
Towards Execution of the Synchronous
Functional Data-Flow Language SIG

[Draft Paper]

Baltasar Trancón y Widemann
Ilmenau University of Technology
baltasar.trancon@tu-ilmenau.de

Markus Lepper
semantics GmbH

Abstract
SIG is the prototype of a purely declarative programming language
and system for the processing of discrete, clocked synchronous,
potentially real-time data streams. It aspires to combine good static
safety, scalability and platform independence, with semantics that
are precise, concise and suitable for domain experts. Its semanti-
cal and operational core has been formalized. Here we discuss the
general strategy for making SIG programs executable, and describe
the current state of a prototype compiler. The compiler is imple-
mented in Java and targets the JVM. By careful cooperation with
the JVM JIT compiler, it provides immediate executability in a sim-
ple and quickly extensible runtime environment, with code perfor-
mance suitable for moderate real-time applications such as interac-
tive audio synthesis.

1. Introduction
SIG is the prototype of a purely declarative programming language
and system for the processing of discrete, clocked synchronous,
potentially real-time data streams. It is designed to support both
visual (data-flow diagram) and textual (functional) programming
styles, to be scalable to complex tasks, and to be interoperable with
a wide variety of execution platforms and legacy code bases.

The potential application fields for SIG are in science, such as
modelling and simulation of system dynamics, in engineering, such
as sensor data processing and control in embedded systems, as well
as in art, such as audio synthesis and computational music.

The strategic vision of the SIG project is to leverage the safety
and productivity of modern language technology in a system that
can be used effectively, and its actual semantics understood, by do-
main experts. We believe that this could constitute a significant im-
provement over the state of the art, which is plagued by twin evils:
Application development that uses the established domain-specific
tools must deal with their outdated technology and ill-defined se-
mantics; while development that avoids them exposes domain ex-
perts as programming laymen to low-level general-purpose pro-
gramming languages with inadequate expressivity.

[Copyright notice will appear here once ’preprint’ option is removed.]

The full realization of this vision is of course a long-term goal,
and would require substantial effort in order to implement an infras-
tructure consisting of development tools, runtime environments, al-
gorithmic libraries, bindings for indispensable legacy code, etc. A
first major step has been reported on in [7], where the computa-
tional framework of SIG (i.e. denotational semantics, core opera-
tions, intermediate code representation, and their precise relation-
ships) are discussed in due technical detail.

In the present paper, we report on the next step: a prototype SIG
runtime environment that emphasizes integrated tool chains, and
immediate and transparent execution of code in various phases of
the interpreted–compiled spectrum. This allows us to demonstrate
SIG in application areas with interactive systems and moderate real-
time requirements, simultaneously showcasing the expressivity and
practical feasibility of the language. A running demo package for
audio synthesis has recently been published [8].

2. SIG at Work
2.1 Design Considerations
With regard to notation, the data-stream programming world is
divided into a visual and a textual camp.

The visual approach, employing data-flow diagrams as the main
notation for algorithms, is traditionally favoured by domain ex-
perts. Typical programming systems include Simulink for engineer-
ing applications, Max/MSP for audio and artistic performance, or
the “system dynamics” school of computational modelling of com-
plex systems. Programs are graphs built from boxes that specify
computations, and wires that carry data flow. In spite of the ap-
pealing ability to visualize the routing of data flow very intuitively,
the diagram approach is known to suffer from poor scalability, fre-
quent confusion of layout and semantics, and lack of support for
other essential aspects of algorithms: data types, case distinctions,
abstraction and reuse, state and initialization.

These weaknesses are conspicuously absent in functional pro-
gramming, which features well-understood remedies such as type
inference, algebraic data types and pattern matching, anonymous
and higher-order functions, and purely declarative semantics. It is
therefore no surprise that functional reactive programming (FRP)
is hailed as an elegant foundation for data-stream programming by
the more semantically-minded. Diagrams can be expressed in this
framework in terms of arrows [2].

The SIG approach aims at neutrality between visual and tex-
tual frontend representations, and consequently has been designed
around a functional core representation that can represent both nat-
urally; see [7]. In comparison with FRP, SIG takes a characteris-
tically different route: On the one hand, the model of time as dis-
cretized by clock ticks at one or several constant rates, is much

1 2014/9/25

δ

∑(−1)

1x
y

δ

∑1

∆tx
y

δ

∑(1−α)

αx
y

Figure 1. Linear stream programming with delay: left to right – backward difference; discretized integral; first-order low-pass filter.

less generic and abstract than in general FRP, which supports also
spontaneous events and continuous signals. On the other hand, this
restrictiveness is exploited in a computational model that brings de-
notational semantics and low-level implementation techniques to a
very close congruence, and is more orthogonal to other features of
functional programming, most notably pattern matching, than cur-
rent arrow-based FRP frameworks.

2.2 Frontend
True to the tradition of synchronous data-flow programming, SIG
programs are represented in a style that abolishes all kinds of ex-
plicit sequential control flow, such as blocks, loops or recursion. All
computations are specified as if operating on instantaneous data at
a single clock tick, and are understood to be implicitly lifted to
whole streams by iteration at their respective clock rate, without
spontaneous events or termination. All data flow is conceptually in-
stantaneous, unless explicitly delayed. Nontrivial behavior in gen-
eral (anything other than a function mapped over a stream) arises
from delayed interference, and state in particular arises from de-
layed feedback. Instantaneous feedback (i.e. circular data flow not
passing through a delay operator) is forbidden. Hence no causal
singularities arise; scheduling can be decided modularly and stati-
cally, and no fixpoints need be considered. For simplicity, we con-
sider only one primitive delay operator δ, which delays an arbitrary
stream for exactly one clock tick (i.e. prepends some specified or
default initial value).

A great variety of important building blocks for stream pro-
cessing algorithms can already be specified in the simplest form
of this style; see Figure 1 for a gallery of ubiquitous components
built from elementary arithmetics and delay.

Evidently, the diagram approach shines where data has product
structure and routing is static: a tuple of values is nicely visual-
ized as a bus of wires. By contrast, data with coproduct structure,
where routing depends on dynamic case distinctions, is handled
rather awkwardly. It is hence no surprise that automata (a princi-
pal algorithmic manifestation of coproduct-oriented computation)
are supported by a different diagram language in visual approaches
(e.g. Stateflow for Simulink), if at all.

As an archetypal running example, consider the sample and
hold (S&H) operator, which either forwards its current input x or
retains its previous output y, depending on an external trigger t
taking the values {S,H}. This functionality can be specified con-
veniently in a diagram as depicted in Figure 2, using an ad-hoc
multiplexer component. Note that we refrain from the “engineering
practice” of encoding the range of t numerically, for obvious rea-
sons of clarity and safety. An equivalent specification can be given
textually as depicted in Figure 3, using an enumerated type and the
SIG box notation. Note that this notation differs from lambda terms
by naming both inputs and outputs explicitly and symmetrically.

The multiplexer approach to control flow, while handy for sim-
ple situations, has rather poor expressivity and scalability. For in-
stance, consider the evident refactoring of the S&H component

δ

MUX

H?

S?x

t
y

Figure 2. Triggered S&H; diagram with multiplexer

type trigger = { S, H }

[
in x : real , t : trigger
out y : real

where
y := case t of {

S → x
H → delay(y)
}

]

Figure 3. Triggered S&H; SIG notation (box)

from a functional programmer’s viewpoint: Since the input x is ir-
relevant in the hold case, a more economic interface would fuse
the two inputs, using a well-known algebraic datatype as depicted
in Figure 4. Note that Scala vernacular is used, Haskell enthusiasts
may substitute Maybe. Whereas this encoding is easily processed
with pattern matching clauses, there is no obvious viable general-
ization of multiplexing to do the job. Apparently the challenging
feature is the combination of case distinction and data unpacking,
as effected by pattern constructors, as a single atomic operation.

To bring the S&H example even closer to traditional functional
programming style, a lambda-style asymmetric function abstrac-
tion and named access pattern may be used, as depicted in Figure 5.
Note that delayed feedback from the output, a ubiquitous pattern
in stream programming, practically prevents the function body ex-
pression from being anything than a locally bound variable, hence
the gain in conciseness over the box notation is not quite as great
as in noncircular cases.

However, the where clause gives an impression of the unifica-
tion of the diagram and expression paradigms that SIG aspires to.
Ideally, the programmer should be free to combine the notations or-
thogonally, each where it shines: Expressions for tree-shaped flow
with irrelevant intermediates and coproduct-structured data; dia-
grams for irregular and circular flow and product-structured data.

2 2014/9/25

type option(t) = { some(t), none }

[
in x : option(real)
out y : real

where
y := case x of {

some(v) → v
none → delay(y)
}

]

Figure 4. Triggerless S&H; SIG notation (box)

{
x : option(real) → y
where y := getOrElse(x, delay(y))
}

Figure 5. Triggerless S&H; SIG notation (lambda)

The SIG language addresses these issues by program reduction
to a core layer with primitive operations that can implement multi-
plexers and pattern matching equally naturally, and deal with delay
in a semantically clean and operationally useful way.

2.3 Core
The key insight behind the semantic framework of SIG is that three
essential description formats can be made to coincide [7]:

1. adjacency-based algebraic hypergraph representation of data-
flow diagrams (with wires as nodes and boxes as hyperedges,
respectively);

2. administrative normal form of functional program expressions,
or rather the equivalent static single-assignment (SSA) form;

3. intensional definition of local, elementwise semantics given as
a Mealy-style combined I/O-and-transition relation (giving rise
to global, stream function semantics by coinduction).

The full details of the theoretical foundation of (3.) and the
algorithmic derivation of (2.) from a functional frontend notation
can be found in [7]. In the present section, we summarize the key
points. The following sections give the main technical contribution
of the present paper, by discussing the further use of (2.) in a
compiler pipeline.

2.3.1 Delay Elimination
The notation of stream computations in terms of per-element and
delay operators, while intuitively convenient, is awkward to rea-
son with directly in a declarative language processing framework.
Stream-level behavior is not specified fully by element-level in-
put/output relations, as delay operators break referential trans-
parency.

Hence SIG eliminates delay operators en route to the core layer,
by introducing a matching pair of pre- and post-state variables for
each occurrence of δ, which then becomes a pair of independent
simple equations, forwarding input to post-state and pre-state to
output, respectively. Apparently circular data flow is admissible if
and only if the circles are eliminated by the splitting of all delay
operators.

It is implied that the post-state values of each clock cycle flow to
the corresponding pre-state variables of the next cycle. That is, the
quaternary relation of input, output, pre- and post-state specifies a
stream-transducing Mealy machine.

Ra

s

b

s′

Figure 6. Stateful single-step computation model

[
in x : real , t : { S, H }
out y : real
state z : real // implies z’ : real

where
y := case t of {

S → x
H → z
}

z’ := y
]

Figure 7. Triggered S&H; SIG notation (no delay)

The approach can be visualized as depicted in Figure 6. Explicit
data flow in the sense of the functional composition of computa-
tions, proceeds left to right. Temporal data flow proceeds top to
bottom. The stream-level global semantics of a program is given
by replicating its element-level relation ω times along the vertical
axis, up to initial values for the top end. If the element-level re-
lation is a total function, as dictated for complete SIG component
definitions, then the corresponding denotational semantics is cap-
tured neatly by coinduction, as elaborated in [7].

The reduction of delay to state can also be notated textually.
Figure 7 depicts the result of delay elimination from the program
in Figure 3. Note that reduction to the core layer also implies the
naming of all intermediate values, as customary for administrative
normal or SSA form, although the S&H example does not exhibit
this feature.

2.3.2 Control Elimination
Control flow is an awkward feature from a data flow-centric per-
spective. The SIG approach reduces control flow to data flow for
the purpose of maximally parallel core-layer semantics. Backends
are free to implement these directly, as in hardware, or to emulate
them by reconstructed control flow, as on sequential machines.

The rationale here is that the automatic sequentialization of
parallel programs is conceptually much simpler, and effectively
achieved with standard compiler technology, than the reverse prob-
lem, which remains the elusive holy grail of traditional high-
performance computing.

The elimination of control is achieved by creatively abusing the
ϕ operator introduced by SSA, and complementing it with a novel,
dual γ operator, to be introduced below. In its original sense, ϕ
multiplexes a number of inputs, understood as alternative values of
the same variable produced by different control predecessors.

Of course, there is to be no such thing in SIG; the very purpose
of the core layer is to gather all computations in a single basic
block. Instead, the SIG-style ϕ operator multiplexes values from
(the right hand sides of) different clauses of a case distinction,
depending on the success of pattern matching (of their respective
left hand sides).

To this end, all internal variables of a component are tacitly
augmented to admit an additional value ⊥. Note that ⊥ merely
signifies that no value is currently available. This is a decidable
situation, since program divergence, the usual meaning of ⊥ in the

3 2014/9/25

S−1

H−1

ϕ

γ

γ

x

t y

z

z′

Figure 8. Triggered S&H; diagram (core)

semantics of recursive functions, is excluded. Ordinary elementary
operations are lifted strictly; if any input is ⊥, then so are all
outputs.

Each partial computation, such as a single clause of a case dis-
tinction, can be represented uniformly as a “left-top-total” relation
in the sense of Figure 6, where missing cases are mapped to ⊥. A
ϕ node then simply chooses nondeterministically among its non-⊥
inputs, or yields ⊥ if there is none.

The success of pattern matching is communicated by adding to
each pattern constructor an additional “control” output indicating
success. The type of these is nominally a singleton {>}, augmented
to a Boolean control type {>,⊥}. If the pattern succeeds, then
regular outputs unpack the data constructor argument values, which
are non-⊥ by strictness, and the control output is >. If the pattern
fails, then all outputs are ⊥. Note that this encoding may appear
redundant for data constructors with arguments, but it is not for
the common case of nullary constructors, where the corresponding
pattern is a Boolean test.

The selection of computations is expressed by a guard operator
γ. It takes a single data input and arbitrarily many control inputs.
The data is forwarded if no control is ⊥. Otherwise, the output
is ⊥ as well. A clause from a case distinction is then selected by
guarding each result of its right hand side with all control values
issued by its left hand side.

The elimination of control can be specified formally by tedious
but straightforward syntax-directed rewrite rules, see [7]. The ap-
plication to the S&H example is depicted as a diagram in Figure 8.
Data and control wires are indicated by solid and dashed lines, re-
spectively.

A textual representation is depicted in Figure 9. As stated in
the beginning of section 2.3, the set of assignments can be read
consistently in several ways: as the adjacency list of the hypergraph
corresponding the diagram in Figure 8; as a normalized functional
program in SSA form consisting of a monolithic basic block; as the
intensional definition of an element-level semantic relation by set
comprehension in the style of the Z notation.

With respect to the former two, note that the textual single-
assignment constraint coincides with the usual diagram constraint
that distinct outputs must not collide on a shared wire.

Note that γ and ϕ nodes act as data-carrying conjunction and
disjunction operators, respectively. They can be reduced further to
logical expressions in conjunctive normal form. Hence interesting
static properties such as definite single assignment of outputs can
be checked using off-the-shelf SAT solver technology.

[
in x : real , t : { S, H }
out y : real
state z : real // implies z’ : real

where
local c, d : control
local v, w : real

c := S−1(t)
v := guard(x, c)

d := H−1(t)
w := guard(z, d)
y := choose(v, w)
z’ := y

]

Figure 9. Triggered S&H; SIG notation (core SSA)

2.4 Backend
While SIG is designed with maximal platform independence in
mind, there are a number of general assumptions that constitute
a loose execution model.

2.4.1 Composition of Components
A key feature of SIG for scalability and efficient use is full composi-
tionality. The computational box abstraction unifies primitive com-
putations and user-defined subprograms. Thus complex stream-
processing systems are constructed and scoped hierarchically. A
reference to a defined component can be inlined (i.e. the box re-
placed by its innards) without affecting program semantics.

This seems like an obvious, almost trivial, property of a func-
tional language, but has decidedly nontrivial consequences in a
time-aware setting. Most importantly, the wire abstraction of data
flow must not have intrinsic delay, as this would break the scale-
free semantics and disallow the optimizations that routinely go with
inlining, such as copy propagation. All data flow, except for ex-
plicit delay, must be undistinguishable from instantaneous trans-
port.1 This places strict bounds on the depth of computational net-
works that can be implemented with given real-time constraints.

2.4.2 Global Control
The realization of a component performs a single step that pro-
cesses one element of each connected data stream. This involves
the updating of pre-state from the preceding post-state, the con-
sumption of inputs, and the production of intermediate values, post-
state and outputs, with no particular order of the subtasks specified.
During the execution of a step, each component is responsible for
having its subcomponents executing a step of their own, respecting
data flow constraints.

On a sequential platform, this means that the producer of each
stream must execute before its respective consumers. SIG is de-
signed such that a schedule can be devised compositionally and
ahead of time. Note that the order of assignment statements de-
picted in Figure 9, while semantically irrelevant, is a valid sequen-
tial schedule of the component; each variable is written before it
is read. A sequential implementation is free to choose this or any
other valid order, as long as the choice remains transparent to the
external observer.

In many cases, ahead of time means at compile time, but various
advanced but typical applications require the reconfiguration of
computations by parts of the program running at a slower rate.
Support for such hierarchically dynamic systems in SIG is a matter
for future research.

1 To use a physical metaphor, the SIG model of spacetime is the Newtonian
c→∞ limit of relativity.

4 2014/9/25

Parts of a SIG program may operate at the same or at different
clock rates. The complete program is sliced into its synchronous
parts (i.e. each operating at a single rate) and re-sampling con-
nectors. The details are a matter of future research. The runtime
environment triggers the execution steps of each root component
centrally, with the prescribed rate, in a conceptually infinite loop.
Components may not choose to terminate this loop spontaneously.

2.4.3 Inter-Component Communication
Communication between components (i.e. how wires work concep-
tually) in SIG is characterized by pull-based shared memory. Ac-
tual implementations may use arbitrary mechanisms to achieve the
specified behavior.

Each component has the exclusive ownership of a distinct
writable storage location for each of the output streams it produces.
Consumers can access the current value of a stream by reading
from this location. All activity is driven by the external clock; nei-
ther production nor consumption constitutes an observable event.

On the one hand, the current element of each stream is defined
by the value of its location at the clock tick. The producer must
be given the opportunity to write an up-to-date value in time.
Otherwise, the previous value is tacitly retained. By writing to
a location, the previous value is generally made inaccessible. If
needed, it must be retained elsewhere, typically using delay.

All outputs of a component change apparently simultaneously.
Inconsistent states, such as temporarily arising from implementa-
tion by a sequence of write operations, must not be observed. Spon-
taneous events of the execution environment must be quantized at
some clock rate, and reacted on by polling.

On the other hand, each component is oblivious to the con-
sumers of the outputs it produces. Reading the current element of a
stream from a location does not notify the producer. Demand for a
value does not trigger its computation, nor does absence of demand
prevent it. Weird effects such as the infamous time leaks of lazy
FRP do not arise.

2.4.4 Total Computations
The shared-memory communication model implies that, without
additional out-of-band information, is is conceptually impossible
not to yield a result. In embedded systems, this is often a very prac-
tically the case.2 SIG components are generally implementations
of total functions; they must not fail to define their outputs for any
valid combination of input and pre-state.

By contrast, arbitrary networks of components have more free-
dom. They can produce⊥ values, and even be nondeterministic. In
the disciplined textual frontend language of SIG, the former arises
from partial computations such as incomplete case distinctions, and
the latter arises from overlapping cases, since SIG has no implicit
first- or best-fit disambiguation rules. By liberal use of the core
operations γ and ϕ, a wider variety of similar situations can be cre-
ated.

Only when a network of components is explicitly designated
as the definition of a component by the programmer, a proof obli-
gation for totality and determinism is entailed. Since the ques-
tion is evidently undecidable in general for all nontrivial collec-
tions of primitive operations, a statically checkable approximation
is needed. For the disciplined approach (where unsafe subcompu-
tations arise from pattern matching), the requirement that case dis-
tinctions be complete and non-overlapping is a natural candidate,
and can be checked effectively using standard compiler technol-
ogy. Possible relaxations, as well as the general case of arbitrarily
mixed core operations, are left for future research.

2 As has been demonstrated drastically by the botched first launch of the
Ariane 5 rocket.

3. Compiler
3.1 Architecture and Environment
The current SIG compiler and execution environment is written in
Java. The parser is generated by a variant of the ANTLR3 tool.
Syntax trees are mapped to an intermediate representation (IR) as
specified in [7], and the various subsequent program transforma-
tions towards the SSA form are implemented using a visitor style
pattern approach. The IR data model and the visitor machinery are
generated from a very concise (∼200 lines) specification by the
UMOD tool [3].

Programs in IR can be executed on the fly by an interpreter,
or translated to JVM bytecode for better performance. A joint
communication API makes the choice of the execution strategy
transparent, on a per-component basis. Bytecode is produced in a
closed loop and fed directly to the JVM class loader, without the
need to call external tools. Alternatively, the bytecode can be stored
and compiled to machine code by an external static code generator.

Theoretically, SIG programs can be modularized and compiled
separately, although the frontend notation has no module system
yet. However, for real-time applications, we expect that satisfac-
tory results require whole-program compilation, in particular since
many important analyses (e.g. worst case execution time) work
best globally. The non-recursive nature of SIG data flow networks
ensures that conceptual boundaries which exist in well-structured
source code can be eliminated during compilation by aggressive
inlining. Performance-critical application tend to be small enough
for whole-program compilation to be feasible.

3.2 Runtime Interface
3.2.1 Type Specialization
Several basic data types of the SIG frontend are mapped directly to
their Java/JVM counterparts, such that primitive operations can be
used and the dynamic allocation of boxing objects can be avoided.
Computations that declare only variables of such types are guaran-
teed to run without the use of the JVM allocator, and hence without
triggering the garbage collector, which greatly enhances real-time
responsiveness.

In particular, the Java/JVM types int and double are sup-
ported. The Java frontend type boolean is supported as well, which
is encoded as the subset {0, 1} of int on the JVM. Following this
example, arbitrary user-defined enumerated types (i.e. algebraic
data types with nullary constructors only) are encoded as subsets
{0, . . . , n − 1} of int. The extra value ⊥ is encoded by pairing
each variable of primitive type with a boolean control variable.
Types that have no primitive mapping are encoded as objects.

3.2.2 Data Interfaces
For the sake of abstraction, the interfaces of components admit two
different perspectives. The internal perspective is symmetrical with
respect to input and output. It identifies variables of both kinds
formally by locally scoped names, and operationally by self-owned
storage locations. This view has been demonstrated in the examples
of the SIG box notation.

By contrast, the external view treats input and output asym-
metrically. Each component publishes its outputs passively by im-
plementing an API Source for querying their current values. Con-
versely, inputs are supplied by reference to another instance of the
API Source, which the component may query actively. Variables of
either kind are identified by their position in the list of respective
parameter declarations, regardless of their internal names. Thus the
principle of alpha equivalence carries over from conventional func-
tional programming.

3 http://www.antlr.org

5 2014/9/25

http://www.antlr.org

interface Source {
int getInt (int index);
double getDouble (int index);
boolean getBoolean (int index);
Object getValue (int index);
}

Figure 10. Data API

The API needs to strike a pragmatic balance. On the one hand,
static safety and efficiency of data flow demand a high degree of
specialization. On the other hand, ease of use and efficiency of
caller logic demand a uniform access pattern. In the current imple-
mentation, we have chosen a middle road. The uniform interface
is depicted in Figure 10. It specializes access according to imple-
mentation data types, but not according to parameter position. A
critical evaluation of the actual performance and comparison with
alternative approaches is a matter for future research.

Note that the API is mainly employed at system boundaries.
Globally, instances are supplied by the runtime environment and
the compiled program for system inputs and outputs, respec-
tively. Locally, API encapsulation arises at metaprogramming stage
boundaries, where one part of the running system configures an-
other, to be run at a faster rate. Within relatively static component
networks, the SIG compiler is expected to perform whole program
optimization, resulting in the elimination of intermediate interfaces
by inlining.

3.2.3 Component Instantiation
Metaprogramming capabilities are essential to the SIG approach,
because the greatly amplify the scalability of the program develop-
ment process. We follow the staged metaprogramming paradigm à
la MetaML[6], where code fragments can be quoted and spliced,
the meta equivalent of function abstraction and application, respec-
tively, in ordinary higher-order functional programming. The cur-
rent implementation has prototypic support. The details of notation
and semantic constraints of SIG metaprogramming are a matter for
future research.

Care must be taken when lifting a first-class notion of computa-
tion as data to the scenario of elementwise stream processing. There
is no evident canonical explication of, say, a stream of stream func-
tions. The dilemma is rather subtle: On the one hand, application
to single elements is not functional application, due to hidden state
transitions. On the other hand, application to whole streams, which
is perfectly functional, is never expressed directly in the language.

How staged metaprogramming can help to clarify these issues is
a matter of ongoing research. The full details are to be discussed in
a forthcoming companion paper. For the present, it suffices to state
informally that stages break synchronization. From the perspective
of earlier stages, later stages are code objects to be configured to
run independently, at a faster rate. Conversely, from the perspec-
tive of later stages, earlier stages are represented as creation-time
snapshots only. This asymmetricity allows to keep violations of ref-
erential transparency, incurred by the use of delay/state, under the
hood of the implementation.

The technical realization of this scheme in the Java-based run-
time environment uses a three-tiered factory model, with one layer
of abstraction each above and below the representation of compo-
nents.

The highest level of abstraction, and the unit of implementa-
tion, is the Template. It corresponds to the defining expression of
a component object (i.e. a quotation in the frontend language), out
of context. In higher-order functional terminology, templates can
be thought of as lambda-lifted local functions. A template can be

interface Template {
Component newInstance (Source environment);
}

Figure 11. Runtime factory; upper level

interface Component {
Session newSession ();
}

Figure 12. Runtime factory; middle level

instantiated with an environment snapshot of the current values of
its free (cross-stage) variables to produce a Component, see Fig-
ure 11. This is done implicitly by the quotation operator. Different
implementation strategies can coexist transparently through differ-
ent subclasses of Template.

The middle level of abstraction, and the unit of configuration,
is the Component. Components represent referentially transparent
stream functions. In higher-order functional terminology, templates
can be thought of as closure-converted local functions. In order
to make components reentrant in spite of local state, they must be
instantiated for each stream-level application to produce a Session,
see Figure 12. This is done implicitly at initialization time of the
containing computation.

The lowest level of abstraction, and the unit of elementwise
computation, is the Session. Sessions represent intermediate states
of stream computations, and are thus not referentially transparent.
They are never exposed to the user, but handled only internally.
A session need to be initialized (init), and subsequently invoked
(step) once per clock tick to execute a step. This is done implicitly
at initialization time of the containing computation, and by the
splicing operator, respectively. See Figure 13.

Sessions communicate by the Source API. Each session must be
connected to a source from which it can pull the current elements
of its inputs streams at each step. Conversely, each session imple-
ments the Source interface to provide public access to the current
elements of its output streams. The wiring is performed implic-
itly at initialization time of the containing computation; the actual
pulling of outputs is done by the splicing operator.

In principle, sessions can be reused sequentially by reconnec-
tion to new inputs and reinitialization, although concurrent reuse is
obviously unsafe and must be avoided.

Each step of a session consists of three subtasks that update pre-
state (tick), inputs (input), and post-state and outputs (action), re-
spectively. Subclasses of Session must override all abstract meth-
ods to implement the computation of the represented component,
as well as allocate exclusive storage for all local variables. The cur-
rent implementation mandates that a copy of the pulled values be
stored during the input phase. Thus, all variables in the scope of
the component body can have the same storage and access pattern,
and there is no need for distinct “operand modes” of primitive op-
erations.

The API has been designed consciously such that no advanced
features of Java are used, hence it could be mapped with little
effort and no significant overhead to more low-level languages such
as C. Thus, by the implementation of a C code generator, SIG
components could be made usable as libraries in a very wide variety
of systems.

6 2014/9/25

abstract class Session implements Source {
private Source inSource;
public void setInSource (Source inSource) {

this . inSource = inSource;
}

public abstract void init ();

public void step () {
tick ();
input(inSource);
action () ;
}

protected abstract void tick ();
protected abstract void input (Source source);
protected abstract void action ();
}

Figure 13. Runtime factory; lower level

3.3 Code Generation
3.3.1 State Transition
From the perspective of the SIG core layer, each delay operator
gives rise to a pair of distinct variables x and x′ for pre- and post-
state, respectively. The code for a single step of a component relies
on the calling environment to update its pre-state, namely with
initial values on the first call, and with the previous value of the
corresponding post-state on each subsequent call. How this state
transition is actually effected is up to the particular implementation.
There are several reasonable tactics with different usage profiles:

Transport The pair of conceptual variables can be taken literally,
and an actual move operation can be used to copy values from each
post-state variable to its pre-state counterpart. This is a semantically
safe fallback tactic that works in all cases, but not particularly
efficient. It is used by the current compiler implementation by
default.

Double Buffering The behavior of the step code can be made to
alternate between two variants, either by a global Boolean indirec-
tion switch, or by flipping between two clones of the code where
the respective roles of pre- and post-state are mirrored. This tactic
is likely more efficient than literal transport if there are many state
variables. It is supported by the current compiler implementation
as a configurable alternative to the default.

Overlay During code generation for a sequential machine, the
SSA variables of the core representation are likely allocated to
pseudo-registers anyway, such that in general values with non-
overlapping life times can share a storage location. Additional con-
straints can be placed on the instruction schedule, such that all op-
erations reading a pre-state variable must occur before the opera-
tion writing the corresponding post-state variable. Then pre- and
post-state are non-overlapping, and may share a storage location.
This tactic can save space as well as time, but does not work in all
cases; see Figure 14 for a counterexample. It is used by the current
compiler implementation heuristically on an all-or-nothing basis;
selective use is planned for a future revision.

Indirect Buffering Multi-step delay of data must be expressed
as a chain of single-step delay operations. No matter which of the
preceding tactics is used, this yields a naive FIFO buffer implemen-
tation in terms of state variables, where values are actually trans-
ported from the input to the output end, see Figure 15. Except for
near-trivial cases, an indirectly addressed (ring buffer) implemen-
tation is preferrable, where the current position of the input and

δ δ −→

Figure 14. Delay reducing to non-overlayable state variables

δ δ δ δ

↓

Figure 15. Delay chain reducing to FIFO

output ends move, rather than the stored data. This tactic needs to
be applied selectively for suitably long delay chains in order to pay
off. Support is planned for a future revision of the compiler.

3.3.2 Parallel and Sequential Evaluation
The semantics and core operations of SIG have designed carefully
to allow for maximal parallelism, constrained only by explicit data
flow. The encoding of control flow into data flow that embodies this
principle, and is achieved by means of γ and ϕ operations as de-
scribed above, seems unnatural from the perspective of execution
on a conventional sequential machine: rather than choosing proac-
tively between alternative branches, all branches are evaluated in-
dependently, and unneeded results are only discarded after the fact.
Compare this behavior to the eager operators & and | in the C lan-
guage family, as opposed to the short-circuiting operators && and
||, respectively. Several arguments need to be considered in favor
of either operational approach:

In a side-effect free language, the two variants are behav-
iorally indistinguishable. Implementations may choose either on
the grounds of convenience and efficiency. On a simple sequential
execution platform, avoiding unneeded computations by condi-
tional branches is virtually always a win. On modern CPUs with
deep pipelines, branchless solutions that overlap alternatives and
select results by conditional moves may be preferrable, as long as
alternatives are few in number and not disproportionately expen-
sive. Opportunistic choices need to be made, based on accurate
cost models for the specific processor architecture, for good per-
formance. By contrast, on non-sequential platforms such as field-
programmable gate arrays (FPGAs), a literally parallel layout of
alternatives followed by multiplexers is the canonical solution.

The current implementation of the SIG compiler takes the paral-
lel semantics of control at face value, and translates γ and ϕ opera-
tors to code as they appear. Clearly, this solution scales badly on its
target platform, the strongly sequential JVM. Fortunately, the se-
quentialization of parallel programs is turning out to be a much
more tractable problem than its converse. A compiler pass that
identifies conditionally needed code in the SSA form and substi-
tutes conditional branches for γ and ϕ nodes is being developed.4

4 Andreas Loth. Master’s thesis.

7 2014/9/25

abstract class Action {
public abstract void run (State state);
// ...
}

Figure 16. Threaded code substep

class State {
public Action pc ;

public final Object[] registers ;
public final double[] registers double ;
public final int [] registers int ;
public final boolean[] registers bool ;

public final boolean[] registers control ;
}

Figure 17. Interpreter state

3.3.3 Interpreter
The interpreter variant of the current SIG execution environment
operates almost directly on the SSA core form. Operations are
scheduled statically in some valid sequential order, variables are al-
located to numbered reusable “registers”, and frequently occuring
generic operations are specialized for their operand cound (if vari-
adic) and/or type (if polymorphic), respectively. Otherwise, there is
a one-to-one relationship between SSA statements and substeps of
the actual execution.

The substeps are reified as individual Action objects, see Fig-
ure 16, organized in an object-oriented form of the traditional
threaded code approach. The allocated virtual registers are realized
as a family of equally-shaped arrays of the various supported prim-
itive types, bundled together with a program counter (i.e. reference
to the next substep) in a State object; see Figure 17. The interpreter
invokes each substep in turn (run), allowing it to modify the current
state. How the program counter is updated has been omitted for
simplicity. In the current implementation, a linear list of substeps
according to the predetermined schedule is traversed. However, the
mechanism generalizes to nontrivial control flow with branching
instructions, which shall be supported in a future revision.

The threaded code implementation has been designed to max-
imize the use of primitive data and array features of the JVM, as
opposed to “clean” high-level object-oriented APIs. Consequently,
actual operations coded as subclasses of Action invoke few JVM
instructions with little execution overhead each, thus encouraging
the JVM JIT compiler to compensate the interpretative overhead by
aggressive inlining and specialization.

The interpreter, instantiated with the preprocessed code and reg-
ister layout of a component, is encapsulated behind the Template
interface. It can be mixed transparently with other means of imple-
mentation, as long as they use the Source API for communication.

The threaded code approach fulfills the requirement for exten-
sible instruction sets nicely. All that is needed to add a new in-
struction is a new subclass of Action that mutates a State object
accordingly, and a corresponding rule in the instruction selection
procedure of the interpreter. The Action abstraction also allows for
easy unit testing, tracing and profiling of instruction set extension
candidates.

3.3.4 Compiler
The threaded code interpreter, while reasonably fast and very flexi-
ble, contains two indirections that cause runtime overhead on every

public class ... extends Session {
double in0 ; // x
int in1 ; // t
double out0; // y
double pre0; // z
double post0; // z’

// Session method implementations
}

Figure 18. Triggered S&H; compiled class

abstract class Action {
// ...
public void compile(CompilationContext ctx);
}

Figure 19. Threaded code substep

instruction: dynamic array-based access to local variables, and vir-
tual method invocation of Action.run.

We have added an “afterburner” code generation phase that
compiles threaded code objects to JVM bytecode. Dedicated sub-
classes of Session, and their factory progenitors Template and
Component, are created for each compiled SIG component. Local
variables are mapped to individual member fields of the appropri-
ate primitive type; see Figure 18 for the S&H example. Instructions
are compiled to JVM bytecode fragments, which are then glued to-
gether to implement Session . action; see Figure 20 in comparison
to Figure 9. The resulting code can be loaded directly into the host
JVM by a ClassLoader, or stored as class files for external use.

Compilation is implemented in a distributed fashion by Action
subclasses. Namely, a method compile receives a CompilationContext
object that can resolve variables to JVM constant pool entries, and
act as a sink for bytecode instructions. This design retains as much
extensibility and traceability of the instruction set as possible, even
if fragmented bytecode generation is somewhat harder to test and
debug than threaded code. The downside is that, because instruction
selection is performed in isolation, the resulting bytecode contains
a number of redundancies, easily seen in Figure 20.

Theoretically, an extra optimization pass on the JVM bytecode
format could be used for cleanup. But we have found that JVM
JIT compilers do that job well already. For the S&H example, the
machine code produced by Oracle’s Hotspot JVM 1.8.0 20, on a
test machine specified in the following subsection, is depicted in
Figure 21.

The redundancy that remains in the depicted code, namely that
patterns are matched twice, stems from the incongruency of con-
trol flow which is parallel in SIG and sequential on the JVM. A
transformation-based systematic solution notwithstanding, we have
found that existing compilers are quite capable of eliminating the
redundancy in simple cases. In particular, the machine code pro-
duced by GCJ 4.8.2 with the -O3 option, invoked with the same
bytecode on the same target machine, is depicted in Figure 22.
Comparison of Figures 21 and 22 illustrates the typical tradeoff
between just-in-time and ahead-of-time compilation: more aggres-
sive use of processor-specific capabilities (here, SSE2 extensions)
for the former, and more thorough (here, optimal) application of
expensive optimizations (here, sparse conditional constant propa-
gation) for the latter.

3.4 Experimental Evaluation
We have tested the performance of both interpreted and compiled
code with a simple but nontrivial sound synthesis application. It

8 2014/9/25

protected void action();
Code:

0: aload_0
1: getfield #37 // t
4: iconst_1
5: isub // S?
6: ifne 14
9: iconst_1
10: istore_1
11: goto 16
14: iconst_0
15: istore_1

16: iload_1
17: ifne 28
20: dconst_0
21: dstore_2
22: iconst_0
23: istore 4
25: goto 36
28: aload_0
29: getfield #31 // x
32: dstore_2
33: iconst_1
34: istore 4

36: aload_0
37: getfield #37 // t
40: iconst_0
41: isub // H?
42: ifne 50
45: iconst_1
46: istore_1
47: goto 52
50: iconst_0
51: istore_1

52: iload_1
53: ifne 65
56: dconst_0
57: dstore 5
59: iconst_0
60: istore 7
62: goto 74
65: aload_0
66: getfield #47 // z
69: dstore 5
71: iconst_1
72: istore 7

74: aload_0
75: iload 4
77: ifeq 84
80: dload_2
81: goto 102
84: iload 7
86: ifeq 94
89: dload 5
91: goto 102
94: // abort (t out of range)
102: putfield #39 // y

105: aload_0
106: aload_0
107: getfield #39 // y
110: putfield #44 // z’
113: return

Figure 20. Triggered S&H; bytecode

action:
mov 0x38(%rsi), %r11d # t
mov %r11d, %r10d
dec %r10d
xorpd %xmm0, %xmm0, %xmm0
test %r10d, %r10d # S?
je .Le
xorpd %xmm1, %xmm1, %xmm1

.La:
test %r11d, %r11d # H?
jne .Lb
movsd 0x28(%rsi), %xmm0 # z

.Lb:
test %r10d, %r10d # S?
je .Ld
test %r11d, %r11d # H?
jne .Lf

.Lc:
movsd %xmm0, 0x20(%rsi) # y
movsd %xmm0, 0x30(%rsi) # z’
ret

.Ld:
movapd %xmm1, %xmm0
jmp .Lc

.Le:
movsd 0x18(%rsi), %xmm1 # x
jmp .La

.Lf:
abort (t out of range)

Figure 21. Triggered S&H; machine code (JRE)

action:
movl 48(%rdi), %eax # t
testl %eax, %eax # H?
je .L17
cmpl $1, %eax # S?
jne .L26
movsd 40(%rdi), %xmm0 # x
movsd %xmm0, 56(%rdi) # y
movsd %xmm0, 72(%rdi) # z’
ret

.L17:
movsd 64(%rdi), %xmm0 # z
movsd %xmm0, 56(%rdi) # y
movsd %xmm0, 72(%rdi) # z’
ret

.L26:
abort (t out of range)

Figure 22. Triggered S&H; machine code (GCJ)

implements a digital organ with a range of four chromatic octaves.
Each of the 49 notes consists of two SIG components, namely a
sine wave generator and an ADSR envelope generator, running
at the audio rate of 44.1 kHz and the 64 times slower control
rate, respectively. The precise algorithms are specified in [8]. They
translate to 4 and 54 core operations, respectively.

A hand-coded environment runs all 49 notes in quasi-parallel for
full polyphony, and mixes them together according to input from a
MIDI keyboard, for interactive real-time CD quality output. The
resulting audio stream is fed to the push-based Java audio system.
Hence the audio and control rate clocks operate in pseudo-real
time: the control loop runs at full speed when there is sufficient
space in the audio output buffer, and blocks when the buffer is full.
By limiting the buffer size, latency is bounded to 10–100 ms.

9 2014/9/25

The actual time spent in computation (i.e. component exe-
cution and mixing) is recorded with the precision and accuracy
of Java System.nanoTime(). Optimizations that turn off silent
voices have been deactivated for the sake of regular load and
stable measurements. On our test system, with a Core i5-3317U
CPU at 1.7 GHz, Ubuntu 14.04 OS, and Oracle JDE 1.8.0 20, we
have observed an effective rate (number of samples produced di-
vided by time spent computing) of 229±3 kHz for interpreted code,
and 2740±60 kHz for compiled code, respectively.5 These figures
translate to an average effort of about 152 and 13 CPU cycles per
voice-sample, or to a load of 19.6 % and 1.6 %, respectively. The
speedup by compilation is a factor of 12. All experiments use only
a single CPU core for SIG computations, although JVM system
threads may run concurrently on other cores.

In summary, the interpreted version, on stock hardware and
without JVM tweaking, performs fast enough for a real-time
demonstration by a comfortable margin. The compiled version has
enough computational reserves that it can be expected to scale up
to audio synthesis tools of artistically acceptable quality.

4. Conclusion
The SIG language is highly domain-specific, and hence poses spe-
cific problems for effective and efficient execution. On the one
hand, the purely and totally functional approach, and the rigid con-
trol flow enable or simplify a great number of analyses and opti-
mizations. On the other hand, the prototype nature of the current
implementation and applications, and the fact that type system and
instruction sets are far from fixed, calls for a compiler design that
is more a laboratory environment than a closed tool.

As a notable practical lesson from the construction of the SIG
compiler, we have corroborated the hypothesis that bytecode plat-
forms are suitable backends for rapid prototyping. Many errors in
the code generator have been detected statically by standard JVM
bytecode verification tools. In other cases that fail at runtime, de-
bugging is fairly convenient, even without a working generator for
symbol tables or source location metadata.

The Java platform has extensive support for real-world interac-
tion, such as GUIs, sampled audio output and MIDI audio input,
in terms of on-board libraries that work out-of-the box and with
decent efficiency/safety tradeoffs. Using these, tangible demonstra-
tions of SIG programs in a live loop, as in [8], can be constructed
with very moderate effort.

The JVM JIT compiler allows to explore the interpreter–
compiler continuum in search for a sweet spot for the prototype im-
plementation of a novel language rather freely, by keeping the per-
formance penalties for higher levels of backend abstraction within
reasonable limits.

4.1 Related Work
• FRP [2, 4, 9]
• Hume [1]
• Faust [5]
• Trace-based compilation techniques

4.2 Future Work
• Branch-based implementation of ϕ nodes
• C backend
• FPGA backend
• Worst-case execution time analysis

5 Reported errors are mean absolute deviations.

References
[1] Kevin Hammond and Greg Michaelson. The design of Hume: A

high-level language for the real-time embedded systems domain. In
Domain-Specific Program Generation, volume 3016 of Lecture Notes
in Computer Science, pages 127–142. Springer-Verlag, 2003.

[2] Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson.
Arrows, robots, and functional reactive programming. In Advanced
Functional Programming (AFP 2002), volume 2638 of Lecture Notes
in Computer Science, pages 159–187. Springer-Verlag, 2003.

[3] Markus Lepper and Baltasar Trancn y Widemann. Optimization of vis-
itor performance by reflection-based analysis. In J. Cabot and E. Visser,
editors, Proceedings 4th International Conference on Theory and Prac-
tice of Model Transformations (ICMT 2011), volume 6707 of Lecture
Notes in Computer Science, pages 15–30. Springer-Verlag, 2011.

[4] Henrik Nilsson, Antony Courtney, and John Peterson. Functional re-
active programming, continued. In Haskell Workshop, pages 51–64.
ACM, 2002.

[5] Yann Orlarey, Dominique Fober, and Stephane Letz. Syntactical and
semantical aspects of Faust. Soft Comput., 8(9):623–632, 2004.

[6] Walid Taha and Tim Sheard. Metaml and multi-stage programming
with explicit annotations. Theor. Comput. Sci., 248(1-2):211–242,
2000.

[7] Baltasar Trancón y Widemann and Markus Lepper. Foundations of to-
tal functional data-flow programming. In Mathematically Structured
Functional Programming (MSFP 2014), volume 154 of Electronic Pro-
ceedings in Theoretical Computer Science, pages 143–167, 2014.

[8] Baltasar Trancón y Widemann and Markus Lepper. Sound and sound-
ness – practical total functional data-flow programming. In 2nd In-
ternational Workshop on Functional Art, Music, Modeling and Design
(FARM 2014). ACM Digital Library, 2014.

[9] Zhanyong Wan and Paul Hudak. Functional reactive programming from
first principles. SIGPLAN Not., 35(5):242–252, 2000.

10 2014/9/25

	Introduction
	Sig at Work
	Design Considerations
	Frontend
	Core
	Delay Elimination
	Control Elimination

	Backend
	Composition of Components
	Global Control
	Inter-Component Communication
	Total Computations

	Compiler
	Architecture and Environment
	Runtime Interface
	Type Specialization
	Data Interfaces
	Component Instantiation

	Code Generation
	State Transition
	Parallel and Sequential Evaluation
	Interpreter
	Compiler

	Experimental Evaluation

	Conclusion
	Related Work
	Future Work

