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Abstract
We present a set of editing actions on terms in the simply-typed
lambda calculus. These actions preserve the well-typedness of
terms, and allow the derivation of any well-typed term beginning
with any other well-typed term, without resorting to metavariables
or other forms of placeholders. We are in the process of proving
these properties, and we discuss how general-purpose program-
ming might proceed given this set of editing actions.

Categories and Subject Descriptors CR-number [subcategory]:
third-level

General Terms term1, term2

Keywords keyword1, keyword2

1. Introduction
Modern typed functional programming languages such as Haskell [11],
OCaml [7], SML [13], Idris [2], and Agda [14] offer programmers
extremely powerful and flexible type systems to ensure the cor-
rectness of their code. However, type systems are useful for far
more than checking programs as programmers have already writ-
ten them. In particular, a type system can be used to guide a term
editor such that ill-typed terms are never produced in the first place.

Text editing and submission of the program to a compiler or
interpreter for error checking and evaluation is the venerable and
proven means of creating and maintaining programs. However, this
paradigm has several disadvantages.

• It does not directly integrate semantic knowledge of program
components (such as scope and types) into the editing system,
requiring local parsing or linking with the language implemen-
tation to derive this information from the program text.
• It requires the programmer to reason about the well-typedness

of programs either manually, or by trial-and-error by submitting
them to a typechecker.
• It is unsuitable for more restrictive human-computer interaction

platforms, such as touch-based mobile platforms, game con-
soles, and accessible interfaces.
• Most importantly, text editing actions do not relate directly to

meaningful operations on programs. Insertion or deletion of
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text will often make a program syntactically invalid. It is likely
to introduce scoping errors. It will almost certainly make the
program ill-typed.

Languages such as Scratch [10], Kodu [9], and YinYang [12] are
first steps toward addressing these issues, but do not offer a clear
path toward leveraging the vast body of accomplished and ongoing
research in programming languages. We propose instead to take a
well-understood language, the lambda calculus, and show how to
edit its terms directly.

In particular, we intend to use types to guide the editing opera-
tions on terms. Rather than entering programs as text, programmers
will have at their disposal a set of actions for modifying, combining,
and uncombining complete and well-typed lambda calculus terms.
These actions are sufficient to arrive at any well-typed term from
any other well-typed term, guarantee the well-typedness of derived
terms, and do not require placeholders such as metavariables [14].

For this presentation, we consider the simply-typed lambda
calculus. We expect this approach to generalize to polymorphic and
dependently-typed calculi. We point out particular and interesting
ways in which the application of this approach to more powerful
type systems will differ from that presented here.

We make the following contributions:

• We describe a set of actions which allow programmers to con-
struct and deconstruct terms in the simply-typed lambda calcu-
lus (Sections 2 and 3).

These actions operate only on lambda calculus terms. There
are no holes or other placeholders.

• We sketch a proof that this set of actions is sound. That is,
beginning with well-typed terms, only well-typed terms may
be derived using these actions (Section 4.1).
• We sketch a proof that this set of actions is complete. That

is, any well-typed term may be constructed via these actions,
starting with any other well-typed term (Section 4.2).
• We describe how these actions support various general ap-

proaches to programming, specifically “top-down” program-
ming (where the programmer begins building the top-level pro-
gram, binding components for later construction) and “bottom-
up” programming (where the programmer begins constructing
small components and composes them into the top-level pro-
gram) (Section 5).

2. Terms, Types and Paths
For this presentation, we consider terms (and associated types) in
the simply-typed lambda calculus. We assume that terms and types
in the simply-typed lambda calculus are familiar to our readers.
However, we include them in our presentation for reference while
reading our formulations of paths and actions and our proofs of
“soundness” and “completeness” for our editing system. We use
De Bruijn indices for this presentation, as this avoids issues of
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Variables(x) ::= N
Types(t) ::= unit | t→ t
Terms(e) ::= x | λ : t.e | e e | •
Paths(p) ::= top | p lamty | p lambod

| p apprator | p apprand
| p typein | p typeout

Environments(Γ) ::= ε | Γ; t

Figure 1. Grammars for terms, types, and paths.

Γ ` e : t

UNITTY
Γ ` • : unit

VARIABLESUCCTY
Γ ` x : t

Γ; text ` x+ 1 : t

VARIABLEZEROTY
Γ; t ` 0 : t

LAMTY
Γ; tin ` e : tout

Γ ` λ : tin.e : tin → tout

APPTY
Γ ` erator : tin → tout Γ ` erand : tin

Γ ` erator erand : tout

Figure 2. Typing rules for the Simply-Typed Lambda Calculus

naming in the consideration of actions on terms. The typing rules
are given in Figure 2 as we refer to them for proofs of soundness
and completeness of the editing actions later in the paper.

In order to designate which part, or subterm, of a term we wish
to operate on, we define a notion of paths into terms. Paths are
simply sequences which recursively describe which subterm of a
particular term to pick out. The grammars for terms, types, and
paths appear in Figure 1.

2.1 Variables
We require a few operations on variables and variables in terms in
support of the definitions of our editing actions. In particular, we
will need to compare variables to see if the scope of one variable
is within the scope another. We will also need to adjust variables
in order to maintain their binding structure as we add and remove
bindings. This is done with the ↑c (e) and ↓c (e) operations.
These operations are given in Figure 3. The presentation is due to
Pierce [16, p. 79] with a few modifications.

The shift operation ↑dc (e) given by Pierce is parameterized over
the offset d as well as the cutoff c. We will only want to shift by an
offset of 1, so d is fixed at 1 and we write ↑c (e), or simply ↑ (e)
for the case where c = 0.

We introduce an unshift operation ↓c (e). This is a partial
function, which is undefined exactly on variables matching the
cutoff. Judgements with this function in their premises do not hold
in cases where it is undefined. We write ↓ (e) for the case where
c = 1. ↓ (e) is thus undefined on variables which would be bound
to the nearest binder surrounding e. Since unshifting is used when
replacing a binding which has no bound occurrences with the body
of the binding, this is the expected behavior.

2.2 Paths
Paths are intended to mark the part of a term which is under consid-
eration for a particular action. For the purpose of our presentation,
we consider paths as separate entities from terms. Paths are de-
scribed as sequences of atoms, each of which describes a choice of
subterm. There are several relations on paths and terms employed

↑c (x) =

{
x x < c
x+ 1 x ≥ c

↑c (λ : t.e) = λ : t. ↑c+1 (e)
↑c (e1 e2) =↑c (e1) ↑c (e2)
↑ (e) =↑0 (e)

↓c (x) =

{
x x < c− 1
x− 1 x ≥ c

↓c (λ : t.e) = λ : t. ↓c+1 (e)
↓c (e1 e2) =↓c (e1) ↓c (e2)
↓ (e) =↓1 (e)

Figure 3. Shifting (↑) and unshifting (↓) of De Bruijn indices.
Adapted from the presentation by Pierce [16, p. 79].

in the definitions of the editing actions. These relations are defined
in Figure 4.

The relation p(e) extracts the subterm (expression or type) of
e to which the path p points. Extraction of subterms is used to
determine their type, as well to use them when constructing new
terms by λ-abstraction or application.

The relation γ(p, e) gives the typing environment at the subterm
of e to which the path p points. This relation is used to determine
what bindings are in scope at a particular point in support of
the variable replacement operation. It is also used by the c(p, e)
operation when determining what types are valid at a path. Finally,
it is employed in the definitions of editing actions to check that new
terms do in fact meet their typing constraints.

The relation c(p, e) gives the set of types which the subterm of
e to which the path p points may match. This relation allows the
definitions of editing actions to ensure that they do not make the
term surrounding the subterm on which they operate ill-typed by
changing the type of that subterm. For instance, if e1 is applied to
e2, then λ-abstracting e2 will yield a well-typed term derived from
e2, but the application will no longer be well-typed in the STLC.

The relation efull[esub/p] or efull[t/p] gives a new term in
which esub or t is substituted for the subterm of efull to which p
points. This relation is used to define the operation of actions on
subterms. In general, the p(e) relation is used to extract a subterm,
the subterm is suitably modified, and the modified term put back in
its place by the efull[esub/p] relation.

The relation appable(p) asserts that a path is suitable for con-
structing an application with. This is used to ensure that the appli-
cation operation is not employed in subterms of applications. Were
this allowed, it is not clear which of several possible outcomes of
this operation would be the correct one. Further, disallowing this
does not affect the soundness or completeness of the editing oper-
ations. However, allowing application under applications is almost
certain to be a desirable feature in the implementation, so future
work will describe a resolution of this ambiguity and lift the re-
striction on application operations under applications.

3. Editing Actions
The core of our contributions is a set of editing actions, which
describe how to combine and manipulate lambda calculus terms
in a way that maintains well-typedness. These actions are shown in
Figure 5.

Not all actions are available at all paths into a subterm. Actions
will usually change the type of a subterm, and may not do so in a
way that would make the containing term ill-typed. This may seem
an onerous restriction. However, we are able to show that any well-
typed term may be reached from any other well-typed term using
our restriction. Further, the mechanism of constraints which we use
to judge whether a type-change will make the containing term ill-
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p(e) = esub

TOPPATH
top(e) = e

LAMTYPATH
p(e) = λ : tty.ebod

p lamty(e) = tty

LAMBODPATH
p(e) = λ : tty.ebod

p lambod(e) = ebod

APPRATORPATH
p(e) = erator erand

p apprator(e) = erator

APPRANDPATH
p(e) = erator erand

p apprand(e) = erand

TYPEINPATH
p(e) = tin → tout

p typein(e) = tin

TYPEOUTPATH
p(e) = tin → tout

p typeout(e) = tout

γ(p, e) = Γ

TOPPATHCTX
γ(top, e) = ε

LAMBODPATHCTX
γ(p, e) = Γ p(e) = λ : t.ebod

γ(p lambod, e) = Γ; t

APPRATORPATHCTX
γ(p, e) = Γ p(e) = erator erand

γ(p apprator, e) = Γ

APPRANDPATHCTX
γ(p, e) = Γ p(e) = erator erand

γ(p apprand, e) = Γ

c(p, e) = C

TOPPATHTYPES
c(top, e) = L(t)

LAMTYPATHTYPES
c(p, e) = C γ(p, e) = Γp(e) = λ : t.ebod

c(p lamty, e) = {tin|Γ; tin ` ebod : tout ∧ tin → tout ∈ C}

LAMBODPATHTYPES
c(p, e) = C p(e) = λ : tin.ebod

c(p lambod, e) = {tout|tin → tout ∈ C}

APPRATORPATHTYPES
c(p, e) = C p(e) = erator erand γ(p, e) = Γ Γ ` erand : tin

c(p apprator, e) = {tin → tout|tout ∈ C}

APPRANDPATHTYPES
c(p, e) = C p(e) = erator erand γ(p, e) = Γ Γ ` erator : tin → tout

c(p apprand, e) = {tin}

TYPEINPATHTYPES
c(p, e) = C p(e) = tin → tout

c(p typein, e) = {t|t→ tout ∈ C}

TYPEOUTPATHTYPES
c(p, e) = C p(e) = tin → tout

c(p typeout, e) = {t|tin → t ∈ C}

efull[esub/p] = enew

TOPPATHSUB
efull[esub/top] = esub

LAMTYPATHSUB
p(efull) = λ : t.e efull[λ : tsub.e/p] = enew

efull[tsub/p lamty] = enew

LAMBODPATHSUB
p(efull) = λ : t.e efull[λ : t.esub/p] = enew

efull[esub/p lambod] = enew

APPRATORPATHSUB
p(efull) = erator erand efull[esub erand/p] = enew

efull[esub/p apprator] = enew

APPRANDPATHSUB
p(efull) = erator erand efull[erator esub/p] = enew

efull[esub/p apprand] = enew

TYPEINPATHSUB
p(efull) = tin → tout efull[tsub → tout/p] = enew

efull[tsub/p typein] = enew

TYPEOUTPATHSUB
p(efull) = tin → tout efull[tin → tsub/p] = enew

efull[tsub/p typeout] = enew

appable(p)

TOPPATHAPPABLE
appable(top)

LAMBODAPPABLE
appable(p)

appable(p lambod)

Figure 4. Definitions of path relations. L(t) denotes the language of the nonterminal t.
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Actions(a) ::=
Usage Action Denoted By

Construction

λ-abstract λ
→-abstract →
Replace p(e) with x replacex
Replace p(e) with • replace•
Apply apply

Destruction Delete binding unbind
Unapply unapply

Movement

Type of a lambda lamty
Body of a lambda lambod
Operator of an app apprator
Operand of an app apprand
Input of a type arrow tyin
Output of a type arrow tyout
Up up

Action Sequences(s) ::= ε | s a(p, e) | s a(p, e, e)

Figure 5. Editing Actions

typed will also allow us to describe exactly how circumscribed the
set of actions is for any term, and see how these boundaries will
be extended when our editing theory is extended to polymorphic
calculi.

The language of actions is given by the non-terminal a. Editor
states E are subsets of L(p) × L(e)1. To define an action, we give
a rule for one of three relations: a(p, e)  E , a(p, e1, e2)  E ,
or a(p1, e1)

!
 (p2, e2). The non-terminal s describes sequences

of actions. The relation s(E1)
∗
 E2 defines how a sequence of

actions takes one editor state to another, in terms of the relations
on individual actions. The definitions of these relations are given in
Figure 6.

The λ-abstract action wraps a λ binding around the subterm
of e at path p. This does not affect which binders the variables of
the subterm reference, since the action shifts the variable indices
of variables which are free in the subterm. Thus, in the new λ-
abstracted subterm, there are no variable occurrences bound by the
new binding.

The→-abstract action replaces the type t at path p by the type
unit→ t. This is how types for bindings are built up.

The replacement action replaces the subterm at path p with a
variable x which is in scope at that path, or with the unit term •.
This is how elements of base types and references to bindings are
introduced after the bindings are introduced by λ-abstraction.

The apply action takes the subterms of e1 and e2 pointed to
by the path p, and constructs their application under the same
sequence of binders. It cannot be applied when p goes into an
application, as discussed in the description of the appable(p)
relation in Section 2.

The delete binding action replaces a λ-bound subterm with the
body of the binding, assuming that their are no occurences of the
bound varialbe. The variable occurences in the body are adjusted
to continue to point to the same bindings. This is how terms with λ
bindings may be deconstructed.

The unapply action splits a term at an application site, producing
a term with the operator substituted for the application, and another
term with the operand substituted for the application. This is how
terms with applications may be deconstructed into their component
terms.

The movement operations are straightforward. Movement oper-
ations extend paths with the atoms corresponding to their names, in

1L denotes the set of trees matched by a nonterminal.

the case that the extended path is valid on the corresponding term.
The exception is the up action, which removes the last atom from a
path, corresponding to selecting the parent subterm of a subterm.

4. Properties
We define the properties of “soundness” and “completeness” for
editing semantics with respect to typing semantics, and prove that
they hold for the set of actions described in Section 3. These
concepts are analogous to soundness and completeness for type
systems, with the crucial difference that a sound and complete
editing system (with respect to a particular type system) is in fact
possible.

4.1 Soundness
The soundness theorem (Theorem 1) states that if all of the terms
input to an action are well-typed, then all terms in its output are
well-typed as well.

In support of the statement of this theorem, we define a pred-
icate which is true if and only if all terms in an editing state are
well-typed:

Definition 1.

welltyped(E) ≡ ∀(p, e) ∈ E .∃t ∈ L(t). ` e : t

The formal statement of the soundness theorem is:

Theorem 1.

welltyped(E1) ∧ s(E1)
∗
 E2 ⇒ welltyped(E2)

Proof. (See Section A.2)

Informally, this theorem states that we do not “break” the well-
typedness of programs. Together with the absence of holes in the
terms, this theorem means that only complete and well-typed pro-
grams can occur in an editing derivation which started with a set of
well-typed terms.

The proof strategy is induction over sequences of actions. In
the base case (the empty sequence), no terms are added to or
removed from the set, and so the preservation of well-typedness
holds trivially. In the inductive step, we show that for each action,
either the new terms are well-typed, or the single step relations 
and !
 do not hold, and thus the action is impossible at that step.

This is the case because the judgements for the relation restrict
substituted terms to those whose types are in the set c(p, e) = C,
and we can show that for any type in C, the context will typecheck
given a term of that type.

4.2 Completeness
The completeness theorem (Theorem 2) says that any well-typed
term can be reached from the unit term.

Theorem 2.

` e : t⇒ ∃s, E .s({(top, •)}) ∗ E ∧ (top, e) ∈ E

Proof. (See Section A.3)

Informally, this theorem states that we do not give up the ability
to derive any well-typed program. This property is of course impor-
tant for a general software development tool, so it is encouraging
to demonstrate that our editing system maintains it.

The proof strategy for the construction lemma (Lemma ??) is to
first prove, by induction on sizes of sets and induction over STLC
terms without applications, that all terms in the unzipping of the
term targeted for construction can be constructed. Informally, the
unzipping is the set of all variables and constants from the term in
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a(p, e) E

LAMABST
p(e) = ebod

↑ (ebod) = enew γ(p, e) = Γ Γ; unit ` enew : t c(p, e) = C unit→ t ∈ C e[λ : unit.enew/p] = enewnew

λ(p, e) {(p, enewnew)}

ARRABST
p(e) = t c(p, e) = C unit→ t ∈ C e[unit→ t/p] = enew

→ (p, e) {(p, enew)}

REPLACE
c(p, e) = C γ(p, e) = Γ Γ ` x : t t ∈ C e[x/p] = enew

replacex(p, e) {(p, enew)}

REPLACEUNIT
c(p, e) = C unit ∈ C e[•/p] = enew

replace•(p, e) {(p, enew)}

UNBIND
p(e) = λ : t.ebod ↓ (ebod) = enew c(p, e) = C γ(p, e) = Γ Γ ` enew : tnew tnew ∈ C e[enew/p] = enewnew

unbind(p, e) {(p, enewnew)}

UNAPPLY
c(p, e) = C γ(p, e) = Γ

p(e) = erator erand Γ ` erator : trator Γ ` erand : trand trator ∈ C trand ∈ C e[erator/p] = e1 e[erand/p] = e2

unapply(p, e) {(p, e1), (p, e2)}

a(p, e1, e2) E

APPLY
p(e1) = erator p(e2) = erand appable(p) c(p, e1) = C

γ(p, e1) = Γ γ(p, e2) = Γ Γ ` erator : tin → tout Γ ` erand : tin tout ∈ C e1[erator erand/p] = enew

app(p, e1, e2) {(p, enew)}

a(p1, e1)
!
 (p2, e2)

LAMTYMOVE
p(e) = λt : ebod

lamty(p, e)
!
 (p lamty, e)

LAMBODMOVE
p(e) = λt : ebod

lambod(p, e)
!
 (p lambod, e)

APPRATORMOVE
p(e) = erator erand

apprator(p, e)
!
 (p apprator, e)

APPRANDMOVE
p(e) = erator erand

apprand(p, e)
!
 (p apprand, e)

TYINMOVE
p(e) = tin → tout

tyin(p, e)
!
 (p typein, e)

TYOUTMOVE
p(e) = tin → tout

tyout(p, e)
!
 (p typeout, e)

UPMOVE
q ∈ {lambod, lamty, apprator, apprand, tyin, tyout}

up(p q, e)
!
 (p, e)

s(E1)
∗
 E2

ACTION

s(E1)
∗
 E2 (p, e) ∈ E2 a(p, e) E3

s a(p, e)(E1)
∗
 E2 ∪ E3

DOUBLEACTION

s(E1)
∗
 E2 (p, e1) ∈ E2 (p, e2) ∈ E2 a(p, e1, e2) E3

s a(p, e1, e2)(E1)
∗
 E2 ∪ E3

ACTIONMUTATE

s(E1)
∗
 E2 (p, e) ∈ E2 a(p, e)

!
 (pnew, enew)

s a(p, e)(E) (E2 − {(p, e)}) ∪ {(pnew, enew)}

ACTIONREFLEXIVE

(E)
∗
 E

Figure 6. Definitions of editing actions.
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the binding context which they appear. With this proof in hand, we
show by induction on the number of applications in a term how the
terms from the unzipping may be combined to form the target term.

The destruction lemma is straightforward, as the action to re-
place a term with unit is sufficient to accomplish all it requires.

The proof strategy appears readily generalizable to more pow-
erful type systems. In fact, the construction of terms will likely be
less constrained, as the polymorphism of type systems such as Sys-
tem F [6, 17] and various dependent calculi will liberalize the con-
straints imposed on editing actions (Section 6.1).

5. Programming With Editing Actions
Functional languages lend themselves to two general program-
ming strategems. In top-down programming, a programmer begins
writing the top-level structure of a program, referencing not-yet-
implemented functionality by means of identifiers which will later
be bound to an implementation. In bottom-up programming, a pro-
grammer begins by writing small pieces of functionality, and com-
poses them into larger pieces until the top-level program emerges.
Our system supports both of these approaches, without locking the
programmer into one or the other.

Top-down programming is supported primarily by the λ action.
Upon encountering the need for a new piece of functionality, the
programmer λ-abstracts over the structure he has written so far,
and alters the type of the λ binding to be the type of the component
required. The programmer can later implement this component and
apply the top-level structure to it. Of course, an action to β-reduce
or inline would be of great utility here (see Section 8).

Bottom-up programming is supported primarily by the apply
action. Once a programmer has implemented some components,
some combinator (often function composition) must be applied in
order to compose them. Alternately, once an intermediate value is
obtained, a function is applied to obtain the final or next intermedi-
ate value.

6. Discussion
6.1 Generalization to Other Typed λ-Calculi
The simply-typed lambda calculus is quite restrictive and does not
admit many interesting programs. It is instructive to consider the
application of this technique to polymorphic calculi. In particular,
the operation of the type-constraint operation c(p, e) to the operand
of an application will change significantly. In the simply-typed
lambda calculus, the operand of an application is constrained to
a single type, namely, the input type of the operator.

In a polymorphic calculus, the set of acceptable types expands
to any type which is compatible with the input type of the operator.
Further, the acceptable types of operators expands to any type
with whose input type the type of the operand is compatible. This
supports the intuitive expectation that a more powerful and flexible
calculi will be more flexible to edit under this system as well.

6.2 Additional Actions
The set of actions described here is theoretically complete, but sev-
eral more desirable actions immediately spring to mind. For in-
stance, the top-down programming approach would benefit greatly
from an operation to inline or β-reduce an application. Refactoring
of programs would benefit from operations to re-order bindings and
applications.

There are two ways of introducing additional actions. Actions
can be added to the initial set of actions, which provides more
definitional power but requires re-proving the soundness theorem.
Alternately, actions can be composed to form new actions. For
instance, it is plausible to imagine a composite action which λ-

abstracts a term, gives the binding the appropriate type, and applies
the term to the bound variable.

6.3 Implementation and User Interface
One advantage of defining editing actions directly on terms is that
the the set of actions does not constrain the user interface. Text
input and editing is awkward at best on touch-centric and mobile
devices, game systems, and accessible interfaces. We expect the
approach described here to work well on these platforms, as both
movement through the program and alterations to the program
are done at the granularity of subterms, rather than characters in
program strings.

We are in the process of implementing these editing actions for
the simply-typed lambda calculus. Our initial implementation will
target Javascript for local in-browser editing of STLC terms. As we
extend this work to more polymorphic calculi, we intend to imple-
ment the extensions as well. Further, we intend to perform human-
computer interaction studies to ascertain the best possible user in-
terface for this approach to term editing on multiple platforms.

One interesting aspect of the user interface is the attachment and
presentation of term metadata. Such metadata might be names for
bindings (which are semantically formulated as De Bruijn indices),
comments, library documentation, and version history. We expect
the kind and presentation of this metadata to be of great import in
the experience of programmers using our proposed system.

7. Related Work
Graphical programming languages by their nature must eschew
text-editing actions as the primary means of creating programs,
in favor of actions on graphical elements and structures. The
Scratch [10] programming language is a graphical and impera-
tive programming language in which programs control sprites in
a virtual arena. The Kodu programming language [9] is a small
graphical language, running on the XBox game console and in-
tended for children. Kodu allows users to create games by compos-
ing tiles, which are graphical representations of concurrent actors.
YinYang [12] is another tile-based concurrent graphical language,
which adds the ability to define new tiles and is targeted at touch
devices, and intended for more general software development.

Structural editors have a long history, going back at least as
far as MENTOR [5] and the Cornell Program Synthesizer [18]. A
structural editor is an editor which provides actions on the syn-
tax of a language, instead of or in addition to text-editing actions.
Many modern structural editors (such as ParEdit [3] and Struc-
tured Haskell Mode [4]) take the second route, extending existing
text editors with structural editing actions (for s-expressions and
Haskell, respectively.) The Lamdu [8] programming environment
uses a structured editor and abstract representations of programs as
the basis of an integrated development environment for a Haskell-
like language.

Theorem proving systems such as Isabelle [15], Coq [19], and
ACL2 [1] provide actions called tactics for constructing proof
terms. However, these actions generally do not support deconstruct-
ing or refactoring the proof terms, and the particular term produced
is generally considered irrelevant so long as its existence is demon-
strated.

The ability to construct terms by automated theorem proving
has proven useful for programming in the dependently-typed lan-
guage Idris [20]. In particular, automated theorem proving is often
used to construct a term of a desired type from a similar term of
a different type. Since our soundness theorem asserts that for any
starting set of well-typed terms, we can only further reach well-
typed terms, it is plausible to consider introducing well-typed terms
from other sources, such as automated theorem provers, so long as
these terms are typechecked beforehand.
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8. Conclusions and Further Work
We have described a set of editing actions on terms in the simply-
typed lambda calculus. Further, we have sketched proofs that this
set of actions is sound (beginning with well-typed terms, only
well-typed terms may be derived) and complete (any term may be
reached from any other term. We have described how this set of
actions may be used to produce programs in both top-down and
bottom-up style. We have shown that this approach has promise for
extension to more powerful typed λ-calculi.

There are several lines of further work open from this point. The
simply-typed lambda calculus is, of course, not the most powerful
or flexible language. Thus, we intend to generalize this approach to
editing to more polymorphic (and eventually, dependent) calculi.

We are working to implement the actions described here, with
the intent to eventually re-implement this system in itself. The im-
plementation of the rules is straightfoward, but the question of the
appropriate user interface opens up a cross-disciplinary line of in-
quiry between programming languages and human-computer inter-
action. Further, while the set of rules described here is certainly suf-
ficient to derive any term from any other term, it is not at all clear
that it is convenient or efficient to program with. We believe that
a cross-disciplinary inquiry between the fields of human-computer
interaction and programming languages will provide insight into
the additional actions necessary for a pleasant and productive pro-
gramming experience.
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1972.

[7] X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Rémy,
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A. Proofs
A.1 Definitions
Very often we care that a particular term is in a state, without caring
what path is associated with it. The has(E , e) predicate captures
this notion:

Definition 2.
has(E , e) ≡ ∃p.(p, e) ∈ E

The keeps(E1, E2) predicate says that for all terms in a state E1,
E2 has that term.

Definition 3.

keeps(E1, E2) ≡ ∀(p, e) ∈ E1.has(E2, e)

A.2 Proof of Theorem 1
Proof. (Proof in progress)

A.3 Proof of Theorem 2
In order to prove Theorem 2, we shall require another function on
terms, and two lemmas. The function u(e) (defined in Figure 7)
splits the term tree into sequences of lambda bindings, essentially
breaking it apart at application sites. Lemma 1 states that for any
goal term e, the set of terms u(e) (with associated paths) can be
derived from the unit term. Lemma 2 states that a goal term e can
be derived from the set of terms u(e).

Lemma 1.

` e : t⇒ ∃s, E .s({(top, •)}) ∗ E ∧ {(top, e1)|e1 ∈ u(e)} ⊆ E

Proof. By induction on |u(e)|

Case 1: Base case: |u(e)| = 0
(a) |u(e)| is never 0, so this case holds vacuously.
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u(•) = {•}
u(v) = {v}

u(λ : t.e) = {λ : t.eu|eu ∈ u(e)}
u(e1 e2) = u(e1) ∪ u(e2)

Figure 7. Definition of the term splitting function.

Case 2: : |u(e)| > 0.
(a) WLOG, pick some e′ ∈ u(e). Then
` e : t⇒
∃s′, E ′.s′({(top, •)}) ∗ E ′∧
{(top, eu)|eu ∈ u(e)− {e′}}

(b) Assume ` e : t.
(c) By (2b), Lemma 4, and modus ponens: keeps({(top, •)}, E ′).

By the definition of keeps (Definition 3) and of has
(Definition 2), ∃p′.(p′, •) ∈ E ′.

(d) (Proof in progress.)

Lemma 2.

` e : t⇒ ∀E1 ⊇ {(top, e1)|e1 ∈ u(e)}.∃s, E2.(s(E1)
∗
 E2∧(top, e) ∈ E2)

Proof. (Proof in progress)

With these lemmas, the proof of Theorem 2 is simple:

Proof. Assume ` e : t. Then by Lemma 1 and modus ponens,
∃s, E .s({(top, •)}) ∗

 E ∧ {(top, e1)|e1 ∈ u(e)} ⊆ E . By
Lemma 2 and modus ponens,
∀E1 ⊇ {(top, e1)|e1 ∈ u(e)}.∃s′, E2.(s′(E1)

∗
 E2 ∧ (top, e) ∈

E2). Since {(top, e1)|e1 ∈ u(e)} ⊆ E , let E1 = E . Then
∃s′, E2.(s′(E)

∗
 E2 ∧ (top, e) ∈ E2). By Lemma 6 and modus

ponens, s s′({(top, •)}) ∗ E2. Then s s′ and E2 are the witnesses
for the existential in the theorem.

A.4 Utility Lemmas
Lemma 3.

s(E1)
∗
 E2 ∧ E1 ⊆ E3 ⇒ ∃E4.(E2 ⊆ E4 ∧ s(E3)

∗
 E4)

Proof. By induction on s:

• s = ε:
1. The only rule for the empty sequence is

ACTIONREFLEXIVE.
2. So E1 = E2.
3. E1 ⊆ E3 by the assumption of the lemma.
4. Then by substitution using (2) in (3), E2 ⊆ E3.
5. E3

∗
 E3 by ACTIONREFLEXIVE.

6. So if we let E4 = E3, then we have a witness to the
existential ∃E4.(E2 ⊆ E4 ∧ s(E3)

∗
 E4).

• s = s′ a(p, e):
By cases on the derivation of s′ a(p, e)(E1)

∗
 E2:

ACTION:

1. By the use of the ACTION rule in the derivation, we
know that:
(a) s′(E1)

∗
 E2s′ .

(b) (p, e) ∈ E2s′ .

(c) a(p, e) Ea.
(d) E2 = E2s′ ∪ Ea.

2. By the inductive hypothesis, we know that
∀E3|E1 ⊆ E3.∃E4s′ .(E2s′ ⊆ E4s′ ∧ s′(E3) E4s′).

3. By the properties of sets, (1b), and (2), we have
(p, e) ∈ E4s′ .

4. By the ACTION rule, (1c), (2), and (3), we have
s′ a(p, e)(E3)

∗
 E4s′ ∪ Ea.

5. By (2) and equational reasoning, we have that
E2s′ ∪ Ea ⊆ E4s′Ea.

6. By (1d), (5). and substitution, we have that
E2 ⊆ E4s′ ∪ Ea.

7. By the conjunction of (5) and (6), we have
E2s′ ∪ Ea ⊆ E4s′Ea ∧ E2 ⊆ E4s′ ∪ Ea.

8. By (7), we see that E4s′∪Ea is a witness to the existential
in our conclusion.

ACTIONMUTATE:

1. By the use of the ACTIONMUTATE rule in the deriva-
tion, we know that:
(a) s′(E1)

∗
 E2s′ .

(b) (p1, e1) ∈ E2s′ .
(c) a(p1, e1)

!
 (p2, e2).

(d) E2 = (E2s′ − {(p1, e1)}) ∪ {(p2, e2)}.
2. By the inductive hypothesis, we know that
∀E3|E1 ⊆ E3.∃E4s′ .(E2s′ ⊆ E4s′ ∧ s′(E3) E4s′).

3. By the properties of sets, (1b), and (2), we have
(p1, e1) ∈ E4s′ .

4. By the ACTIONMUTATE rule, (1c), (2), and (3), we have
s′ a(p, e)(E3)

∗
 ((E4s′ − {(p1, e1)}) ∪ {(p2, e2)}).

5. By (2) and equational reasoning, we have that
((E2s′−{(p1, e1)})∪{(p2, e2)}) ⊆ ((E4s′−{(p1, e1)})∪
{(p2, e2)}).

6. By (1d), (5). and substitution, we have that
E2 ⊆ ((E4s′ − {(p1, e1)}) ∪ {(p2, e2)}).

7. By the conjunction of (5) and (6), we have
((E2s′−{(p1, e1)})∪{(p2, e2)}) ⊆ ((E4s′−{(p1, e1)})∪
{(p2, e2)})∧ E2 ⊆ ((E4s′ − {(p1, e1)})∪ {(p2, e2)}).

8. By (7), we see that ((E4s′ −{(p1, e1)})∪{(p2, e2)}) is
a witness to the existential in our conclusion.

• s = s a(p, e1, e2):
By cases on the derivation of s′ a(p, e1, e2)(E1)

∗
 E2:

DOUBLEACTION:

1. By the use of the DOUBLEACTION rule in the deriva-
tion, we know that:
(a) s′(E1)

∗
 E2s′ .

(b) (p, e1) ∈ E2s′ .
(c) (p, e2) ∈ E2s′ .
(d) a(p, e1, e2) Ea.
(e) E2 = E2s′ ∪ Ea.

2. By the inductive hypothesis, we know that
∀E3|E1 ⊆ E3.∃E4s′ .(E2s′ ⊆ E4s′ ∧ s′(E3) E4s′).

3. By the properties of sets, (1b), (1c), and (2), we have
(p, e1) ∈ E4s′ ∧ (p, e2) ∈ E4s′.

4. By the DOUBLEACTION rule, (1d), (2), and (3), we have
s′ a(p, e)(E3)

∗
 E4s′ ∪ Ea.

5. By (2) and equational reasoning, we have that
E2s′ ∪ Ea ⊆ E4s′Ea.

6. By (1e), (5). and substitution, we have that
E2 ⊆ E4s′ ∪ Ea.
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7. By the conjunction of (5) and (6), we have
E2s′ ∪ Ea ⊆ E4s′Ea ∧ E2 ⊆ E4s′ ∪ Ea.

8. By (7), we see that E4s′∪Ea is a witness to the existential
in our conclusion.

Lemma 4.
s(E1)

∗
 E2 → keeps(E1, E2)

Proof. By induction on s.

Case 1: Base case: s = ε.
(a) Assume s(E1)

∗
 E2.

(b) By ACTIONREFLEXIVE rule in the derivation of s(E1)
∗
 

E2 (1a), E1 = E2.
(c) By (1b), keeps(E1, E2) holds trivially.

Case 2: s = s′a(p, e).
(a) Inductive hypothesis:

s′(E1)
∗
 E ′2 ⇒ keeps(E1, E ′2)

(b) Assume:
i. s1(E1)

∗
 E2

(c) By (2a) and the definition of keeps (Definition 3), and
the definition of has (Definition 2):
s′(E1)

∗
 E ′2 ⇒ ∀(p, e) ∈ E1∃p′.(p′, e) ∈ E ′2

(d) The derivation of s(E1)
∗
 E2 (2(b)i) is either ACTION

or ACTIONMUTATE. By cases:
i. ACTION:

A. By the premises of the ACTION rule in the
derivation (2(d)i):
s′(E1)

∗
 E ′2.

B. By (2(d)iA), (2a), and modus ponens: ∀(p, e) ∈
E1.∃p′.(p′, e) ∈ E ′2

C. By the conclusion of the ACTION rule:
E2 = E ′2 ∪ E3

D. By (2(d)iC), s′2 ⊆ s2.
E. By (2(d)iD), ∀(p, e) ∈ E ′2.(p, e) ∈ E2.
F. By (2(d)iD) and (2(d)iA), ∀(p, e) ∈ E1.∃p′.(p′, e) ∈
E2.

G. By (2(d)iF), the definition of keeps (Defini-
tion 3), and the definition of has (Definition 2),
keeps(E1, E2).

ii. ACTIONMUTATE:
A. By the premises of the ACTIONMUTATE rule in

the derivation (2(d)ii):
s′(E1)

∗
 E ′2.

B. By (2(d)iiA), (2a), and modus ponens: ∀(p, e) ∈
E1.∃p′.(p′, e) ∈ E ′2

C. By the premises of the ACTIONMUTATE rule in
the derivation (2(d)ii): a(p, e)

!
 E3.

D. By Lemma 5, (2(d)iiC), and modus ponens:
has(E3, e).

E. By the conclusion of the ACTIONMUTATE rule
in the derivation (2(d)ii),
E2 = (E ′2 − {(p, e)}) ∪ E3

F. Observing that has(E , e) ⇒ has(E ′ ∪ E , e),
and by (2(d)iiB), (2(d)iiD) and (2(d)iiE):
∀(p, e) ∈ E1.has(E2, e) and thus, by the defi-
nition of keeps (Definition 3), keeps(E1, E2).

Lemma 5.
a(p, e)

!
 (p′, e′)⇒ has(E , e)

Proof. 1. Assume a(p, e)
!
 E .

2. By cases on the derivation of a(p, e)
!
 (p, e) (1):

Case (a): LAMTYMOVE

i. By the conclusion of the derivation of
LAMTYMOVE (2(a)i),
e = e′ and thus has({(p′, e′)}, e).

Case (b): LAMBODMOVE

i. By the conclusion of the derivation of
LAMBODMOVE (2(b)i),
e = e′ and thus has({(p′, e′)}, e).

Case (c): APPRATORMOVE

i. By the conclusion of the derivation of
APPRATORMOVE (2(c)i),
e = e′ and thus has({(p′, e′)}, e).

Case (d): APPRANDMOVE

i. By the conclusion of the derivation of
APPRANDMOVE (2(d)i),
e = e′ and thus has({(p′, e′)}, e).

Case (e): TYINMOVE

i. By the conclusion of the derivation of
TYINMOVE (2(e)i),
e = e′ and thus has({(p′, e′)}, e).

Case (f): TYOUTMOVE

i. By the conclusion of the derivation of
TYOUTMOVE (2(f)i),
e = e′ and thus has({(p′, e′)}, e).

Case (g): UPMOVE

i. By the conclusion of the derivation of
UPMOVE (2(g)i),
e = e′ and thus has({(p′, e′)}, e).

Lemma 6.

s1(E1)
∗
 E2 ∧ s2(E2)

∗
 E3 ⇒ s1s2(E1)

∗
 E3

Proof. By induction on s2.

Case 1: Base case: s2 = ε.
(a) Assume

i. s1(E1)
∗
 E2

ii. s2(E2)
∗
 E3

(b) Since s2 = ε, the derivation of s2(E2)
∗
 E3 (1(a)ii) is

ACTIONREFLEXIVE, and E2 = E3.
(c) Since s2 = ε, s1s2 = s1.
(d) Substituting (1c) and (1d) into (1(a)i), s1s2(E1)

∗
 E3

Case 2: s2 = s′2a(p, e).
(a) Inductive hypothesis:

s1(E1)
∗
 E2 ∧ s′2(E2)

∗
 E ′3 ⇒ s1s

′
2(E1)

∗
 E ′3

(b) Assume
i. s1(E1)

∗
 E2

ii. s2(E2)
∗
 E3

(c) The derivation of s2(E2)
∗
 E3 (2(b)ii) is either AC-

TION or ACTIONMUTATE. By cases:
i. ACTION:

A. By the ACTION rule in the derivation: s′2(E2)
∗
 

E ′3
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B. By the ACTION rule in the derivation: (p, e) ∈
E ′3

C. By the ACTION rule in the derivation: a(p, e) 
E4

D. By the ACTION rule in the derivation: E ′3∪E4 =
E3

E. By (2(b)i), (2(c)iA), (2a) and modus ponens:
s1s
′
2(E1)

∗
 E ′3.

F. By (2(c)iE), (2(c)iB), (2(c)iC) and the ACTION
rule,
s1s
′
2a(p, e)(E1)

∗
 E ′3 ∪ E4.

G. By substition of (2) and (2(c)iD) into (2(c)iF),
s1s2(E1)

∗
 E3.

ii. ACTIONMUTATE:
A. By the ACTIONMUTATE rule in the derivation:

s′2(E2)
∗
 E ′3

B. By the ACTIONMUTATE rule in the derivation:
(p, e) ∈ E ′3

C. By the ACTIONMUTATE rule in the derivation:
a(p, e) E4

D. By the ACTIONMUTATE rule in the derivation:
E ′3 ∪ E4 = E3

E. By (2(b)i), (2(c)iiA), (2a) and modus ponens:
s1s
′
2(E1)

∗
 E ′3.

F. By (2(c)iiE), (2(c)iiB), (2(c)iiC) and the AC-
TION rule,
s1s
′
2a(p, e)(E1)

∗
 E ′3 ∪ E4.

G. By substition of (2) and (2(c)iiD) into (2(c)iiF),
s1s2(E1)

∗
 E3.

Case 3: s2 = s′2a(p, e1, e2).
(a) Inductive hypothesis:

s1(E1)
∗
 E2 ∧ s′2(E2)

∗
 E ′3 ⇒ s1s

′
2(E1)

∗
 E ′3

(b) Assume
i. s1(E1)

∗
 E2

ii. s2(E2)
∗
 E3

(c) By the DOUBLEACTION rule in the derivation:
s′2(E2)

∗
 E ′3

(d) By the DOUBLEACTION rule in the derivation:
(p, e1) ∈ E ′3

(e) By the DOUBLEACTION rule in the derivation:
(p, e2) ∈ E ′3

(f) By the DOUBLEACTION rule in the derivation:
a(p, e1, e2) E4

(g) By the DOUBLEACTION rule in the derivation:
E ′3 ∪ E4 = E3

(h) By (3(b)i), (3c), (3a) and modus ponens:
s1s
′
2(E1)

∗
 E ′3.

(i) By (3h), (3d), (3e), (3f) and the DOUBLEACTION rule,
s1s
′
2a(p, e)(E1)

∗
 E ′3 ∪ E4.

(j) By substition of (3) and (3g) into (3i), s1s2(E1)
∗
 E3.
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