
Blank Canvas and the remote-monad design pattern
A Foreign Function Interface to the JavaScript Canvas API

Extended Abstract

Andrew Gill Aleksander Eskilson Ryan Scott James Stanton
Information and Telecommunication Technology Center

The University of Kansas
{andygill,aeskilson,ryanscott,jstanton}@ittc.ku.edu

Abstract
JavaScript is the de-facto assembly language of the internet.
Browsers offer an array of powerful rendering and event processing
services, including a simple 2D canvas. Blank Canvas is Haskell
DSL that provides a Foreign Function Interface to the JavaScript
canvas API and the JavaScript event API. With this capability,
Haskell programmers can draw pictures on the browsers, and ac-
cess input from the keyboard and mouse. At the University of
Kansas, we use the blank-canvas package for teaching Haskell,
where it provides a more interesting I/O experience than stdio.

We investigate the use of the remote-monad design pattern,
using Blank Canvas as our driving example. After explaining the
design pattern, and constructing the basic remote capability, we
critically assess the feasibility of our straightforward approach, and
explore improvements.

1. Introduction
Blank Canvas is a Haskell binding to the complete HTML5 Canvas
API. Blank Canvas allows Haskell users to write, in Haskell, inter-
active images onto their web browsers. Blank Canvas gives the user
a single full-window canvas, and provides many well-documented
functions for rendering images.

As a first example and in order to give a feel for the library,
consider drawing a single red line onto the canvas. In Haskell, using
Blank Canvas we can write the following.

send context $ do -- Ê
moveTo(50,50) -- Ë
lineTo(200,100)
lineWidth 10
strokeStyle "red"
stroke() -- Ì

Copyright held by author(s). This is an unrefereed extended abstract, distributed for the
purpose of feedback toward submitting a complete paper on the same topic to IFL’14.

First, the send command (Ê) sends a monadic list of commands
to a (graphics) context. Second, the list of commands (Ë) operates
on this context in an imperative manner. Finally, the stroke()
commands (Ì) actually draws the red line. At this point, the screen
looks like

In JavaScript, the same actions can be performed using an al-
most identical code fragment.

-- JavaScript
context.moveTo(50,50);
context.lineTo(200,100);
context.lineWidth = 10;
context.strokeStyle = "red";
context.stroke();

Blank Canvas has packaged the JavaScript API as a small Do-
main Specific Language in Haskell, and allows Haskell users to
access the canvas. At the University of Kansas, we make extensive
use of this API. Students find it easy to understand, and complete
medium-sized projects, usually games, using Blank Canvas as the
primary IO mechanism. In the graduate FP class, we also under-
take an FRP exercise [1, 8], which uses Blank Canvas to render
shapes onto the canvas. Using the Blank Canvas API, we also have
developed slide presentation software, and an internal animation
framework. Finally, the popular diagrams package [11, 12] has
been ported to use blank Canvas as a back end [7].

The central issue, and the subject of the full paper, is quan-
tifying the costs associated with having code execute outside the
Haskell runtime system, and remotely running monadic code. The
browser, running JavaScript, is typically a separately executing pro-
cess from a Haskell program. Thus, we have two extreme solutions
to our API implementation, sending each command over a network
connection piecemeal, or compiling the entire Haskell program and
runtime system into JavaScript. We investigate a middle ground be-
tween sending commands piecemeal, and compiling wholesale to
JavaScript, using a design pattern.



2. Remote-monad DSL Pattern
Haskell has no standard graphics library. Instead, a rich Foreign
Function Interface (FFI) capability is used to tunnel to C, and
onwards to established libraries, such as OpenGL. There are three
conceptual problems to be solved in crossing to non-native C (and
C++) libraries, such as OpenGL:

• First, control flow needs to flow to the correct C function. Given
the lowest level of the GHC runtime system is written in C, this
is straightforward. Callbacks, from C to Haskell can also be
arranged.

• Second, the data structures that are arguments and results of
calls to (and from) C need to be coerced into the correct format.
C strings are not the same as Haskell strings.

• Third, the abstractions of OpenGL may not be idiomatic
Haskell abstractions. For example, many APIs assume OO-
style class inheritance. This can be simulated in Haskell, but
raises an obfuscation barrier.

Any time control flow leaves the eco-system, all three of these
concerns come to into play. All three are well handled in the
Haskell FFI for C. There is a way of directly promoting a C func-
tion into Haskell-land, there is a good support for marshalling data
structures, in C structures, as well an automatic memory manage-
ment support, and Haskell abstraction capabilities are used to build
more Haskell-centric APIs on top of the FFI capability. Calling C
functions directly from Haskell is cheap. However, we want to in-
vestigate another FFI with a different tradeoff, where the call is re-
mote and expensive, and understand what abstractions can be used.

The remote-monad pattern is our name for the transmission of
a (fixed) set of commands to a remote site, for execution. In its most
basic form, we have a send command, a remote location identifier,
and a single command.

send :: Name -> RemoteCommand a -> IO a
remote :: Name
readRemoteFile :: String -> RemoteCommand String
example :: IO ()
example = do

txt <- send remote (readFile "foo")
print txt

The idea is that the send command reifies the RemoteCommand,
sends it to the remote location, runs it, accepts the response, trans-
ports it back to the original send, and returns the remotely gener-
ated value. This pattern can implemented using the first two of the
three requirements above of a an FFI interface, as described above.
First, a remote function is called (control is moved to the remote
site), and back. Second, the pattern takes care of the necessary data
conversation conventions, both in transport, and on the remote site.

The remote-monad command has many manifestations. At KU,
we have used it for Blank Canvas, but also for Sunroof (sending
whole JavaScript programs), and using Kansas Lava [2] to talk to
remote peripherals. Furthermore, The pattern appears in many dif-
ferent places. If we interpret “remote” to mean different environ-
ment, the run function for many well know monads can be consid-
ered a send. Software transactional memories (atomically [3]),
the ST monad (runST [5]) and IO (forkIO [4]) can also ben
considered close instances of the remote-monad pattern, where a
monad is executed in a different context.

The remote-monad patterns has two laws:

send (return a) = return a (1)
send m1 >>= send m2 = send (m1 >>= m2) (2) [*]

The first law states that a send has no effect except the remote
commands. The second law, which has a pre-condition of non-
interference[*], states that remote commands preserve ordering,
and can be split and joined into different sized packets. The pre-
condition is interesting: it is possible to have the result of two
send’s be the same as a single send, yet the observable effects
be different, for example a screen update is done between the two
send commands.

3. Blank Canvas
Blank Canvas is a small library at around 1500 lines of Haskell.
At the heart of the library is the remote-monad, and the send
command. There is quite a bit of careful construction, however, to
make everything work.
The packet principles are:

• Where possible, everything in a send-packet should be sent to
be executed together.

• The breaks between packets should be deterministic and stati-
cally/syntactically determinable.

• Packets are not combined between different calls to send.

The command principles are:

• Anything that returns () is asynchronous, and may be com-
bined with the next monadic command, or send instantly.

• Anything that does not return () is synchronous, and requires a
round-trip to the server.

The Canvas data type has a small number of constructors. The
four main constructor are:

data Canvas :: * -> * where
Method :: Method -> Canvas ()
Query :: Query a -> Canvas a
Bind :: Canvas a -> (a -> Canvas b) -> Canvas b
Return :: a -> Canvas a

The choice of constructors follow the principles carefully.
Method is used for asynchronous drawing commands, while Query
is used for commands that need a round trip. Bind and Return
form the monad for Canvas, allowing monadic reification [9, 10].

4. Benchmarking Blank Canvas
A key question is the cost of using the remote-monad design pat-
tern. At first glance, it would seem prohibitive. The current version
of Blank Canvas (0.5) uses Haskell Strings internally, transliter-
ating each command to a String, and combines intra-send com-
mands, where possible. Absolutely every command needs trans-
lated then sent over a (typically local) network.

We have measured Blank Canvas on a small number of bench-
marks, and compared to native JavaScript. We have two classes
of benchmarks: “display” benchmarks, that simply render to the
HTML5 canvas, and “query” benchmarks, that the inner loop of the
benchmark invokes some from of query that requires a round-trip
from server, to client, back to the server.

Blank Canvas works on almost any modern, HTML5 compliant
browser. Figure 1 gives our initial results. We have tested each
benchmark on recent versions of Firefox and Chrome, on both
Linux and OSX, to gain a crude overall benchmark for how much
using the remote-monad design pattern costs. The Haskell tests
were run 100 times using criterion [6], the JavaScript tests were
averaged over 100 runs.



Linux OSX
Firefox Chrome Firefox Chrome

Benchmark Haskell JS Ratio Haskell JS Ratio Haskell JS Ratio Haskell JS Ratio

D
isplay

Bezier 6.90 4.09 1.69 4.03 1.71 2.36 11.56 3.23 3.58 8.51 0.55 15.47
CirclesRandSz 138.64 105.45 1.31 71.15 25.07 2.84 68.77 46.26 1.49 66.97 12.84 5.22
CirclesUniSz 106.90 75.41 1.42 62.43 15.28 4.09 71.19 31.32 2.27 67.52 12.54 5.38
FillText 57.95 48.33 1.20 4.99 1.80 2.77 7.81 5.22 1.50 5.07 1.29 3.93
StaticAsteroids 365.10 121.71 3.00 309.59 14.92 20.75 197.92 30.49 6.49 201.21 8.07 24.93
Image 214.63 21.87 9.81 421.41 57.41 7.34 596.29 209.74 2.84 657.68 75.82 8.67

Q
uery

IsPointInPath 22.31 0.49 45.53 27.73 0.26 106.65 33.72 0.73 46.19 74.71 0.37 201.91
MeasureText 184.18 50.56 3.64 160.76 2.04 78.80 265.22 5.92 44.80 320.49 1.40 228.92
Rave 58.30 20.50 2.84 38.66 1.71 22.61 62.18 10.98 5.66 115.43 0.58 199.02

Table 1. Benchmarking Blank Canvas vs. Native JavaScript. (times in milliseconds)

The display benchmarks are:

• Bezier – drawing 1000 bezier curves.
• CirclesRandomSize – 1000 filled in circles of random sizes.
• CirclesUniformSize – 1000 filled in circles of a uniform size.
• FillText – 50 words
• StaticAsteroids – 1000 wire polygons.
• Image – 100 images of a cat, drawn at different sizes.

What can be seen is that the relative performance varies widely,
depending on browser and benchmark, but on average, the cost of
using Haskell, and the Blank Canvas API is between approximately
2 and 25, and typically less than 5. This is surprising and encour-
aging! We were expecting a larger overhead. We can also see the
importance of a testing with different environments.

The query benchmarks are:

• IsPointInPath – Draw 1000 rectangles and and points; the
points’ color depends on if the point is inside the rectangle.

• MeasureText – measure the width of 100 words.
• Rave – gradient bars.

Here, as expecting, the cost is much higher. However, again, the
result is encouraging. The places where the overhead is especially
high are where a specific browser does an especially good job of op-
timization. Further, as has been pointed out by Jeffrey Rosenbluth,
a number of our queries simply allocate a numbered resource, and
this unique number generation can be done on the server, allowing
a command rather than query to be used.

5. Related Work
The final paper will contain a detailed related work section, in-
cluding various JavaScript-based Haskell compilers, and other ap-
proaches to the FFI problem.

6. Conclusion
This short extended abstract has introduced the remote-monad de-
sign pattern, and shown its use in a full scale case-study for ac-
cessing the HTML5 Canvas JavaScript API. The cost was not pro-
hibitive, and the API is useful in practice.

Acknowledgments
We would like the thank Jeffrey Rosenbluth, for writing
diagrams-canvas, and helping with the implementation of Blank
Canvas, and Justin Dawson, for working on an earlier version of the

asteroid benchmark. This material is based upon work supported
by the National Science Foundation under Grant No. 1117569 and
Grant No. 1350901.

References
[1] C. Elliott and P. Hudak. Functional reactive animation. In In-

ternational Conference on Functional Programming, 1997. URL
http://conal.net/papers/icfp97/.

[2] A. Gill, T. Bull, A. Farmer, G. Kimmell, and E. Komp. Types and
associated type families for hardware simulation and synthesis: The
internals and externals of Kansas Lava. Higher-Order and Sym-
bolic Computation, pages 1–20, 2013. ISSN 1388-3690. . URL
http://dx.doi.org/10.1007/s10990-013-9098-7.

[3] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Composable
memory transactions. In Proceedings of the tenth ACM SIGPLAN
symposium on Principles and practice of parallel programming, pages
48–60. ACM, 2005.

[4] S. L. P. Jones, A. D. Gordon, and S. Finne. Concurrent haskell. In Con-
ference Record of POPL’96: The 23rd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, Papers Presented
at the Symposium, St. Petersburg Beach, Florida, USA, January 21-24,
1996, pages 295–308, 1996.

[5] J. Launchbury and S. L. Peyton Jones. Lazy functional state threads.
ACM SIGPLAN Notices, 29(6):24–35, 1994.

[6] B. O’Sullivan.
http://hackage.haskell.org/package/criterion, 2014.

[7] J. Rosenbluth.
http://hackage.haskell.org/package/diagrams-canvas,
2014.

[8] N. Sculthorpe and A. Gill.
http://hackage.haskell.org/package/yampa-canvas, 2014.

[9] N. Sculthorpe, J. Bracker, G. Giorgidze, and A. Gill. The
constrained-monad problem. In In Proceedings of the
18th ACM SIGPLAN International Conference on Func-
tional Programming, pages 287–298. ACM, 2013. URL
http://dl.acm.org/citation.cfm?doid=2500365.2500602.

[10] J. Svenningsson and B. J. Svensson. Simple and compositional reifi-
cation of monadic embedded languages. In International Conference
on Functional Programming, pages 299–304. ACM, 2013.

[11] B. Yorgey. http://hackage.haskell.org/package/diagrams,
2014.

[12] B. A. Yorgey. Monoids: theme and variations (functional pearl). In
Haskell Syposium. ACM, 2012.


