
value.

Forever: A snap in the Forever state indicates that it contains
a value that will never change. This is an optimisation as it
prevents nodes waiting for the Snap to become obsolete when
this will never be the case.

Obsolete: A snap in the Obsolete state indicates that the snap
contains obsolete information.

The state transition diagram for a Snap is shown in Figure 2.

Waitingstart

ReadystartForever Obsolete

MarkReady MarkObsoleteMarkForever

MarkObsolete

Figure 2. State Transition Diagram for a Snap

Snaps can be modified by four operations. These are:

2 Native JavaScript is single-threaded, but we make use of the F# asyn-
chronous workflow capabilities on the client by using a custom scheduler.

Submission to Preproceedings of IFL 2014 3 2014/9/24

MarkForever: Updates the Snap with a value, transitioning to the
Forever state to indicate that the value will never change.

MarkObsolete: Marks the Snap as obsolete, notifying all threads
that are waiting for an updated value.

MarkReady: Marks the Snap as containing a new, up-to-date
value, notifying all threads that are waiting for the initial value.

MarkDone: Marks the Snap as containing a value. If the Snap has
been marked as constant, then transitions to the Forever state,
otherwise transitions to the Ready state.

Additionally, Snaps support a variety of applicative and monadic
combinators in order to implement the operations provided by
Views: to implement Map2 for example, a Snap must be created
which is marked as obsolete as soon as either of the two dependent
Snaps becomes obsolete.

In order to react to lifecycle events and trigger change propa-
gation through the dataflow graph, the When eliminator function is
used.

val When : Snap<'T> -> ready: ('T -> unit) ->
obsolete: (unit -> unit) -> unit

The When function takes a snap and two callbacks: ready, which
is invoked when a value becomes available, and obsolete, which
is invoked when the Snap becomes obsolete.

2.5 Change Propagation
As discussed in Section 2.4.1, a Var consists of a current value,
and a Snap which is used to drive change propagation. When the
value of a Var is updated, the current Snap is marked as obsolete
and replaced by a new Snap in the Ready state.

At its core, a View consists of a function observe to return a
Snap of the current value.

type View<'T> =
| V of (unit -> Snap<'T>)

The simplest View directly observes a single Var: this simply
accesses the current Snap associated with that Var, updating when-
ever the Snap becomes obsolete.

Listing 5 shows the pattern of creating views which depend
on other views. The CreateLazy function takes as its argument
an observation function of type (unit -> Snap<'A>), which is
a function returning a Snap representing the latest value of the
dependent dataflow nodes. This is created lazily for efficiency.

Listing 5. View Implementation
static member CreateLazy observe =
let cur = ref None
let obs () =
match !cur with
| Some sn when not (Snap.IsObsolete sn) -> sn
| _ ->
let sn = observe ()
cur := Some sn
sn

V obs

static member Map fn (V observe) =
View.CreateLazy (fun () ->
observe () |> Snap.Map fn)

static member Map2 fn (V o1) (V o2) =
View.CreateLazy (fun () ->
let s1 = o1 ()
let s2 = o2 ()
Snap.Map2 fn s1 s2)

The implementations of Snap.Map and Snap.Map2 are shown
in Listing 6. We omit some optimisations for brevity.

Listing 6. Snap Combinator Implementation
let Map fn sn =
let res = Create ()
When sn (fn >> MarkDone res sn) (fun () ->

MarkObsolete res)
res

let Map2 fn sn1 sn2 =
let res = Create ()
let v1 = ref None; let v2 = ref None
let obs () =

v1 := None; v2 := None
MarkObsolete res

let cont () =
match !v1, !v2 with
| Some x, Some y ->
MarkReady res (fn x y)

| _ -> ()
When sn1 (fun x -> v1 := Some x; cont ()) obs
When sn2 (fun y -> v2 := Some y; cont ()) obs
res

The Snap.Map2 function takes a dependent Snap sn and a
function fn to apply to the value of sn when it becomes available.
Firstly, an empty Snap is created. This is passed to the When
eliminator along with two callbacks: the first, called when sn is
ready, marks res as ready, containing the result of fn applied to the
value of sn. The second, called when sn is obsolete, marks res as
obsolete.

The Snap.Map2 function applies a function to multiple argu-
ments, which can in turn be used to implement applicative combi-
nators. In order to do this, a Snap res and two mutable reference
cells, v1 and v2, are used. When either of the dependent Snaps
sn1 or sn2 update, the corresponding reference cell is updated and
the continuation function cont is called. If both of the reference
cells contain values, then the continuation function marks res ready,
containing the result of fn applied to sn1 and sn2. If either of the
dependent Snaps become obsolete, then res is marked as obsolete.
This avoids glitches, which are intermediate states present during the
course of change propagation, and avoids such intermediate states
being observed by the reactive DOM layer.

3. Reactive DOM Layer
The reactive DOM layer allows data models described using the
dataflow backend to be used to create reactive web applications
which update automatically as a result of change propagation within
the dataflow graph. In addition to providing a set of reactive input
controls which depend on and modify Vars, the DOM layer provides
combinators allowing dynamic DOM fragments to be directly
composed with static fragments.

The simplest example of this is a text label which mirrors the
contents of an input text box. This is shown in Listing 7.

Listing 7. A label mirroring the contents of an input box
let rvText = Var.Create ""
let inputField = Doc.Input [] rvText
let label = Doc.TextView rvText.View
Div0 [

inputField
label

]

We begin by declaring a variable rvText of type Var<string>,
which is a reactive variable to hold the contents of the input

Submission to Preproceedings of IFL 2014 4 2014/9/24

box. Secondly, we create an input box which is associated with
rvText, meaning that whenever the contents of the input field
changes, rvText will be updated accordingly. Next, we create a
label using Doc.TextView, which we associate with a view of
rvText. Finally, we can place these components inside a <div>
tag using the Div0 function.

3.1 Monoidal Interface
A key design decision that was made in implementing the reactive
DOM layer was the decision to use a monoidal interface for both
DOM elements and DOM attributes. As the API is purely generative,
meaning that it does not permit the deconstruction of nodes, we
believe the use of a monoidal interface is an appropriate choice for
DOM combinators as it does not differentiate between the absence
of a node, a single node, or a list of nodes. Previous iterations of
DOM node combinators within WebSharper did not use such an
interface, and therefore often required explicit yield expressions
within node lists.

All DOM elements in the reactive DOM layer are of type Doc,
which represents either an empty DOM node, a single DOM node,
or multiple DOM nodes. To form a monoid, Doc supports the
operations shown in Listing 8. The same operations are supported
by reactive attributes, of type Attr.

Listing 8. Monoidal operations on Doc
static member Empty : Doc
static member Append : Doc -> Doc -> Doc
static member Concat : seq<Doc> -> Doc

Here, Empty is the neutral identity element, which represents
an empty DOM tree. Append is an associative binary operation,
which combines two DOM subtrees: more precisely, the two DOM
subtrees become sibling nodes, and the second subtree is rendered
after the first.

In accordance with the monoid laws, appending an element to
the empty Doc, and appending the empty Doc to the element does
not change the element. Concatenation is implemented as a fold
over a sequence of Docs, using Doc.Empty as the initial element.

3.2 Reactive Elements and Attributes
Reactive elements are created using the Doc.Element function,
which takes as its arguments a tag name, a sequence of attributes,
and a sequence of child elements. As discussed in section 3.1, these
sequences are concatenated.

static member Element : name: string -> seq<Attr> ->
seq<Doc> -> Doc

Reactive attributes can be static, dynamic, or animated. Static at-
tributes correspond to simple key-value pairs, as found in traditional
DOM applications, whereas dynamic attributes are instead backed
by a View<string>. We defer discussion of animation attributes
to Section 4.

static member Create :
name: string -> value: string -> Attr

static member Dynamic :
name: string -> value: View<string> -> Attr

static member Animated :
name: string ->
Trans<'T> ->
view: View<'T> ->
value: ('T -> string) -> Attr

3.3 Embedding Reactive Views
Arguably the most important function within the Reactive DOM
layer is the Doc.EmbedView function:

static member EmbedView : View<Doc> -> Doc

Semantically, this allows us to embed a time-varying DOM
fragment into a larger DOM tree. This is the key to creating reactive
DOM applications using the dataflow layer: by using View.Map to
map a rendering function onto a variable, for example, we can create
a value of type View<Doc> to be embedded using EmbedView.

By way of example, consider rendering an item in a to-do list,
where the item should be rendered with a strikethrough if the task
has been completed. We begin by defining a simple type, with a
reactive variable of type Var<bool> which is set to true if the task
has been completed.

type TodoItem =
{ Done : Var<bool>
TodoText : string }

It would then be possible to render such an item as shown in
Listing 9. Note that here, Del0 is a notational shorthand for an
HTML element without any attributes, and Doc.TextNode
creates a DOM text node.

We also make use of the F# construct |>, pronounced ‘pipe’,
which signifies reverse function application.

let (|>) x f = f x

Listing 9. Embedding Reactive Views
View.FromVar todo.Done
|> View.Map (fun isDone ->

if isDone
then Del0 [Doc.TextNode todo.TodoText]
else Doc.TextNode todo.TodoText)

|> Doc.EmbedView

We use this pattern extensively when developing applications
using UI.Next.

3.4 Implementation
Doc
We store an in-memory representation of DOM trees, propagating
these to the DOM when necessary. At the outermost layer, a Doc
consists of information about its associated subtree, and a unit view
which is used to propagate updates upwards through a tree. This is
shown in Listing 10.

Listing 10. Implementation of the Doc type
type Doc =

{ DocNode : DocNode; Updates : View<unit> }

A DocNode is a node in the in-memory skeleton DOM represen-
tation. Defined as an algebraic data type, a DocNode may represent
the concatenation of two Docs as a result of an Append operation,
a DOM element, an embedding of a reactive DOM subtree, a DOM
text node, or an empty node.

When creating nodes, the Updates view is combined with any
dependent sub-views using the monadic and applicative combinators
discussed in Section 2.2. For example, the Updates view of an
AppendDoc is dependent on the Updates views of both sub-nodes,
and as such is constructed using the Doc.Map2 combinator, as
shown in Listing 11. Note that the Docs.Mk is simply a constructor
function for a Doc record, taking a DocNode and an Updates view
as its arguments. The ||> operator is similar to |>, but instead takes
a tuple of arguments to pass to a function.

Submission to Preproceedings of IFL 2014 5 2014/9/24

let (||>) (a, b) f = f a b

Listing 11. Construction of an AppendDoc DocNode
static member Append a b =

(a.Updates, b.Updates)
||> View.Map2 (fun () () -> ())
|> Docs.Mk (AppendDoc (a.DocNode, b.DocNode))

EmbedView
As discussed in Section 3.3, the EmbedView allows a time-varying
DOM segment to be embedded within the DOM tree, with any
updates in this segment being reflected within the DOM. The
implementation of this is based on the idea of ‘dirty-checking’,
as employed by many reactive DOM libraries such as Facebook
React [1].

The DocNode representation of a time-varying DOM node is a
DocEmbedNode, shown in Listing 12.

Listing 12. The DocEmbedNode type
type DocEmbedNode =

{ mutable Current : DocNode
mutable Dirty : bool }

The record has two mutable fields: the Current field represents
the current value of the embedded view, and the Dirty field is set
to true if the View<Doc> has changed, indicating that the DOM
subtree should be updated.

The implementation of the EmbedView function is shown in
Listing 13.

Listing 13. Implementation of the EmbedView function
static member EmbedView view =

let node = Docs.CreateEmbedNode ()
view
|> View.Bind (fun doc ->

Docs.UpdateEmbedNode node doc.DocNode
doc.Updates)

|> View.Map ignore
|> Docs.Mk (EmbedDoc node)

The EmbedView function works by creating a new entry in
the dataflow graph, depending on the time-varying DOM segment.
Conceptually, this can be thought of as a View<View<Doc>>, which
would not be permissible in many FRP systems. Here, the monadic
Bind operation provided by the dynamic dataflow layer is crucial
in allowing us to observe not only changes within the Doc subtree
(using doc.Updates), but changes to the Doc itself: when either
change occurs, the DocEmbedNode is marked as dirty, and the
update is propagated upwards through the tree.

Synchronisation
As previously discussed, any updates in the DOM representation
are propagated upwards through the tree representation. In order to
trigger a DOM update, we use the Sink imperative observer func-
tion discussed in Section 2.2, which triggers a function whenever
a View (in this case the Updates view of the root node in the Doc
tree) changes.

Synchronisation between the virtual DOM skeleton and the
physical DOM representation is performed using an O(n) traversal
of the virtual DOM tree, in a similar way to existing libraries. While
at first this may seem prohibitive for a responsive web application,
such an approach has been proven by libraries such as React to
yield acceptable performance since such traversals are generally not
computationally expensive, and there tend to be few physical DOM
changes.

For an element node, the synchronisation algorithm recursively
checks whether any child nodes have been marked as dirty. In the
case of EmbedNodes, it is not only necessary to check whether
the EmbedNode itself is dirty but also whether the current subtree
value represented by the EmbedNode is dirty: this ensures that both
global (entire subtree changes) and local (changes within the subtree)
changes have been taken into account.

An important consideration when implementing the synchroni-
sation algorithm was the preservation of node identity – that is, the
internal state associated with an element such as the current input
in a text box, and whether the element is in focus. For this reason,
when updating the children of a node, simply removing and reinsert-
ing all children of an element marked dirty is not a viable solution:
instead we associate a key with each item, which is used for equality
checking, and perform a set difference operation to calculate the
nodes to be removed.

4. Declarative Animation
Animation is increasingly used in modern web applications, espe-
cially when visualising data, when processing user input, or advanc-
ing state within a control flow.

In the context of web applications, animations are typically im-
plemented as an interpolation between attribute values over time.
Such animations must be composable in order for different anima-
tions to run either sequentially or concurrently, must support the
specification of interpolation strategies for a given type, and easing
functions, which specify how quickly the animation progresses at
different points during the animation.

Native CSS provides animation functionality which can inter-
polate values, apply easing functions, and apply animations both
sequentially and concurrently through the use of keyframes. While
this is sufficient and intuitive for simple applications, the approach
founders when animations depend explicitly on dynamic data and
cannot be determined statically.

The D3 library [4] provides more powerful animation functional-
ity. In particular, the library enables animations to depend directly on
data sets, for animations to be delayed, and for the specification of
transitions—animations which are triggered when a node is added,
changed, or removed from the DOM.

D3 is an extremely powerful library, and its use has led to some
very impressive animated visualisations. The API, however, does not
lend itself particularly well to a functional, statically typed language:
in particular, animations are generally constructed using selections,
using function chaining to add animations and transitions. This
results in animations being declared in a more imperative style.

The declarative animation library in UI.Next allows animations
(an interpolation of a value over time) and transitions to be specified
separately. These are then integrated with the reactive DOM layer in
one of two ways: more commonly, they can be attached directly to
elements as attributes and therefore react directly to changes within
the dataflow graph, but they may also be scheduled imperatively.

An animation is defined using the Anim<'T> type, where the ’T
type parameter defines the type of value to be interpolated during the
animation. As shown in Listing 14, an Anim<'T> type is internally
represented as a function Compute, mapping a normalised time (a
value between 0 and 1 denoting progress through the animation) to
a value, and the duration of the animation.

Listing 14. Implementation of the Anim<’T> type
type Anim<'T> =
{ Compute : Time -> 'T; Duration : Time }

An animation can be constructed using the Anim.Simple or
Anim.Delayed functions: Anim.Simple can be seen as a delayed

Submission to Preproceedings of IFL 2014 6 2014/9/24

animation with a delay of 0. This takes as its arguments an interpo-
lation strategy, an easing function, the duration of the animation, the
delay of the animation in milliseconds, and the start and end values.

static member Anim.Simple :
Interpolation<'T> ->
Easing ->
duration: Time ->
delay: Time ->
startValue: 'T ->
endValue: 'T ->
Anim<'T>

To describe collections of animations, we once again make use
of a monoidal interface: in this case, the semantics of monoid
concatenation are that the animations play concurrently as opposed
to sequentially. Collections of animations are represented by the
Anim type and supports the monoidal Empty, Append and Concat
operations, as well as a function Pack to lift an Anim<unit> type
into a singleton animation collection.

static member Append : Anim -> Anim -> Anim
static member Concat : seq<Anim> -> Anim
static member Empty : Anim
static member Pack : Anim<unit> -> Anim

Concatenation of a list of animations involves creating a new
animation with the length of the longest constituent animation,
and a compute function which ‘prolongs’ shorter animations by
not performing further interpolation after the end of the original
animation.

Transitions are specified using the Trans type. Functions for
creating and modify Trans types are shown in Listing 4.

static member Create : ('T -> 'T -> Anim<'T>) ->
Trans<'T>

static member Trivial : unit -> Trans<'T>
static member Change : ('T -> 'T -> Anim<'T>) ->

Trans<'T> -> Trans<'T>
static member Enter : ('T -> Anim<'T>) -> Trans<'T>

-> Trans<'T>
static member Exit : ('T -> Anim<'T>) -> Trans<'T>

-> Trans<'T>

A transition can either be created with the Trivial function,
meaning that no animation occurs on changes, or with an animation.
Enter and exit transitions, which occur when a node is added or
removed from the DOM tree respectively, can be specified using the
Enter and Exit functions. Upon a DOM update, a set intersection
is performed between the nodes that have enter and exit transitions
and the nodes which have been added and removed respectively, and
these are concatenated and played as an animation collection.

An animation is embedded within the reactive DOM layer as an
attribute through the Attr.Animated function:

static member Animated : name: string -> Trans<'
T> -> view: View<'T> -> value: ('T -> string
) -> Attr

This function takes the name ofthe attribute to animate, a
transition, a view of a value upon which the animation depends
(for example, an item’s rank in an ordered list), and a projection
function from that value to a string, in such a way that it may be
embedded into the DOM.

5. Functional Web Abstractions
Functional programming and static type systems can ease web
programming by facilitating the implementation of functional web

abstractions. In particular, Formlets [8] provide a structured means,
based on the notion of an applicative functor [21], of retrieving input
from a user. Using Formlets, it is possible to define a statically-typed
model of the input (for example as a record), and populate this model
with input gained from form controls.

Previous work has built upon Formlets in various ways. By
extending Formlets with a monadic interface in addition to an
applicative one, sequences of Formlets called Flowlets [3] can be
created, where each stage in the flow can depend on previously-
submitted input. Additionally, Formlets by default do not allow
any flexibility in how forms are rendered: this is addressed by a
Pluggable GUI-let, or Piglet [11].

UI.Next greatly simplifies the implementation of Piglets and
Flowlet-style combinators. In this section, we discuss the implemen-
tation of these abstractions, and how their implementation has been
eased using the framework. Additionally, we discuss a method by
which pages and application state may be synchronised with the
current URL, to allow easier sharing of locations within single-page
applications.

5.1 Flowlets
The Flowlet-style combinators we have implemented are shown
in Listing 15. It is important to note that this is not a direct
implementation of Flowlets: in particular, we do not build forms
using static, applicative composition, instead allowing each stage
of the flow to handle the retrieval and processing of user input.
The primary objective of these combinators, however, is to allow
applications with a linear control flow to be constructed in a simple,
intuitive fashion.

Listing 15. Flowlet Combinators
type Flow =
// Definition
static member Define : (('A -> unit) -> Doc) ->

Flow<'A>
static member Static : Doc -> Flow<unit>
// Mapping
static member Map : ('A -> 'B) -> Flow<'A> -> Flow

<'B>
// Monadic Combinators
static member Bind : Flow<'A> -> ('A -> Flow<'B>)

-> Flow<'B>
static member Return : 'A -> Flow<'A>
// Rendering function
static member Embed : Flow<'A> -> Doc
// Helper function
static member Do : FlowBuilder

Pages in the flow are defined using the Define function.
To define a page, we require function takes a callback of type
('A -> unit), used to pass the resulting value to subsequent
stages of the flow, and renders the page as a Doc. It is also possible
to define a static page which does not progress the flow by using the
Static function.

Internally, a Flow<'T> is represented as a singleton record
containing one member, a function Render which takes as its
arguments a Var to be used for rendering the flow and a continuation
function (’T -> unit), resulting in a unit value.

Listing 16. Implementation of the Flow type
type Flow<'T> =
{ Render : Var<Doc> -> ('T -> unit) -> unit }

To combine multiple stages of a flow, the Bind function is used.
This is shown in Listing 17.

Submission to Preproceedings of IFL 2014 7 2014/9/24

Listing 17. Implementation of the Flow.Bind function
static member Bind m k =

{ Render = fun var cont -> m.Render var (fun r
-> (k r).Render var cont) }

The Bind function is implemented by creating a new Flow
record from a flow m of type Flow<'A> and a continuation function
('A -> Flow<'B>). The newly-created flow renders m to the Var
var, with the value r returned by that particular stage of the flow
applied to the continuation function k to construct the next stage in
the flow.

The eliminator function for Flow types, Embed, is defined in
Listing 18.

Listing 18. Implementation of Flow.Embed
static member Embed fl =

let v = Var.Create Doc.Empty
fl.Render v ignore
Doc.EmbedView (View.FromVar v)

We begin by creating a Var v used to contain the current page
rendering, initially consisting of the empty document. The flow
is ‘executed’ by invoking the Render function with the variable,
which is updated by the bind operation, and finally by embedding
the resulting View.

Through the use of computation expressions [24], it is possible
to specify flows in a manner analogous to do-notation in Haskell.
Consider the following example flow:

1. A user is asked for a name and address, which is used to create
a Person record.

2. The user is then asked to specify whether they wish to specify a
phone number or e-mail address.

3. Based on the previous answer, the user is asked for either a
phone number or an e-mail address.

4. The user is shown the data that they entered.

Such a flow would be described by the computation expression
shown in Listing 19.

Listing 19. A flow described as a computation expression
let ExampleFlow () =

Flow.Do {
let! person = personFlowlet
let! ct = contactTypeFlowlet
let! contactDetails = contactFlowlet ct
return! Flow.Static (finalPage person

contactDetails)
}
|> Flow.Embed

This format provides a simple and expressive way of describing
applications with a linear control flow.

5.2 Piglets
Formlets [8] allow user input to be retrieved in a type-safe fashion
through the use of applicative functors to aid static composition. In
spite of their advantages including type-safety, composability, and
formal definition, formlets suffer from a lack of modularity: that is,
the rendering of a formlet is tightly coupled to its data model. In
order to change the ordering of components within the formlet, for
example, it is necessary to modify the underlying data model.

Piglets [11] alleviate these concerns by separating the model
and the view. Piglets consist of two separate components: a stream
composed of values of components within the Piglets, and a view

builder function which is provided with the values in the stream,
and returns a rendering of the form. This is shown in Listing 20.

Listing 20. Structure of a Piglet
type Piglet<'a, 'v> =

{ stream: Stream<'a>; viewBuilder: 'v }

In order to create a Piglet, the Yield function is used. The
argument to this can be a function, in which case static composition
can be achieved through the use of the applicative-style composition
operator ⊗. Both operations are shown in Listing 21.

Listing 21. Piglet Construction and Composition Functions
val Yield :
'a -> Piglet<'a, (Stream<'a> -> 'b) -> 'b>

val ⊗:
Piglet<'a -> 'b, 'v1 -> 'v2> ->
Piglet<'a, 'v2 -> 'v3> ->
Piglet<'b, 'v1 -> 'v3> ->

We are currently working towards an implementation of Piglets
using the UI.Next framework. In particular, UI.Next replaces the
Stream with primitives from the dataflow layer, as shown in Listing
22.

Listing 22. Piglets using UI.Next primitives
type Piglet<'a, 'v> =

{ read : View<Result<'a>> ; render : 'v }

val Yield : 'a -> Piglet<'a, (Var<'a> -> 'v) -> 'v>

In particular, a Piglet implemented using UI.Next consists of
a View containing the current state of the form, and a rendering
function. Creating a Piglet using Yield creates a Var which is used
within the rendering function, and the implementation of ⊗ uses
View.Map2 to create a dependent View.

The original Stream implementation relied on manual subscrip-
tion and pushing of values, whereas this is all handled by dataflow
combinators in the UI.Next implementation. Replacing much of
this imperative-style logic with functional combinators results in
more concise, understandable, and readable code. Use of UI.Next
primitives also avoids the need to specify explicit disposal functions,
as was the case with Streams.

5.3 Sites with Multiple Pages
This work focuses on facilitating the creation of single-page appli-
cations: applications which run in a single page in the browser. Such
applications often consist of multiple sub-pages, using JavaScript to
transition between them.

Using our approach, implementing such functionality is simple
and idiomatic. We begin by declaring a data type which describes
the different pages in the site, and rendering functions (producing a
Doc) for each:

type IFLPage = | Home | CallForPapers | Registration
| Submission |

let renderHome v =
Div0 [

H10 [txt "Home"]
...

]

let renderCFP v = ...

Submission to Preproceedings of IFL 2014 8 2014/9/24

We then create a Var<IFLPage>, representing the current page.
Using this, we may then create a View, and map the appropriate
rendering function, resulting in a view of the rendering of the current
page. This may then be embedded into a page using EmbedView;
navigation between pages is possible by changing the previously-
created Var.

let v = Var.Create Home
View.FromVar v
|> View.Map (fun pg ->

match pg with
| Home -> renderHome v
| CallForPapers -> renderCFP v
| Registration -> renderRegistration v
| Submission-> renderSubmission v)

|> Doc.EmbedView

6. Examples
In this section, we present two examples using the framework: the
first of which showcases reactive animation and the treatment of
object identity, and the second of which describes a form rendered
using the Piglets implementation backed by UI.Next.

6.1 Object Constancy
Object Constancy is a technique for allowing an object representing
a particular datum to be tracked through an animation. In particular,
consider the case where the underlying data does not change, but
the user controls filtering criteria: changes in such criteria may add
new data to the visualisation, remove currently-displayed data, and
assuming sorting criteria remains constant, change the ordering of
the data.

In such a case, the objects representing the data remaining in the
visualisation should not be removed and re-added, but instead should
transition to their new positions. Such an example is discussed by
Bostock [5], using the D3 [4] library.

The example described by Bostock [5] displays the percentage of
the population in a particular age bracket for a number of different
states, where 10 states are displayed. The percentages for each state
are displayed in descending order. To recreate this example using
our declarative animation framework, we begin by defining a data
model using F# records.

type AgeBracket = | AgeBracket of string
type State = | State of string
type DataSet = {

Brackets : AgeBracket []
Population : AgeBracket -> State -> int
States : State []

}
type StateView = {

MaxValue : double
Position : int
State : string
Total : int
Value : double

}

Here, AgeBracket and State are representations of age brack-
ets and states respectively, and DataSet is a representation of the en-
tire data set as read in from an external data source. The StateView
record specifies details about how a state should be displayed based
on other visible items: MaxValue specifies the maximum percent-
age, Position specifies the rank of the item in the visible set,
State specifies the name of the state, Total specifies the total
number of items within the set and Value specifies the percentage
value of the item.

let SimpleAnimation x y =
Anim.Simple Interpolation.Double Easing.

CubicInOut
300.0 x y

let SimpleTransition =
Trans.Create SimpleAnimation

let InOutTransition =
SimpleTransition
|> Trans.Enter (fun y -> SimpleAnimation Height

y)
|> Trans.Exit (fun y -> SimpleAnimation y Height

)

Using this, it is possible to define an animation lasting for 300ms
between 2 given values. With the animation, we can then create two
transitions: an unconditional transition SimpleTransition, and
a transition InOutTransition which is triggered when a DOM
entry is added (Enter) and removed (Exit).

The Enter and Exit transitions interpolate the y co-ordinate of
a bar between the bottom of the SVG graphic (Height) and a given
position. In particular, upon entry, the element will transition from
the origin position to the desired position; and will transition back
to the origin position on exit.

We now specify a rendering function taking a View<StateView>
and returning a Doc to be embedded within the tree. We elide some
of the function in the interest of brevity, but you can find the
complete source of the example online3.

let Render (state: View<StateView>) =
let anim name kind (proj: StateView -> double) =

Attr.Animated name kind (View.Map proj state)
string

// Projection functions
let x st = Width * st.Value / st.MaxValue
let y st = Height * double st.Position / double st

.Total
let h st = Height / double st.Total - 2.

S.G [Attr.Style "fill" "steelblue"] [
S.Rect [

"x" ==> "0"
anim "y" InOutTransition y
anim "width" SimpleTransition x
anim "height" SimpleTransition h

] []
]

The helper function anim takes the name of the attribute to
animate, the transition to use, and a projection from the state view
to the value to use within the transition. We then specify three
projection functions: one for the width of the bar, based on the
value as a proportion of the maximum value in the set; one for the
Y-position of the bar, and and one for the height of the bar. These
may then be specified as attributes of the object to animate.

Finally, we create a selection box to allow the user to modify the
age bracket, which in turn modifies the current list of StateViews.
To implement object constancy, a key which uniquely identifies the
data is required [14]. In the case of StateView, this is State: we
use this when embedding the current set of visible elements using
the ConvertSeqBy function, which is a memoising conversion
function useful for preserving node identity. It is then possible to
embed this into the DOM using EmbedView.

S.Svg ["width" ==> string Width; "height" ==> string
Height] [

shownData

3 https://github.com/intellifactory/websharper.ui.next/
blob/master/src/ObjectConstancy.fs

Submission to Preproceedings of IFL 2014 9 2014/9/24

|> View.ConvertSeqBy (fun s -> s.State) Render
|> View.Map Doc.Concat
|> Doc.EmbedView

]

6.2 Reactive Piglets
In this simple example, we define a form which consists of three
fields: a first name, a last name, and a type of pet. We begin by
defining a data model.

type Pet = | Cat | Dog | Piglet
type Person = { firstName: string; lastName: string;

pet : Pet }
let Pets = [Cat ; Dog ; Piglet]
let showPet = function
| Cat -> "Cat" | Dog -> "Dog" | Piglet -> "Piglet"

The next step is to use the Return and Yield operation to
construct a Piglet. We also use the Validation.Is function to add
validation to the form: should either the first or last name be empty,
the failure will be propagated and displayed upon submission. The
WithSubmit function adds a Submitter type, which can be used
to snapshot the state of the form stream when a submission button
is pressed. This can then be used as part of an AJAX call to a server,
or to display errors.

let Person init =
Piglet.Return (fun f l p -> { firstName = f;

lastName = l ; pet = p})
<*> (Piglet.Yield init.firstName

|> Validation.Is Validation.NotEmpty "Please
enter your first name.")

<*> (Piglet.Yield init.lastName
|> Validation.Is Validation.NotEmpty "Please

enter your last name.")
<*> (Piglet.Yield init.pet)
|> Piglet.WithSubmit

Finally, we define a view for the Piglet. The Render function
is provided with Vars for the fields in the Piglet, which are in turn
used with the built-in form components in UI.Next.

let radioButtons (v: Var<Pet>) = ...
let Person init =
ViewModel.Person init
|> Piglet.Render (fun first last pet submit ->

Doc.Concat [
Div0 [Doc.TextNode "First Name: " ; Doc.Input

[] first]
Div0 [Doc.TextNode "Last Name: " ; Doc.Input

[] last]
radioButtons pet
Div0 [Doc.Button "Submit" [] submit.Trigger]
Div0 [Doc.TextView (submit.Output |>
View.Map (function
| Success u ->

"Person: " + u.firstName + " " +
u.lastName + ", Pet: " + (showPet u.pet)

| Failure errs ->
List.fold (fun out (str: ErrorMessage) ->
out + " " + str.Message) "" errs))]])

7. Related Work
7.1 Dataflow Systems
Synchronous dataflow languages originated as a means of specifying,
designing, and implementing real-time systems such as those used
within hardware. Languages such as ESTEREL [2], LUSTRE [13],

and Lucid Synchrone [27] can compile programs to transition
systems, in such a way that they may be formally verified using
techniques such model checking. Such approaches are generally
limited to the hardware domain, as the languages do not support
features required in more general programs such as recursion or
dynamic memory allocation.

REACTIVEML [20] is an extension of OCaml embedding
the synchronous dataflow paradigm, providing primitives such
as signal and await to express dataflow within the language.
Cooper and Krishnamurthi [9] extend the Scheme programming
language with dynamic dataflow to create a system, FrTime, which
works by modifying the Scheme evaluator.

Scala.React [19] embeds the dataflow paradigm into Scala,
introducing an imperative dataflow language, time-varying values,
and event streams. The implementation is driven by a scheduler
which proceeds in discrete steps, known as propagation turns, and
the graph is constructed using weak pointers. A similar technique is
used within OCaml React [6].

7.2 Functional Reactive Programming
Functional Reactive Programming [12, 15, 31] has served a large
inspiration for the dataflow-based model for reactive user interfaces
that we have described. FRP systems are based around primitive ab-
stractions modelling time-varying data, referred to as Behaviours
or Signals, and Events which occur either as a response to events
such as user input, or when a signal satisfies a set of predicates.

The semantics of FRP are extremely attractive and clear: time-
varying values are simple to transform and reason about, and event
streams provide a method by which interaction can modify these.
Despite their mathematical simplicity, the implementation of FRP se-
mantics is notoriously difficult. In particular, early implementations
of FRP such as Fran [12] remained very true to FRP semantics, at
the cost of introducing memory leaks: in order to fully implement
the FRP semantics (which allowed signals to depend on any past,
present or future value), it was necessary to store every signal value,
regardless of whether or not it would be used. This in turn led to
memory usage growing linearly with time.

Subsequent approaches favour less expressive forms of FRP to
provide better runtime guarantees. Real-time FRP [32] only allows
signals to be used in ways which can be implemented efficiently, and
can be reasoned about when developing real-time systems. Event-
driven FRP [33] takes this further by only propagating changes as a
result of a discrete event.

Arrowised FRP [16, 23] disallows signals to be treated as first-
class values instead providing only transformers or combinators on
primitive signals. Manipulating signals in this way is eased through
the use of the Arrow abstraction [17]. Such an approach, although
less expressive than purely-monadic FRP approaches such as Fran,
are far more efficient and practical. The issue with arrowised FRP
as it pertains to GUI programming is that it cannot adequately
express dynamic dataflow graphs, as it becomes impossible to
specify monadic combinators on time-varying values. Since our
implementation of signals (Views), works purely on the latest
available value, it is possible to specify monadic combinators,
meaning that dynamic composition is possible.

The Elm programming language [10] is a language providing
first-class FRP primitives with the goal of easing the creation
of responsive GUIs. Elm implements static signal composition
operators such as lift which work on the latest value in the signal,
equivalent to View.Map in our dataflow layer, and liftn, which
is equivalent to View.Map2 and View.Apply. In addition, Elm
provides a construct foldp to perform transformations based on
previous signal values. The asynchronous capabilities of Elm are
mirrored in UI.Next through the use of the MapAsync function,
which is supplemented by the RPC functionality supported by

Submission to Preproceedings of IFL 2014 10 2014/9/24

WebSharper. In order to prevent space leaks, the creation of higher-
order signals is prohibited by the type system. Such an approach is
a good solution to the problem, but is not feasible when working
within an existing ML type system. Instead, we forego the ability
to perform time-dependent transformations as a primitive operation
within the reactive layer, instead postulating that such functionality
may be attained either using simple single-layer callbacks, or an
approach based on concurrent processes such as Concurrent ML
[28].

More theoretical recent work [18?] focuses on languages
implementing FRP semantics, including higher-order signals, while
guaranteeing leak-freedom. In particular, the approach described
by ?] divides expressions into those which may be evaluated
immediately, and those which depend on future values and whose
evaluation must be delayed. In order to prevent space leaks, obsolete
behaviour values are aggressively deleted. The approach relies on a
specialised type system and an explicit notion of time being exposed
to the programmer, which limits its applicability to our problem
domain.

7.3 Reactive DOM Libraries
Facebook React [1] is a library which, in a similar way to our
approach, allows developers to construct DOM nodes programmati-
cally. This process is facilitated through JSX, an HTML-like markup
language with facilities for property-based data binding. The key
concept behind React is the use of an automated ‘diff’ algorithm,
driven by a global notion of time instead of a dataflow system: as
a result, DOM updates are batched for efficiency. We decided to
use a dataflow-backed system instead of purely a diff algorithm to
avoid losing control over DOM node identity. Our approach uses
some aspects of React, such as dirty-checking, but this is localised
to DOM fragments which have been specifically embedded.

Flapjax [22] is a dataflow-backed programming language pro-
viding full FRP functionality which can also be used as a JavaScript
library. As the library does not prohibit higher-order signals, it is
possible to introduce space leaks as previously discussed.

7.4 Functional Web Programming
Functional programming has been found to be very applicable to the
web programming domain. In particular, functional programming
and the static type systems associated with many functional pro-
gramming languages allow for the development of many powerful
web abstractions to ease the structuring and development of web
applications.

WebSharper takes inspiration from Links [7], a language which
allows client, server, and database code to be written in a single
source language, thus mitigating the impedance mismatch problem.
F# functions are compiled to JavaScript aided by quotations [30],
and AJAX calls are easily represented using F# asynchronous
workflows.

Formlets [8] are an abstraction for retrieving typed user input
from HTML forms, which have been extended by Denuzière et al.
[11] to enable the specification of customised rendering functions.
Flowlets [3] augment Formlets with a monadic interface to enable
the construction of multiple dependent formlets.

The interactive Data, or iData abstraction [25] is an edit-driven
approach to type-safe forms: edits to input fields trigger compu-
tations, with previous state being restored in the case of invalid
data being entered. This is taken further by the iTasks workflow
management system [26] which makes use of multiple high-level
combinators such as recursion, sequence, and choice.

8. Conclusion
In this paper, we have presented a framework in F#, UI.Next, facil-
itating the creation of reactive DOM applications backed by a dy-

namic dataflow graph. Guided by previous work on functional reac-
tive programming and dataflow systems, our framework consists of
a dataflow layer consisting of Vars, representing time-varying vari-
ables, and Views, read-only representations of Vars in a dataflow
graph. Our dataflow representation is modular as it is decoupled
from the DOM layer, and amenable to garbage collection by not
allowing higher-order event streams or keeping strong links between
dataflow nodes. While inspired by functional reactive programming,
we make several simplifications which facilitate the implementation
of higher-order monadic operations on Views to allow dynamic
dataflow graph composition, in turn supporting common GUI pro-
gramming patterns.

The DOM layer uses a monoidal interface to aid composability,
and through the use of the EmbedView function, allows time-varying
DOM elements to be directly embedded into a larger tree. Updates to
the in-browser DOM are performed only when necessary and build
on the well-founded notion of dirty-checking, minimising needless
node generation both as an efficiency measure and to preserve
node identity. Such an approach within a strongly, statically-typed
language has proven extremely useful in aiding the implementation
of several functional web abstractions, such as Piglets and Flowlets.

Additionally, we have presented an interface for declarative
animation based on the dataflow graph, which integrates directly
into the reactive DOM layer as reactive attributes, and can be backed
directly by reactive attributes. This enables the creation of rich, data-
backed animations using a statically-typed, declarative interface.

8.1 Future Work
The current implementation of UI.Next is freely available for
experimentation. Future work will be centred around effectively
integrating event streams within the dataflow layer to aid handling
of user interactions. We envisage that usage of the concurrent
programming paradigm as in Concurrent ML [28] or Hopac 4 will
prove to be a promising future direction for this purpose.

We are currently investigating how to further integrate the
reactive layer with plain HTML through the use of an F# type
provider [29]. A more ambitious goal involves implementing the
dataflow layer in a distributed setting with updates to a Var on a
server being propagated automatically to clients. We are additionally
currently working on a frontend implementation for the Windows
Presentation Foundation, to allow the dynamic dataflow backend to
be used within traditional desktop applications.

Other planned work includes further efficiency benchmarking
and optimisation: while we currently implement some optimisa-
tions to minimise physical DOM accesses, further optimisation is
possible.

Strongly, statically-typed languages have been shown to aid the
development of web applications by better allowing applications to
be structured, and decreasing debugging time by detecting errors
earlier in the development process. We hope that continued research
into functional web programming will allow web developers to fully
take advantage of these advances.

References
[1] React | A JavaScript Library for Building User Interfaces. http:

//facebook.github.io/react/, 2014.
[2] Gérard Berry and Georges Gonthier. The Esterel synchronous program-

ming language: design, semantics, implementation. Science of Com-
puter Programming, 19(2):87–152, November 1992. ISSN 01676423.
.

[3] Joel Bjornson, Anton Tayanovskyy, and Adam Granicz. Composing
Reactive GUIs in F# using WebSharper. In Implementation and
Application of Functional Languages, pages 203–216. Springer, 2011.

4 https://github.com/VesaKarvonen/Hopac

Submission to Preproceedings of IFL 2014 11 2014/9/24

[4] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D3: Data-
Driven Documents. Visualization and Computer Graphics, IEEE
Transactions on, 17(12):2301–2309, 2011.

[5] Mike Bostock. Object Constancy. http://bost.ocks.org/mike/
constancy/, 2012.

[6] Daniel Bünzli. React / Erratique. http://erratique.ch/
software/react, 2010.

[7] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. Links:
Web Programming Without Tiers. In FrankS de Boer, MarcelloM
Bonsangue, Susanne Graf, and Willem-Paul de Roever, editors, Formal
Methods for Components and Objects, volume 4709 of Lecture Notes in
Computer Science, pages 266–296. Springer Berlin Heidelberg, 2007. .

[8] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. The
Essence of Form Abstraction. In Programming Languages and Systems,
pages 205–220. Springer, 2008.

[9] Gregory H. Cooper and Shriram Krishnamurthi. Embedding Dynamic
Dataflow in a Call-by-Value Language. In Peter Sestoft, editor,
Programming Languages and Systems, volume 3924 of Lecture Notes
in Computer Science, pages 294–308. Springer Berlin Heidelberg, 2006.
.

[10] Evan Czaplicki and Stephen Chong. Asynchronous Functional Reactive
Programming for GUIs. In Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’13, pages 411–422, New York, NY, USA, 2013. ACM. .

[11] Loïc Denuzière, Ernesto Rodriguez, and Adam Granicz. Piglets to the
Rescue. In Rinus Plasmeijer, editor, Proceedings of the 25th Interna-
tional Symposium on Implementation and Application of Functional
Languages (IFL ’13), 2013.

[12] Conal Elliott and Paul Hudak. Functional Reactive Animation. In Pro-
ceedings of the ACM SIGPLAN International Conference on Functional
Programming (ICFP ’97), volume 32(8), pages 263–273, 1997.

[13] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous
data flow programming language LUSTRE. Proceedings of the IEEE,
79(9):1305–1320, September 1991. ISSN 0018-9219. .

[14] Jeffrey Heer and Michael Bostock. Declarative Language Design for
Interactive Visualization. Visualization and Computer Graphics, IEEE
Transactions on, 16(6):1149–1156, 2010.

[15] Paul Hudak. Functional Reactive Programming. In Swierstra, editor,
Programming Languages and Systems, volume 1576 of Lecture Notes
in Computer Science, chapter 1, page 1. Springer Berlin Heidelberg,
Berlin, Heidelberg, March 1999. ISBN 978-3-540-65699-9. .

[16] Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson.
Arrows, Robots, and Functional Reactive Programming. In Advanced
Functional Programming, pages 159–187. Springer, 2003.

[17] John Hughes. Generalising monads to arrows. Science of Computer
Programming, 37(1-3):67–111, May 2000. ISSN 01676423. .

[18] Neelakantan R. Krishnaswami, Nick Benton, and Jan Hoffmann.
Higher-order Functional Reactive Programming in Bounded Space. In
Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’12, pages 45–58,
New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1083-3. .

[19] Ingo Maier, Tiark Rompf, and Martin Odersky. Deprecating the
Observer Pattern. Technical Report EPFL-REPORT-148043, 2010.

[20] Louis Mandel and Marc Pouzet. ReactiveML: A Reactive Extension
to ML. In Proceedings of the 7th ACM SIGPLAN International
Conference on Principles and Practice of Declarative Programming,
PPDP ’05, pages 82–93, New York, NY, USA, 2005. ACM. ISBN
1-59593-090-6. .

[21] Conor McBride and Ross Paterson. Applicative Programming with
Effects. Journal of Functional Programming, 18(01):1–13, May 2007.
.

[22] Leo A. Meyerovich, Arjun Guha, Jacob Baskin, Gregory H. Cooper,
Michael Greenberg, Aleks Bromfield, and Shriram Krishnamurthi. Flap-
jax: A Programming Language for Ajax Applications. In Proceedings
of the 24th ACM SIGPLAN Conference on Object Oriented Program-
ming Systems Languages and Applications, OOPSLA ’09, pages 1–20,
New York, NY, USA, 2009. ACM. .

[23] Henrik Nilsson, Antony Courtney, and John Peterson. Functional
Reactive Programming, Continued. In Proceedings of the 2002 ACM
SIGPLAN Workshop on Haskell, Haskell ’02, pages 51–64, New York,
NY, USA, 2002. ACM. ISBN 1-58113-605-6. .

[24] Tomas Petricek and Don Syme. The f# Computation Expression Zoo.
In Practical Aspects of Declarative Languages, pages 33–48. Springer,
2014.

[25] Rinus Plasmeijer and Peter Achten. iData for the World Wide Web
âĂŞ Programming Interconnected Web Forms. In Masami Hagiya and
Philip Wadler, editors, Functional and Logic Programming, volume
3945 of Lecture Notes in Computer Science, pages 242–258. Springer
Berlin Heidelberg, 2006. .

[26] Rinus Plasmeijer, Peter Achten, and Pieter Koopman. iTasks: Exe-
cutable Specifications of Interactive Work Flow Systems for the Web.
In Proceedings of the 12th ACM SIGPLAN International Conference
on Functional Programming, ICFP ’07, pages 141–152, New York, NY,
USA, 2007. ACM. .

[27] Marc Pouzet. Lucid Synchrone, version 3. Tutorial and reference
manual. Université Paris-Sud, LRI, 2006.

[28] John H. Reppy. Concurrent Programming in ML. Cambridge University
Press, 2007.

[29] Don Syme, Keith Battocchi, Kenji Takeda, Donna Malayeri, Jomo
Fisher, Jack Hu, Tao Liu, Brian McNamara, Daniel Quirk, Matteo
Taveggia, and Others. Strongly-typed language support for internet-
scale information sources. Technical report, Technical Report MSR-
TR-2012-101, Microsoft Research, 2012.

[30] Don Syme, Adam Granicz, and Antonio Cisternino. Language-Oriented
Programming: Advanced Techniques. In Expert F# 3.0, pages 477–501.
Springer, 2012.

[31] Zhanyong Wan and Paul Hudak. Functional Reactive Programming
from First Principles. SIGPLAN Not., 35(5):242–252, May 2000. ISSN
0362-1340. .

[32] Zhanyong Wan, Walid Taha, and Paul Hudak. Real-time FRP. In
Proceedings of the Sixth ACM SIGPLAN International Conference on
Functional Programming, volume 36 of ICFP ’01, pages 146–156,
New York, NY, USA, October 2001. ACM. ISBN 1-58113-415-0. .

[33] Zhanyong Wan, Walid Taha, and Paul Hudak. Event-Driven FRP. In
Shriram Krishnamurthi and C. R. Ramakrishnan, editors, Practical
Aspects of Declarative Languages, volume 2257 of Lecture Notes in
Computer Science, pages 155–172. Springer Berlin Heidelberg, 2002. .

Submission to Preproceedings of IFL 2014 12 2014/9/24

