
Combining Shared State with Speculative
Parallelism in a Functional Language

Matthew Le
Rochester Institute of Technology

ml9951@cs.rit.edu

Matthew Fluet
Rochester Institute of Technology

mtf@cs.rit.edu

Abstract
Purely functional programming languages have proven to be an at-
tractive option for implementing parallel applications. The lack of
mutable state eliminates the possibility for race conditions, which
relieves programmers of reasoning about the exponential interleav-
ings of threads and nondeterministic behavior. Unfortunately, there
are applications that by making use of shared state can achieve sig-
nificant constant factor speedups compared to their purely func-
tional counterparts.

IVars have been proposed as a possible solution, allowing
threads to share information via write-once references, while pre-
serving a deterministic semantics. However, in the presence of
speculative parallelism (cancelation), this determinism guarantee
is lost. In this work we show how to go about combining these
two concepts by proposing a dynamic rollback mechanism for en-
forcing determinism. We have formalized the semantics of a par-
allel functional language extended with IVars, speculative paral-
lelism, and our proposed rollback mechanism using the Coq proof
assistant, and have proven that it preserves determinism. Addition-
ally, we describe a preliminary implementation in the context of the
Manticore project, and give some initial performance results.

1. Introduction
Writing parallel applications is a notoriously difficult task. Pro-
grammers are forced to reason about the nondeterministic behav-
ior arising from an exponential interleaving of threads. One way
of avoiding this difficulty is to use a functional language when de-
veloping parallel applications, since functional languages prohibit
the alteration of shared state. Race conditions and nondeterminism
arise when multiple threads attempt to read from and write to the
same location in memory. Since functional languages do not allow
writes, we avoid race conditions altogether, making determinism an
easy property to enforce. Unfortunately, there are applications that
can be more efficiently or more naturally implemented when shared
state is used. One attempt at addressing this problem is the use of
IVars [ANP89], which are shared references that may only be writ-
ten to once. IVars have been proven to preserve determinism in an
otherwise purely functional parallel language [MNP11, BBC+10],
while allowing threads to communicate intermediate results to one
another via shared memory.

In this work we show that the determinism guarantee for IVars
does not hold in the presence of speculation – a method for paral-
lelizing programs, where unneeded tasks may be canceled. Addi-
tionally this paper makes the following contributions:

• We propose a rollback mechanism that can be used to re-
store deterministic execution in the presence of speculation and
IVars.

• We provide a formal semantics of a parallel language with
IVars, speculative parallelism, and the proposed rollback mech-
anism.
• We give a mechanized proof, using the Coq Proof Assistant, that

the rollback mechanism preserves determinism of the language
that combines IVars and speculative parallelism.
• We describe an implementation that is under development in

the Manticore project and give some preliminary results.

Source code for the Coq formalization can be found at:
http://people.rit.edu/ml9951/research.html.

2. Background
2.1 IVars
IVars are shared memory references that may only be written to
once, originally proposed as part of the parallel functional language
Id [ANP89]. The interesting property about IVars is that they do
not compromise the determinism guarantees that one can make
about an otherwise purely functional parallel language. Meanwhile,
they strictly increase the expressiveness of the language. As an
example, consider an application implementing producer-consumer
parallelism where two threads are running in parallel, one of which
writes data into a shared buffer and the other processes this data
as soon as it becomes available. This sort of pattern cannot be
efficiently implemented in a purely functional language. In such
a language, the producer would be required to produce all of its
elements before the consumer could start processing them. On the
other hand, if we are able to make use of IVars, we could implement
the shared buffer as a linked list giving us the desired behavior.

Informally, the semantics of IVars are as follows. When an IVar
is created it is empty. When it is written to, it becomes full and if
a thread attempts to write to it again, a runtime error is produced
and the program terminates. If a thread tries to read from an IVar
that is empty, it blocks until the contents are filled, after which
it can read from the IVar an arbitrary number of times without
synchronization.

2.2 Speculative Parallelism
Speculation is a method for parallelizing applications, where some
number of parallel tasks are created, and if it turns out that any of
these tasks are unneeded, they are canceled. This sort of pattern
arises frequently in search problems where we want to search
multiple paths in parallel, and then when a solution is found, we
would like to cancel the rest of the search threads so as to free up
resources for future computations. The research literature has given
rise to many examples of speculatively parallel algorithms [PRV10,
Bur85, JLM+09].



1 exception E
2 val i = IVar.new()
3 val _ = (|raise E, IVar.put(i, 10)|)
4 handle E => ((), ())
5 val x = IVar.get i

Figure 1. Nondeterministic Example

2.3 Manticore
Manticore is a compiler for a purely functional subset of Stan-
dard ML which has been extended with parallel features. These
parallel features are given a sequential semantics, allowing pro-
grammers to reason about parallel computations in the same way
they would their sequential counterparts. The most basic parallel
construct in Manticore is the parallel tuple, denoted

(|e1, . . ., en|)

Parallel tuples express fork-join parallelism, where each expres-
sion ei is evaluated in parallel. The result of the entire expression
is a data structure containing the results of each ei.

Additionally, we provide a construct for asynchronously spawn-
ing threads via fork. The fork construct takes an expression that
gets evaluated in a separate thread allowing the main thread to con-
tinue with the execution of the remainder of the program.

In addition to parallelism, Manticore also supports exception
handling. The semantics for a regular sequential tuple is to evalu-
ate each ei in left to right order, so if an exception gets raised, it
will always be the leftmost exception in the tuple that gets propa-
gated. Enforcing the sequential semantics for parallel tuples in the
presence of exceptions works as follows. If expression ei raises an
exception, then the threads evaluating expressions ei+1 through en
are canceled and we wait for the previous i− 1 elements to termi-
nate to check if they raise an exception.

2.4 Determinism
In Manticore we can encode a notion of speculative parallelism us-
ing the parallel constructs and exception handling features while
maintaining the sequential semantics [FRRS08]. Unfortunately, if
we were to incorporate IVars into the language, we would lose this
guarantee due to the cancelation associated with raised exceptions.
As an example, consider the code in Figure 1. In line 2 we create
an empty IVar, and then in parallel raise an exception and write to
this IVar. There are two ways in which this can play out. The can-
celation can go through before the write, leaving the IVar empty,
or the write can go through before the cancelation leaving the IVar
full with the value 10. These two scenarios lead to two different
observable behaviors of our program, either it could block indefi-
nitely due to a read from an empty IVar, or it could terminate with
x bound to the value 10. In order to enjoy the benefits of a deter-
ministic parallel language, we must extend the Manticore runtime
system to avoid these race conditions.

3. Preserving Determinism
In order to preserve a deterministic semantics for parallel tuples in
the presence of exception handling we would like to make it seem
to the programmer as if canceled threads “never happened” in the
first place. Implementing this for a purely functional language is
not too difficult, however, in the presence of shared references such
as IVars, it becomes substantially more complex.

The first step is to “undo” the effects of a thread when it is
being canceled due to a raised exception. With IVars this simply
amounts to resetting the contents of full IVars to empty. However,
it is possible that before the cancelation occurred, other threads
concurrently running were able to read the contents of this IVar.

1 exception E
2 val i = IVar.new()
3 val j = IVar.new()
4 val _ = fork((|raise E, IVar.put(i, 10)|)
5 handle E => ((), ()))
6 val (_, x) = (|IVar.put(j, IVar.get i), IVar.get j|)

Figure 2. Transitive Rollback

x ∈ V ar
Values V ::= x | i | \x.M | return M |M >>= N

| runPar M | fork M | new | put i M
| get i | done M | spec M N
| specRun(M,N) | specJoin(M,N)
| raise M | handle M N

Terms M,N ::= V |M N | · · ·
Heap H ::= H,x 7→ iv | ·

Speculative State s ::= S | C
IVar State iv ::= 〈s〉 | 〈s1, ds, s2,Θ,M〉
Thread ID Θ ::= · | Θ : n n ∈ N

Thread Pool T ::= · | (T1 | T2) | Θ[S1, S2,M ]
Action A ::= (R, x,M) | (W,x,M) | (S,M)

| (A, x,M) | (F,Θ,M) | CSpec
Action Queue S ::= · | S : A

Evaluation Context E ::= [·] | E >>= M | specRun(E,M)
| handle E N | specJoin(N,E)

Configuration σ ::= H;T | Error

Figure 3. Speculative Par Monad Syntax

In this case, the runtime system must also rollback these threads to
the point in which they read from the IVar. At this point, we also
need to “undo” any effects that these threads may have done and
rollback any threads that might have read from these IVars. This
rollback continues until we reset all IVars and dependent readers
that are transitively reachable from the effects done by the original
thread that was canceled.

As an example of this transitive closure property, consider the
code in Figure 2. In line 4 we fork a new thread to evaluate a parallel
tuple that raises an exception and writes the value 10 to IVar i.
The thread writing to the IVar is then canceled due to the raised
exception, requiring the contents of i to be reset to empty. In line
6 we read the value written to i and write it into j. If this read
occurs before the cancelation, then we must reset this thread back
to before it performed the read. If we are going to reset this thread
to before it did the read, then we must also “undo” the write to IVar
j. Furthermore, if the second element of the parallel tuple is able to
read from j, then this must also get rolled back to the point before
it performed the read.

4. Formal Semantics
In this section we provide a formal semantics describing a method
for performing the rollback that was alluded to in the previous sec-
tion. The semantics presented in this paper are an extension of the
Par Monad semantics as presented in [MNP11], which helps facil-
itate our proof of determinism described in the next section. Fig-
ure 3 gives the syntax of the language. Relative to [MNP11], We
have added syntax for speculative computations, where specRun
and specJoin are intermediate forms that arise throughout the ex-
ecution of a program, and are not terms available in the surface
language, as is done.

A heap is a finite map from IVar names to IVar states where
an IVar state can be empty or full. If it is empty, we also indicate



RunPar
·; 1[·, ·,M >>= \x.done x]→∗s H ′;T | · : 1[·, S2, done N ], N ⇓s V, Finished(T )

runPar M ⇓s V

RunParError
·; 1[·, ·,M >>= \x.done x]→∗s Error

runPar M ⇓s Error
RunParDiverge

·; 1[·, ·,M >>= \x.done x]→∞s
runPar M ⇓s ∞

H;T →s σ

Eval
M 6= V M ⇓s V

H; Θ[S1, S2, E[M ]] | T →s H; Θ[S1, S2, E[V ]] | T
Bind

H; Θ[S1, S2, E[return N >>= M ]] | T →s H; Θ[S1, S2, E[M N ]] | T

BindRaise
H; Θ[S1, S2, E[raise M >>= N ]] | T →s H; Θ[S1, S2, E[raise M ]] | T

Handle
H; Θ[S1, S2, E[handle(raise M)N ]] | T →s H; Θ[S1, S2, E[N M ]] | T

HandleReturn
H; Θ[S1, S2, E[handle(return M)N ]] | T →s H; Θ[S1, S2, E[return M ]] | T

Fork
n = numSpawns(s1, s2)

H; Θ[S1, S2, E[fork M ]] | T →s H; Θ[(F,Θ : n,E[fork M ]) : S1, S2, E[return()]] | Θ : n[CSpec, ·,M ] | T

New
H ′ = H[x 7→ 〈S〉] x /∈ Domain(H)

H; Θ[S1, S2, E[new]] | T →s H
′; Θ[(A, x,E[new]) : S1, S2, E[return x]] | T

Get
H(x) = 〈s1, ds, s2,Θ′,M〉, H ′ = H[x 7→ 〈s1,Θ ] ds, s2,Θ′,M〉]

H; Θ[S1, S2, E[get x]] | T →s H
′; Θ[(R, x,E[get x]) : S1, S2, E[return M ]] | T

Put
H(x) = 〈s〉, H ′ = H[x 7→ 〈s, ∅, S,Θ,M〉]

H; Θ[S1, S2, E[put x M ]] | T →s H
′; Θ[(W,x,E[put x M ]) : S1, S2, E[return()]] | T

Overwrite

H(x) = 〈s1, ds, S,Θ′, N〉, Θ′[S1 : (W,x,N) : S′1, S
′
2, N

′] ∈ T
rollback(Θ′, S′1, H, T ) (H ′, T ′), H ′′ = H ′[x 7→ 〈∅, ·,Θ,M〉]
H; Θ[·, S2, E[put x M ]] | T →s H

′′; Θ[·, S2, E[return()]] | T ′
ErrorWrite

H(x) = 〈C, ds,C,Θ′, N〉
H; Θ[·, S2, E[put x M ]] | T →s Error

Spec
n = numSpawns(s1, s2)

H; Θ[S1, S2, E[spec M N ]] | T →s H; Θ[(F,Θ : n,E[spec M N ]) : S1, S2, E[specRun(M,N ]] | Θ : n[(S,N) : CSpec, ·, N ] | T ′

SpecRB
rollback(Θ : n, ·, H,Θ : n[S′1 : (S,N0), S′2, N ] | T ) (H ′,Θ : n[·, S′2, N ′] | T ′)

H; Θ[·, S2, E[specRun(raise M,N0]] | Θ : n[S′1 : (S,N0), S′2, N ] | T →s H
′; Θ[·, S2, E[raise M ]] | T ′

SpecJoin
Θ : n[S′1 : (S,N0), S′2, N ] ∈ T

H; Θ[·, S2, E[specRun(return M1, N0)]] | T →s H; Θ : n[adopt(S′1, E, return M1), S′2, E[specJoin(return N1, N)]] | T

SpecDone
H; Θ[·, S2, E[specJoin(return N1, return N2)]] | T →s H;T | Θ[·, S2, E[return(N1, N2)]]

SpecRaise
H; Θ[·, S2, E[specJoin(return N1, raise E)]] | T →s H; Θ[·, S2, E[raise M ]] | T

PopRead
H(x) = 〈Θ,C,]ds,C,Θ′,M〉

H; Θ[S1 : (R, x,N ′), S2, N ] | T →s H; Θ[S1, (R, x,N
′) : S2, N ] | T

PopWrite
H(x) = 〈C, ds, S,Θ,M〉, H ′ = H[x 7→ 〈C, ds,C,Θ,M〉]

H; Θ[S1 : (W,x,N ′), S2, N ] | T →s H
′; Θ[S1, (W,x,N

′) : S2, N ] | T )

PopNewFull
H(x) = 〈S, ds, S,Θ′,M〉, H ′ = H[x 7→ 〈C, ds, S,Θ′,M〉]

H; Θ[S1 : (A, x,M ′′), S2,M
′] | T →s H

′; Θ[S1, (A, x,M
′′) : S2,M

′] | T

PopNewEmpty
H(x) = 〈S〉, H ′ = H[x 7→ 〈C〉]

H; Θ[S1 : (A, x,M ′), S2,M ] | T →s H
′; Θ[S1, (A, x,M

′) : S2,M ] | T

PopFork
H; Θ[S1 : (F,Θ′,M ′), S2,M ] | Θ′[S′1 : CSpec, S′2, N ] | T →s H; Θ[S1, (F,Θ

′,M ′) : S2,M ] | Θ : 1[S′1, CSpec : S′2, N ] | T

Figure 4. operational Semantics



whether or not is was allocated speculatively. If an IVar is full we
record if it was allocated speculatively, the thread IDs of those who
have read the IVar, whether or not it was written speculatively, the
ID of the writer, and the term written to the IVar. A thread pool
is a multiset of threads, where each thread has a thread ID, a list
(queue) of speculative actions it has performed, a list of actions it
has committed, and a term that it is evaluating. Action queues are a
list of actions, where an action can be a read, write, spec, allocation,
fork, or an action indicating it was created speculatively. Lastly, a
configuration is a heap paired with a thread pool, or the error state.

The overall semantics of the language is described by a big step
relation, which is used to represent the “usual” Haskell semantics.
In this presentation and in [MNP11], we only give the big-step rule
for runPar as the rest is entirely conventional. The RunPar rule
then depends on a small step relation for the Speculative Par Monad
presented in Figure 4. The small step semantics relates a heap H
and a thread pool T to either a new Heap and new thread pool, or
the error state if multiple writes occurred to a single IVar. Rules
Bind, BindRaise, Handle, and HandleReturn are standard monadic
bind and exception handling rules. The Eval rule dispatches back
to the big step semantics for reducing non-monadic terms (such as
beta reduction, creating tuples, projecting tuples, etc...).

The Fork rule spawns a new thread, and records a fork action
on the thread performing the fork along with the thread ID of
the forked thread. we uniquely name threads by adding a number
onto the forking thread’s ID that is equal to the number of threads
that have already been created by this thread. The forked thread is
then created with an action on its stack indicating it was created
speculatively, and not allowing it to commit any actions. When the
forking thread has a fork action at the head of its action queue, it can
commit this action, moving the fork action over to its commit list,
and moving the CSpec action over to the forked thread’s commit
list. The New rule allocates a new IVar, marking it as having been
allocated speculatively. When the allocation action makes its way
to the head of the action queue, it can then change the state of
the IVar from speculative to commit using the PopNewFull or
PopNewEmpty rule. The Get rule is used to read from an IVar, if
the IVar is full, then we add a read action to the threads speculative
action queue, and record the thread’s ID in the IVar indicating that
if this IVar is rolled back, this thread is a dependent reader. The
PopRead rule can then be used to commit this read action assuming
the IVar is now in commit mode. The Put rule is used to write to
an IVar, assuming it is empty, we fill the contents of the IVar and
add a write action to the thread’s action list. This action can then
be committed using the PopWrite rule, which sets the status of the
IVar to commit written.

The Overwrite rule applies when a thread has no speculative
actions (i.e. it is in commit mode) and is attempting to write to
an IVar that is speculatively full. When looking up the IVar in the
heap we see that it previously was written by thread Θ′, which we
then lookup in the pool and split its speculative action queue into
those actions that happened after the write, and those that happened
before the write to this IVar. We then perform a rollback with
respect to thread Θ′, which is described later. For now it suffices
to know that it undoes all actions performed by Θ′, up to S′1, which
correspond to the actions performed before the write to x. We
then update IVar x to contain the value being written by thread Θ.
The ErrorWrite rule is similar to Overwrite, except the IVar being
written is commit full, which corresponds to an error.

The Spec rule begins a speculative computation, which behaves
similarly to the Fork rule with a few differences. First, notice that
we add two actions to the created thread’s speculative action list,
The first is an action indicating it was created speculatively as
is done in the Fork rule, but we also include the (S,N) action
indicating that it is the right branch of a speculative computation

rollback(Θ, S,H, T ) (H ′, T ′)

RBDone
rollback(Θ, S,H,Θ[S, S2,M ] | T ) (H,Θ[S, S2,M ] | T )

RBRead

H(x) = 〈s1,Θ′ ] ds, S, t,M〉,
H′ = H[x 7→ 〈s1, ds, S, t,M〉]

rollback(Θ, S,H′,Θ′[S1, S2,M ′] | T ) (H′′, T ′)

rollback(Θ, S,H,Θ′[(R, x,M ′) : S1, S2,M ] | T ) (H′′, T ′)

RBFork

T = Θ′′[CSpec, S′2,M
′′] | T ′

rollback(Θ, S,H,Θ′[S1, S2,M ′] | T ′) (H′, T ′′)

rollback(Θ, S,H,Θ′[(F,Θ′′,M ′) : S1, S2,M ] | T ) (H′, T ′′)

RBWrite

H(x) = 〈s, ∅, S,Θ′,M〉, H′ = H[x 7→ 〈s〉]
rollback(Θ, S,H′,Θ′[S1, S2,M ′] | T ) (H′′, T ′)

rollback(Θ, S,H,Θ′[(W,x,M ′) : S1, S2,M ] | T ) (H′′, T ′)

RBNew

H(x) = 〈S〉, H′ = H\x
rollback(Θ, S,H′,Θ′[S1, S2,M ′] | T ) (H′′, T ′)

rollback(Θ, S,H,Θ′[(A, x,M ′) : S1, S2,M ] | T ) (H′′, T ′)

Figure 5. Rollback

with initial termN . When the fork action makes its way to the front
of Θ’s action list, we remove the CSpec action, but the (S,N)
action remains on the speculative list, disallowing this thread from
committing anything until it joins with its corresponding commit
thread in the SpecJoin rule.

The SpecRB rule corresponds to canceling a speculative thread,
where we rollback the canceled thread’s actions similarly to what
is done in the Overwrite rule. The SpecJoin rule is used for join-
ing a speculative computation. When the thread executing the left
branch of a speculative computation is finished, we adopt the term
being evaluated by the speculative thread, and all of its speculative
actions and transition to the specJoin intermediate form. The Spec-
Done and SpecRaise rules are used to finish a speculative compu-
tation when the right branch evaluates to a returned value or raised
exception respectively.

Figure 5 provides the semantics for performing a rollback. The
rollback function takes a thread ID, Θ, to rollback with respect to,
a list of actions, S, such that the rollback stops when thread Θ has
this list of actions S, a heap, and a thread pool. The result of a
rollback is then a new heap and a new thread pool.

The RBDone rule indicates that the rollback is complete when
thread Θ has as its action list S. The RBRead rule is used to undo
a read action. It must be the case that the thread’s ID is present
in the set of dependent readers on the IVar when looked up in
the heap, so we remove the ID from the set, and continue with
the rollback, resetting the thread to the term associated with the
read action. RBFork is applicable when the thread associated with
a fork action has nothing but the created speculative action in its
speculative list, we then proceed with the rollback by throwing
away the forked thread, and reset the forking thread to the term
associated with the action. RBWrite undoes a write action when the
IVar written to has no recorded dependent readers, we then proceed
by resetting the IVar to empty and resetting the writing thread to the
term associative with the write action. RBNew undoes an allocation
action when the IVar being rolled back was speculatively created,
we remove it from the heap and continue after resetting the thread
back to the term associated with the allocation action.



EJH;T K = EJHK; EJT K
EJT1 | T2K = EJT1K | EJT2K

EJΘ[S1 : (R, x,M ′), S2,M ]K = M ′

EJΘ[S1 : (W,x,M ′), S2,M ]K = M ′

EJΘ[S1 : (A, x,M ′), S2,M ]K = M ′

EJΘ[S1 : (F,Θ′,M ′), S2,M ]K = M ′

EJΘ[S1 : (S,M ′), S2,M ]K = ·
EJΘ[S1 : CSpec, S2,M ]K = ·

EJΘ[·, S2,M ]K = M
EJH,x 7→ 〈S〉K = EJHK
EJH,x 7→ 〈C〉K = EJHK, x 7→ 〈〉

EJH,x 7→ 〈S, ds, s,Θ,M〉K = EJHK
EJH,x 7→ 〈C, ds, S,Θ,M〉K = EJHK, x 7→ 〈〉
EJH,x 7→ 〈C, ds,C,Θ,M〉K = EJHK, x 7→ 〈M〉

Figure 6. Erasure

5. Proof of Determinism
The overall proof strategy is to first prove an equivalence to the
original Par Monad, which is known to be deterministic [MNP11,
BBC+10], and then deducing determinism for our speculative ex-
tension from this equivalence. For the reader’s convenience, we
have restated the semantics of the original Par Monad in the Ap-
pendix. Those familiar with [MNP11] will notice some slight dif-
ferences between the two presentations. First, we have used an ex-
plicit heap for IVars, where as the original semantics mixes threads
with IVars in the style of the π-calculus. Second, we have added
syntax for speculative computations in Par, however, it is evalu-
ated sequentially and essentially equivalent to a special case of the
bind construct. More concretely, spec M N can be de-sugared to
M >>= \i.(N >>= \j.return(i, j)) where i does not occur
free in N . Lastly, in the original semantics, threads were allowed
to terminate in the middle of a computation when they complete,
where as in our presentation, we keep them around to the end of a
runPar.

Before stating our equivalence theorem, we first introduce an
erasure in Figure 6 that relates speculative program states to non
speculative (Par Monad) program states. Intuitively, the erasure
recursively goes through the program state, and “throws away”
speculative work. If a thread has speculative actions, we reset them
to the term associated with the oldest action in their list for read,
write, allocation, and fork actions. If the oldest action indicates that
it was created speculatively, or it is a thread executing the right
branch of a spec, then we simply throw away the thread as these
threads would not yet have been created in the non speculative
semantics. When erasing the heap, we throw out any IVars that
were speculatively created. If an IVar was commit created, but was
speculatively written, then the erasure simply resets it to empty.

We can now relate the behaviors in one language to the behav-
iors in the other, where behaviors are defined as:

βs[M ] = {V | runPar M ⇓s b}
βp[M ] = {V | runPar M ⇓p b}

Here the s subscript is used to denote a large step in the specula-
tive semantics and a p subscript is used to denote a large step in the
non speculative (Par) semantics. Also, in this case b represents all
possible outcomes of runPar (i.e. b could be some termM , Error,
or∞).

There is an interesting point to be made about proving an equiv-
alence between diverging programs. In the speculative language it
is possible to have divergent programs that can converge in the non-
specualtive language if care is not taken. As an example consider
the program:

USJH;T K = USJHK;USJT K
USJT1 | T2K = USJT1K | USJT2K

USJΘ[S1 : (R, x,M ′), S2,M ]K = Θ[·, S2,M
′]

USJΘ[S1 : (W,x,M ′), S2,M ]K = Θ[·, S2,M
′]

USJΘ[S1 : (A, x,M ′), S2,M ]K = Θ[·, S2,M
′]

USJΘ[S1 : (F,Θ′,M ′), S2,M ]K = Θ[·, S2,M
′]

USJΘ[S1 : (S,M ′), S2,M ]K = Θ[· : (S,M ′), S2,M
′]

USJΘ[S1 : CSpec, S2,M ]K = ·
USJΘ[·, S2,M ]K = Θ[·, S2,M ]
USJH,x 7→ 〈S〉K = USJHK
USJH,x 7→ 〈C〉K = USJHK, x 7→ 〈C〉

USJH,x 7→ 〈S, ds, s,Θ,M〉K = USJHK
USJH,x 7→ 〈C, ds, S,Θ,M〉K = USJHK, x 7→ 〈C〉
USJH,x 7→ 〈C, ds,C,Θ,M〉K = USJHK, x 7→ 〈C, ∅,C,Θ,M〉

Figure 7. Unspeculate

runPar (spec (raise M) N)

Where N is a divergent computation. In the speculative lan-
guage, there is nothing that forces us to make progress on the com-
mit portion of a speculative computation, therefore this program
could infinitely take steps on N, despite the fact that if the left
branch of the spec ever got a chance to run it would cancel the
divergent computation. In the non speculative language this is not
an issue as progress cannot be made on the right branch of a spec
until the left branch has been evaluated to a raised exception or
returned value. Typically one would define divergence as:

H;T →s H
′;T ′ H ′;T ′ →∞s

H;T →∞s
However for our purposes we must state a more restrictive

version of divergence:

H;T →∗spec H
′;T ′ H ′;T ′ →commit H

′′;T ′′ H ′′;T ′′ →∞s
H;T →∞s

Where the →commit relation is the same as the step relation
presented in Figure 4 except that we restrict that the thread taking
the step does not have any uncommitted actions and the →spec
relation is the complement of→commit. Essentially we are enforcing
a fairness policy requiring that progress must be made on a commit
thread in order for a program state to be divergent. Note that this
leaves the class of speculatively divergent programs undefined in
our formalism, however, we do not believe this is an issue as those
programs will have a defined behavior in an actual implementation
assuming a fair scheduling policy.

At this point we are able to state our equivalence theorem

Theorem 1 (Equivalence). ∀M,βs[M ] = βp[M ]

Proof Sketch. We show ∀b ∈ βs[M ]⇒ b ∈ βp[M ] and
∀b ∈ βp[M ] ⇒ b ∈ βs[M ]. The most interesting case is showing
V ∈ βs[M ]⇒ V ∈ βp[M ] where V is the result of a successfully
converging program in the speculative language (i.e. not an error or
divergent program), which follows from Lemma 1

Lemma 1 (Speculative Implies Nonspeculative)
If ·; 1[·, ·,M >>= \x.done x]→∗s Hs;Ts | 1[·, S2, done N ] and
Finished(Ts) then
∃Hp Tp, ·;M >>= \x.done x →∗p H;Tp | done N and
EJHs;TsK = Hp;Tp and Finished(Tp)



This is proven with a good amount of infrastructure behind it.
First we define a metafunction in Figure 7 similar to erasure that re-
lates a program state to its “commit frontier” which essential aban-
dons any speculative work that has been done. This unspeculate
function is then used to state a well-formedness property on specu-
lative program states:

USJH;T K→∗s H;T

WF(H;T )

Intuitively, this says that a program state is well formed if we can
abandon all speculative work that has been done and get back to the
exact point we were at before unspeculating. Lemma 1 then follows
from a more general restatement.

Lemma 2 (Speculative Implies Nonspeculative WF)
If WF(Hs;Ts) and Hs;Ts →∗s H ′s;T ′s then
∃H ′p T ′p, EJHs;TsK→∗p H ′p;T ′p and EJH ′s;T ′sK = H ′p;T ′p

Proof Sketch. By induction on the derivation ofHs;Ts →∗s H ′s;T ′s
and case analysis on the first step taken in the derivation. If the
first step is a speculative step (i.e. the thread taking the step has
uncommitted actions), then take zero steps in the non speculative
semantics as EJHs;TsK = EJH ′s;T ′sK. If the first step corresponds
to Eval, Bind, BindRaise, Handle, HandleReturn, Fork, New. Get,
Put, Overwrite, ErrorWrite, Spec, SpecRB, SpecJoin, SpecDone,
or SpecRaise, and the thread taking the step does not have any un-
committed actions, then we take the one corresponding step in the
non speculative semantics. If the first step corresponds to PopRead,
PopWrite, PopNewFull, PopNewEmpty, or PopFork, then the spec-
ulative program must “catch up” by performing the action being
committed and all of the pure steps between the action being com-
mitted and the next uncommitted action if any. Fortunately, the se-
quence of steps necessary to catch up is given to us by the well-
formedness derivation.

Once we have established the equivalence, we can deduce de-
terminism easily assuming that the non speculative language is de-
terministic

Theorem 1 (Par Monad Deterministic)
If runPar M ⇓p V1 and runPar M ⇓p V2, then V1 = V2

Proof Sketch. This is assumed based on previous work

Theorem 2 (Speculative Par Monad Deterministic)
If runPar M ⇓s V1 and runPar M ⇓s V2, then V1 = V2

Proof Sketch. By case analysis on both runPar M ⇓s V1 and
runPar M ⇓s V2. If V1 and V2 are the results of successfully
converging programs, then by Lemma 1 we have runPar M ⇓p V1

and runPar M ⇓p V2. From Theorem 1 we have V1 = V2. The
other cases are proven similarly.

Note that many cases and supporting lemmas are left out for
brevity and that the proof sketches provided are only meant to
give the reader a high level intuition as to how the details of the
proof fit together. Full details about the proof can be found in the
Coq formalization at http://people.rit.edu/ml9951/
research.html

6. Implementation
In addition to the formal semantics and determinism proof we have
also begun a preliminary implementation as a part of the Manticore
project. We have implemented the rollback mechanism and an
IVar library using the BOM intermediate language that is used

for much of the rest of the runtime system and thread scheduling
infrastructure [FRR08]. One key feature that the BOM intermediate
language has is first class continuations, which allow us to “reset”
threads to previous points in their evaluation.

6.1 Threads in Manticore
In Manticore, threads are simply represented as a unit continua-
tion and a pointer to thread local storage. We store the action list
described in the formal semantics inside of thread local storage.
When a thread is created, we can provide a cancelable object such
that each time the thread is scheduled, it first checks to see if a flag
in the cancelable object has been set and if so, it terminates. More
details about about cancelation and thread scheduling can be found
in [FRRS11].

6.2 IVars
An IVar is represented as a record almost identically as it is in the
formal semantics. The main difference is in the list of dependent
readers of an IVar. In the formal semantics, this is simply a multi
set of thread IDs, however, in our implementation it is actually a
tuple containing the cancelable object associated with the reader, a
continuation corresponding to the current continuation of the reader
at the point in which it read the IVar, and a pointer to the list of
actions it has performed. When a thread reads from an IVar, it
captures its current continuation, and stores it in the IVar along with
its cancelable object and action pointer. In the event that a rollback
is invoked, we recursively go through the list of actions to be rolled
back doing the following for each action:

• If the action is a fork action, cancel the forked thread (cance-
lable object is stored in the action object) and append all of the
forked thread’s actions to the list of actions to be rolled back
• If the action is a read action, we simply continue with the

rollback
• If the action is a write action, reset the IVar to empty, and

process each of the dependent readers associated with this IVar.

When processing dependent readers, we recurse down the
list of actions they have been performed and look for the
oldest read action to the IVar being rolled back. Note that it
must be the oldest action because if the thread read from the
IVar multiple times, we need to reset it back to the point at
which it read from the IVar for the first time.

We then reset this thread to the continuation associated with
this read action and append the actions occurring after the
read to the list of actions to be rolled back.

Note that we do not record an action for allocating an IVar. This
is done in the formal semantics for the purposes of maintaining the
well-formedness property and is not necessary to rollback the cre-
ation of IVars as they will simply be garbage collected. The reason
this is important for preserving the well-formedness property is that
after unspeculating a program state, it must be able to run forward
to exactly the state it was in prior to unspeculating. This means
that the names chosen for IVars in the heap must be the same as
they were previously, which would not be possible if speculatively
allocated IVars where not removed from the heap.

As a final technical detail, when “resetting” threads to previous
points in their evaluation we actually simply cancel the thread to be
reset. We then create a new thread with the same identity, except
that it begins its evaluation at the continuation corresponding to the
point in which it is to be “reset”.
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Figure 8. Rollback Overhead

7. Preliminary Results
Our implementation is still in its early stages, however, we have
been able to perform some preliminary evaluation in order to give
the reader a sense as to what sort of overhead is introduced by our
logging and rollback mechanism in Manticore.

7.1 Producer Consumer
The first benchmark is a simple program that spawns two threads,
one that repeatedly writes some arbitrary data to a linked list of
IVars and another that reads each element of the linked list as it
becomes available. This gives us some idea as to what sort of price
we pay even if we have no interest in doing any sort of speculative
computation. For a program that writes 5,000 IVars we see only
a 5% slowdown relative to an implementation that performs no
logging.

7.2 Measuring Rollback
In an effort to measure the overhead introduced by the rollback
mechanism we have constructed a synthetic benchmark that forks
a thread that speculatively writes to an IVar, and with a given prob-
ability raises an exception to rollback the write after a predeter-
mined amount of time. After forking this thread, the main thread
then reads from the speculatively written IVar in order to record a
dependent reader and then enters a spin loop for the same predeter-
mined amount of time as the forked thread. When a rollback occurs,
the runtime system will then reset the written IVar to empty and re-
set the main thread to before the point that it read from the IVar. If
a rollback does not occur, then the two spin loops are executed in
parallel and should, in theory, achieve 2X speedup. Figure 8 shows
the results of the experiment varying the probability of perform-
ing a rollback from 0 to 1 in 0.1 increments. The execution times
for each probability interval are the average of 500 iterations. For
the non speculative results, we simply run the two spin loops se-
quentially in order to get a baseline execution that does not involve
the runtime system. The results indicate that for this particular sce-
nario, the overhead of a rollback is essentially free. The average
runtime of the non speculative case is 0.1833 seconds vs. 0.1834
for the average speculative runtimes with a 100% chance of a roll-
back occurring.

Certainly these results will vary based on the “size” of the
rollback, meaning if we had more threads dependently reading

from the IVar, or we were speculatively writing to more IVars, the
execution time would definitely be different as the runtime system
would need to do more work. Future work will include a more in-
depth analysis of these parameters.

8. Related Work
This work builds on two broad categories of related projects, those
that deal with deterministic parallelism in the presence of shared
state, and those that deal with speculative parallelism.

8.1 Shared State
IVars were first proposed in the language Id [ANP89], which is also
a parallel functional language, however, they sacrifice determin-
ism by also adding MVars, which are shared references that can be
written an arbitrary number of times with implicit synchronization.
More recently, IVars have been adopted by parallel languages such
as the Par Monad of Haskell [MNP11] and some of the Concur-
rent Collections work[BBC+10], however, neither of these works
support speculative parallelism.

LVars are a new abstraction that were recently proposed by Ku-
per et al. [KN13, KTKN14] that generalize IVars to allow multiple
writes, but restrict that they must be monotonically increasing in
some fashion. LVars suffer from the same problem as IVars in that
they also lose their determinism guarantee in the presence of can-
celation. More recently, they have proposed an elegant solution for
combining LVars with speculative parallelism [KTTN14], where
threads can perform speculative work (i.e. can potentially be can-
celed) if they are read only. They do however, allow speculative
threads to write to memoization tables such that they can “help out”
other threads, however, one shortcoming to this solution is that per-
formance becomes difficult to reason about as a programmer. Note
that parallel speedup is only achieved if the speculative thread is
able to write to the memoization table before another thread needs
this result. If it does not make it there in time, then not only is there
no benefit, but the speculative thread corresponds to wasted work.
On the other hand in this work, if the commit portion of a paral-
lel tuple finishes before the speculative threads, it simply waits for
them to complete and then joins with them.

Welc et al. proposed a solution for enforcing a sequential se-
mantics for Java futures [WJH05, NZJ08], a concurrency abstrac-
tion taken from Multilisp [Hal85]. They too extend their runtime
system to enforce deterministic execution, but in a very different
way relative to our approach. First, for each thread that is spawned,
they create a new copy for each object that it writes to. This does
not allow for the type of fine grained sharing that we are able to
support in our producer-consumer benchmark. Additionally, if their
runtime system detects that a thread has violated the sequential se-
mantics, they restart the thread from the beginning, where as our
approach is able to simply rollback a thread to the exact point in
which the violation occurred, avoiding redundant work.

Bocchino et al. give a region based type and effect system
for guaranteeing determinism at compile time for parallel Java
programs [BAD+09]. Their approach requires annotations on Java
programs specifying what “regions” objects are allocated in. They
then extend their Java compiler to statically verify that concurrently
executing threads do not manipulate objects that are allocated in the
same regions.

8.2 Speculative Parallelism
There is a large body of work that has been done on transparent
speculative parallelism, where the compiler and runtime system
automatically perform value prediction and control the amount of
parallelism in the program, however, more relevant to this work is
the notion of programmable speculative parallelism. Programmable



speculative parallelism was first introduced in [Bur85] in the con-
text of the Mirranda language. Their approach uses a purely func-
tional language, so they do not deal with any of the rollback issues
that we present in this work.

More recently, Prabhu et al. propose language constructs for
specifying speculatively parallel algorithms and formalize their se-
mantics using the lambda calculus extended with shared references
[PRV10]. Rather than providing a runtime system that performs
rollbacks in the event of a miss-speculated value, they describe an
analysis that is performed at compile-time that guarantees that they
will never need to perform any rollbacks. Their analysis is nec-
essarily conservative, making certain types of sharing patterns not
expressible in their language.

Software Transactional Memory (STM) can be seen as a form
of speculative parallelism. Transactional memory allows program-
mers to wrap code in “atomic” blocks that the runtime system guar-
antees to be executed in isolation [ST95]. STM uses a form of “op-
timistic” concurrency where threads execute code inside of transac-
tions and upon completion check to see if any of the memory loca-
tions they read or wrote were compromised by other concurrently
running threads. If so, they abort the transaction and restart from
the beginning. Transactional memory is different from our work in
the sense that they provide no guarantees about deterministic exe-
cution, and is concerned only with atomicity.

9. Conclusions and Future Work
Giving parallel constructs a deterministic semantics makes reason-
ing about parallel programs substantially easier. In this work we
have shown how we can extend the expressiveness of Manticore by
adding IVars and still be able to guarantee deterministic execution.
We have formalized the semantics of this extended language and
provided a proof of its correctness using the Coq proof assistant.

For our preliminary implementation we have tried to remain
faithful to the formal semantics as much as possible to ensure cor-
rectness without worrying too much about performance. In the im-
mediate future we plan on fine tuning our implementation of the
runtime system in Manticore to improve efficiency and perform a
more thorough evaluation. This idea of combining speculative par-
allelism with IVars is a new programming model that has not been
explored elsewhere so coming up with interesting benchmark pro-
grams is also a bit of a challenge and something we look to explore
further in the future. Lastly, we believe it would be interesting in
generalizing our approach to the LVars programming model. As
mentioned in the previous section, this is an extension of the IVars
model that permits multiple writes to shared references, so extend-
ing both our implementation and our formal semantics presents
some interesting challenges.
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10. Appendix

Finished(H;T )

Finished(H;T1) | Finished(H;T2)

Finished(H;T1 | T2)

H(x) = 〈C〉
Finished(H; Θ[S1, S2, E[get x]])

Finished(H; Θ[·, S2, return M ]) Finished(H; Θ[S : A,S2,M ])

Figure 9. Finished Thread Pool



adopt(S : (R, x,M), E,M ′) = adopt(S,E,N) : (R, x,E[specJoin(N,M)])
adopt(S : (W,x,M), E,M ′) = adopt(S,E,N) : (W,x,E[specJoin(N,M)])
adopt(S : (A, x,M), E,M ′) = adopt(S,E,N) : (A, x,E[specJoin(N,M)])
adopt(S : (F,Θ,M), E,M ′) = adopt(S,E,N) : (F,Θ, E[specJoin(N,M)])
adopt(S : (S,M), E,M ′) = adopt(S,E,N) : (S,E[specJoin(N,M)])
adopt(S : CSpec,E,M ′) = adopt(S,E,N) : CSpec

Figure 10. Action Adoption

x ∈ V ar
Values V ::= x | i | \x.M | return M |M >>= N | runPar M | fork M | new | put i M

| get i | done M | spec M N | specRun(M,N) | specJoin(M,N) | raise M
| handle M N

Terms M,N ::= V |M N | · · ·
Heap H ::= H,x 7→ iv | ·

IVar State iv ::= 〈〉 | 〈M〉
Evaluation Context E ::= [·] | E >>= M | specRun(E,M) | handle E N | specJoin(N,E)

Thread Pool T ::= · | (T1 | T2) |M
Configuration σ ::= H;T | Error

Figure 11. Original Par Monad Syntax

FPar
Finishedp(H;T1) Finishedp(H;T2)

Finishedp(H;T1 | T2)
FBlocked

H(x) = 〈〉
Finishedp(H;E[get x])

FDone
Finishedp(H; return M)

Figure 12. Original Par Monad Finished

RunPar
(M >>= \x.done x)→∗p done N | T N ⇓ V Finishedp(T )

runPar M ⇓ V

Eval
M ⇓ V

H;T | E[M ]→p H;T | E[V ]
Bind

H;T | E[return N >>= M ]→p H;T | E[M N ]

BindRaise
H;T | E[raise N >>= M ]→p H;T | E[raiseN ]

Handle
H;T | E[handle(raise M)N ]→p H;T | E[M N ]

HandleRet
H;T | E[handle(return M)N ]→p H;T | E[return M ]

Fork
H;T | E[fork M ]→p H;E[return()] |M | T

New
x /∈ Domain(H) H ′ = H[x 7→ 〈〉]
H;E[new] | T →p H

′;T | E[return x]
Get

H(x) = 〈M〉
H;E[get x] | T →p H;E[return M ] | T

Put
H(x) = 〈〉 H ′ = H[x 7→ 〈M〉]

H;E[put x M ] | T →p H
′;E[return()] | T

Spec
H;E[spec M N ] | T →p H;E[specRun(M,N)] | T

SpecRun
H;E[specRun(return M,N)] | T →p H;E[specJoin(return M,N)] | T

SpecRaise
H;E[specRun(raise M,N)] | T →p H;E[raise M ] | T

specJoin
H;E[specJoin(return M, return N)] | T →p H;E[return(M,N)] | T

specJoinRaise
H;E[specJoin(return M, raise N)] | T →p H;E[raise N ] | T

Figure 13. Original Par Monad Operational Semantics


