
banner above paper title

An Efficient Type- and Control-Flow Analysis for System F

Connor Adsit
Rochester Institute of Technology

cda8519@rit.edu

Matthew Fluet
Rochester Institute of Technology

mtf@cs.rit.edu

Abstract
At IFL’12, we presented a novel monovariant flow analysis for Sys-
tem F (with recursion) that yields both type-flow and control-flow
information. [4] The type-flow information approximates the type
expressions that may instantiate type variables and the control-flow
information approximates the λ- and Λ-expressions that may be
bound to variables. Furthermore, the two flows are mutually bene-
ficial: control flow determines which Λ-expressions may be applied
to which type expressions (and, hence, which type expressions may
instantiate which type variables), while type flow filters the λ- and
Λ-expressions that may be bound to variables (by rejecting expres-
sions with static types that are incompatible with the static type of
the variable under the type flow).

Using a specification-based formulation of the type- and
control-flow analysis, we proved the analysis to be sound, de-
cidable, and computable. Unfortunately, naïvely implementing the
analysis using a standard least fixed-point iteration yields an
O(n13) algorithm.

In this work, we give an alternative flow-graph-based for-
mulation of the type- and control-flow analysis. We prove that
the flow-graph-based formulation induces solutions satisfying the
specification-based formulation and, hence, that the flow-graph-
based formulation of the analysis is sound. We give a direct algo-
rithm implementing the flow-graph-based formulation of the anal-
ysis and demonstrate that it is O(n4). By distinguishing the size l
of expressions in the program from the size m of types in the pro-
gram and performing an amortized complexity analysis, we further
demonstrate that the algorithm is O(l3 +m4).

1. Introduction
2. Language and Semantics
2.1 Syntax
In IFL’12, we introduced an ANF Intermediary Representation for
System F. We give a specification for a modified ANF System F
language in Figure 1.

We maintain the same types as before, but we restrict the form of
syntactic types in order to remove the recursion found in the previ-
ous definition of types. Instead of having type constructors be com-
posed of smaller types (ie. for function and forall types), they must

[Copyright notice will appear here once ’preprint’ option is removed.]

be constructed with type variables. We also introduce DeBruijn in-
dices into the type system to describe any type parameterized by a
Λ-abstraction.

In addition to adding a distinction between simple binds (val-
ues) and complex binds (applications), we expand upon the defini-
tion of expressions to accommodate the changes made to the type
system. The syntax is extended to include let-bindings for type
variables. Additionally, we mandate that all binding occurances of
expression variables be annotated with a type variable instead of
a type. Similarly, the recursive function variables and λ-parameter
variables appearing in simple binds must also have type variable
annotations. We changed the specification of type applications so
that only type variables may be passed as arguments.

Our motivation for using type variables is to promote type reuse,
limiting the pool of possible types to as little a number as possible.
As we will see later, having as few types as possible will reduce the
overall complexity of the algorithm.

2.2 Scanning Input Program
Figure 2 introduces relations that finds all nested expressions, ex-
pression binds, type binds, type variables, and expression variables
in a program.

We begin our recursive descent into a program by saying the en-
tire program can be found inside itself. An expression can be found
in the program if it is the body of a let-binding or if it belongs to a
λ- or Λ-abstraction. An expression bind belongs to a program if the
program contains a let x with that particular expression bind on
the right-hand side. Similarly, a type bind belongs to a program if it
participates in a let α expression that also belongs to the program.
All type variables found in any nested letα or as parameters to Λ-
abstractions belong to the program. The relation behaves similarly
with expression variables and let x bindings and λ-abstractions.
We must also consider that the recursive function variables, f , be-
long to a program if the encapsulating λ- or Λ-abstraction also be-
longs to the program.

2.3 Semantics
We assume the usual operational semantics for the ANF System
using a CESK machine. More details can be found in [4].

The static semantics will need to be extended to include support
for DeBruijn indices. In particular, when a value is used, we need
to ensure that all indices present in the type are encapsulated by the
proper amount of foralls. We also must mandate that type variables
are bound before use, which has been implemented successfully
in [12]. Whenever an expression variable is bound to a value, the
annotated type variable must map to a type in the current context
that is compatible with the type of the value.

It is worth noting that all forms of the analysis and algorithm
will hold for a program even if it is untyped. It is only when the
program is well typed that the flow-graph based analysis and the
algorithm will yield a sound result.

short description of paper 1 2014/9/25

Type variables TyVar 3 α, β, . . .
Type indices TyIdx 3 n ::= 0 | 1 | · · ·
Type binds TyBnd 3 τ ::= αa → αb | ∀. αb | #n

Expression variables ExpVar 3 x, y, z, f, g, . . .
Expression binds (simple) ExpBnds 3 bs ::= µf:αf.λz:αz.eb | µf:αf.Λβ.eb
Expression binds (complex) ExpBndc 3 bc ::= xf xa | xf [αa]

Expression binds ExpBnd 3 b ::= bs | bc

Expressions Exp 3 e ::= let α = τ in e | let x:αx = b in e | x
Programs Prog 3 P ::= e

ResOf(·) :: Exp → ExpVar
ResOf(let α = τ in e) = ResOf(e)

ResOf(let x:αx = b in e) = ResOf(e)
ResOf(x) = x

TyOf(·) :: ExpBnds → TyVar
TyOf(µf:αf.λz:αz.eb) = αf

TyOf(µf:αf.Λβ.eb) = αf

Figure 1. Syntax of ANF System F

e �Exp P

P �Exp P

let α = τ in e �Exp P

e �Exp P

let x:αx = b in e �Exp P

e �Exp P

µf:αf.λz:αz.eb �ExpBnd P

eb �Exp P

µf:αf.Λβ.eb �ExpBnd P

eb �Exp P

b �ExpBnd P

let x:αx = b in e �Exp P

b �ExpBnd P

τ �TyBnd P

let α = τ in e �Exp P

τ �TyBnd P

α �TyVar P

let α = τ in e �Exp P

α �TyVar P

µf:αf.Λβ.eb �ExpBnd P

β �TyVar P

x �ExpVar P

let x:αx = b in e �Exp P

x �ExpVar P

µf:αf.λz:αz.eb �ExpBnd P

f �ExpVar P

µf:αf.λz:αz.eb �ExpBnd P

z �ExpVar P

µf:αf.Λβ.eb �ExpBnd P

f �ExpVar P

Figure 2. Sub-term Relations

short description of paper 2 2014/9/25

3. Specification-Based Formulation of TCFA
The specification formulation is safe under an abstract type envi-
ronment, which keeps track of type variables and the possibly many
types that may be bound to the variables, and also an abstract value
environment, which behaves the same way with expression vari-
ables and binders. In order to check for type compatibility, we make
use of an abstract type environment to recursively replace all type
variables with any type found in the environment’s entry for the
variable. We say that a type is closed when there are no longer any
type variables in the expanded type. Two type variables, α1 and α2,
are compatible under an abstract type environment if it is possible
to derive the same closed type from both α1 and α2.

An abstract type environment, φ̂, and an abstract value environ-
ment, ρ̂, safely approximate an expression by an inductive analysis
of the expression.

If the expression is a let-α expression, we must make sure that
the τ being bound in the syntax appears in the possible bindings
for α as described by φ̂ and that the remaining expressions are also
safe under the same φ̂ and ρ̂.

If the expression is a let-x expression and the binder is a
simple bind, we read the type off of x and the binder. If the two
are compatible we need to make sure that the binder appears in
the possible bindings of x in ρ̂. Additionally, we need to push
the analysis through the body of the binder and the remaining
expressions.

Otherwise, if a complex bind appears on the right side of a let-
x expression, we need to iterate through the possible λ-abstractions
recorded in ρ̂ if the binder is a value application. For every possible
argument in the entry for xa, if the type of the argument is com-
patible with the type of the formal parameter under φ̂, we need to
assert that the argument also appears in the entry for the parameter.
Likewise, for all values returned by the abstraction, if the type of
the value is compatible with the type of the bound variable, it must
appear in the entry for the bound variable in φ̂.

Similarly, if a type application is being performed, we iterate
through all possible Λ-abstractions that could be bound to the func-
tion variable. We assert that all types potentially bound to the type
argument must appear in the description of the type parameter in
φ̂. As with value application, any type-compatible results returned
from the abstraction must be present in φ̂’s entry for the bound
variable.

Finally, in the case that the expression is a simple variable, we
assume that the analysis is sound.

3.1 Soundness, Decidability, and Computability
Our previous work [4, 5] showed that the specification-based for-
mulation of the type- and control-flow analysis is sound with re-
spect to the operational semantics, that the acceptability of given
(finite) abstract type and value environments with respect to a pro-
gram is decidable, and that the minimum acceptable abstract type
and value environments for a program are computable in polyno-
mial time. We briefly recall the essence of these arguments.

Soundness of the specification-based formulation of the type-
and control-flow analysis asserts that any acceptable pair of abstract
environments for a well-typed program approximates the run-time
behavior of the program. In particular, the abstract type and value
environments approximate every concrete type and value environ-
ment that arises during execution of the program. Flow soundness
relies crucially on the well-typedness of the program. Soundness
of the type system guarantees that, at run time, an expression vari-
able will only be bound to a well-typed closed value of a closed
type and that the expression variable’s type annotation must be in-
terpreted as that closed type. Hence, if there is no closed type at
which both the static type of the expression variable and the static

type of the value might be instantiated, then that variable will never
be bound to that value at run time. The critical component of the
proof is that the type compatibility judgment φ̂; ρ̂ �S α1 ∼∼∼ α2 is
derivable whenever there is a common closed type at which both
α1 and α2 are instantiated.

Although there are an infinite number of pairs of abstract type
and value environments that are acceptable for a given program,
we are primarily interested more precise pairs over less precise
pairs. For a given program, we can limit our attention to the “finite”
abstract type and value environments that map the type variables
that occur in the program to sets of type binds that appear in
the program (and map all type variables that do not occur in the
program to the empty set) and map the expression variables that
occur in the program to sets of simple expression binds that appear
in the program (and map all expression variables that do not occur
in the program to the empty set).

The decidability of the acceptability judgment φ̂; ρ̂ �S e re-
lies upon the decidability of the type compatibility judgment
φ̂ �S α1 ∼∼∼ α2. Due to “recursion” in the abstract type environ-
ment, whereby a type variable may be mapped (directly or indi-
rectly) to a set of type binds in which the type variable itself occurs
free, we cannot simply enumerate the (potentially infinite sets of)
closed types θ1 and θ2 such that φ̂ �S α1 ⇒⇒ θ1 and φ̂ �S α2 ⇒⇒ θ2
in order to decide whether or not the judgment φ̂ �S α1 ∼∼∼ α2 is
derivable. To address this issue, we take inspiration from the the-
ory and implementation of regular-tree grammars [1, 3, 6]. By in-
terpreting an abstract type environment as (the productions for) a
regular-tree grammar, a derivation of the judgment φ̂ �S α⇒⇒ θ is
exactly a parse tree witnessing the derivation of the ground tree θ
from the starting non-terminal α in the regular-tree grammar φ̂ and
the judgment φ̂ �S α1 ∼∼∼ α2 is derivable iff languages generated
by taking α1 and α2, respectively, as the starting non-terminal in
the regular-tree grammar φ̂ have a non-empty intersection. Since
regular-tree grammars are closed under intersection and the empti-
ness of a regular-tree grammar is decidable [6, 9], the type compat-
ibility judgment φ̂ �S α1 ∼∼∼ α2 is decidable.

Finally, the minimum acceptable pair of abstract type and value
environments for a given program is computable via a standard
least-fixed point iteration. We interpret the acceptability judgment
φ̂; ρ̂ �S e as defining a monotone function from pairs of abstract en-
vironments to pairs of abstract environments; the “output” abstract
environments are formed from the “input” abstract environments
joined with all discovered violations.

We conclude with a crude upper-bound on computing the mini-
mum acceptable pair of abstract type and value environments for a
given program, of size n, via a standard least-fixed point computa-
tion. We represent φ̂ and ρ̂ as two-dimensional arrays (indexed by
α/τ and x/bs, respectively), requiringO(n2) space.1 Thus, the two
abstract environments are lattices of height O(n2). Each (naïve)
iteration of the monotone function is syntax directed (O(n)) and
dominated by the function-application bind, which loops over all of
the elements of ρ̂(xf) and ρ̂(ResOf(eb)) (O(n)), loops over all of
the elements of ρ̂(xa) (O(n)), and computes type compatibility via
a regular-tree grammar intersection (O((n2)2), because the output
regular-tree grammar is, worst-case, quadratic space with respect
to the size of the input regular-tree grammar) and emptiness test
(O(((n2)2)2), because the emptiness query is quadratic time with
respect to the input regular-tree grammar). Hence, our analysis is
computable in polynomial time: O(n13) = (O(n2) + O(n2)) ×
(O(n)×O(n)×O(n)× (O(n4) +O(n8))).

1 See Sections 5.2.1 and 5.2.2 for more discussion of assumptions about the
representation of the input program and data structures and operations.

short description of paper 3 2014/9/25

Types (closed) TyClsd 3 θ ::= θa → θb | ∀. θb | #n
Abstract type environments ATyEnv = TyVar → P(TyBnd) 3 φ̂ ::= {α 7→ {τ, . . .}, . . .}
Abstract value environments AValEnv = ExpVar → P(ExpBnds) 3 ρ̂ ::= {x 7→ {bs, . . .}, . . .}

φ̂ �S τ ⇒⇒ θ

φ̂ �S αa ⇒⇒ θa φ̂ �S αb ⇒⇒ θb

φ̂ �S αa → αb ⇒⇒ θa → θb

φ̂ �S αb ⇒⇒ θb

φ̂ �S ∀. αb ⇒⇒ ∀. θb φ̂ �S #n⇒⇒ #n

φ̂ �S α⇒⇒ θ

τ ∈ φ̂(α) φ̂ �S τ ⇒⇒ θ

φ̂ �S α⇒⇒ θ

φ̂ �S α1 ∼∼∼ α2

φ̂ �S α1 ⇒⇒ θ φ̂ �S α2 ⇒⇒ θ

φ̂ �S α1 ∼∼∼ α2

φ̂; ρ̂ �S e

τ ∈ φ̂(α) φ̂; ρ̂ �S e

φ̂; ρ̂ �S let α = τ in e

φ̂ �S αf ∼∼∼ αx ⇒ µf:αf.λz:αz.eb ∈ ρ̂(x) φ̂ �S αf ∼∼∼ αf ⇒ µf:αf.λz:αz.eb ∈ ρ̂(f) φ̂; ρ̂ �S eb φ̂; ρ̂ �S e

φ̂; ρ̂ �S let x:αx = µf:αf.λz:αz.eb in e

φ̂ �S αf ∼∼∼ αx ⇒ µf:αf.Λβ.eb ∈ ρ̂(x) φ̂ �S αf ∼∼∼ αf ⇒ µf:αf.Λβ.eb ∈ ρ̂(f) φ̂; ρ̂ �S eb φ̂; ρ̂ �S e

φ̂; ρ̂ �S let x:αx = µf:αf.Λβ.eb in e

∀µf:αf.λz:αz.eb ∈ ρ̂(xf) .

(∀bs ∈ ρ̂(xa) . φ̂ �S TyOf(bs) ∼∼∼ αz ⇒ bs ∈ ρ̂(z) ∧
∀bs ∈ ρ̂(ResOf(eb)) . φ̂ �S TyOf(bs) ∼∼∼ αx ⇒ bs ∈ ρ̂(x)

)
φ̂; ρ̂ �S e

φ̂; ρ̂ �S let x:αx = xf xa in e

∀µf:αf.Λβ.eb ∈ ρ̂(xf) .

(∀τ ∈ φ̂(αa) . τ ∈ φ̂(β)) ∧
∀bs ∈ ρ̂(ResOf(eb)) . φ̂ �S TyOf(bs) ∼∼∼ αx ⇒ bs ∈ ρ̂(x)

)
φ̂; ρ̂ �S e

φ̂; ρ̂ �S let x:αx = xf [αa] in e

φ̂; ρ̂ �S x

Figure 3. Specification-Based Formulation of TCFA

short description of paper 4 2014/9/25

4. Flow-Graph-Based Formulation of TCFA
We give judgments pertaining to the behavior of the Flow-Graph
analysis in Figure 4. These judgments are analogous to building
a flow-graph of a program P where the edges are the definite
flows between types, type variables, simple binders and expression
variables. There is also a conditional edge between a binder and an
expression variable that is guarded by the type compatibility of the
two in P . Once it is learned that the types are indeed compatible,
the edge is activated and belongs to the final result. After the graph
is constructed, Typed- and Control-Flow Analysis is reduced to
Graph Reachability across the flow-graph.

4.1 Flow-Graph Analysis
We define a series of judgments to perform a program parameter-
ized flow-graph analysis, dependent upon the Sub-part relation in
Figure 2.

The analysis uses a program based type compatibiliity, defined
mutually with type variable compatibility. Any two DeBruijn in-
dices are compatible if they are the same index number. Otherwise,
for functions and forall types that have type variable components,
the two types are compatible if the corresponding components are
compatible under the program. Two type variables, α1 and α2 are
compatible in a program if there is a τ1 and τ2 flowing to α1 and
α2, respectively, such that τ1 is compatible with τ2 in the program.

The flow-graph constructed by the analysis performed on a
program, P , consists of both type-flow information and value-flow
information.

We know that a type, τ , flows to a given type variable, α1, when
one of two cases is true: there is an explicit let-α binding in the
program involving τ and α1; if not, there is some α2 and we have
learned that α1 flows to α2. Such an edge between type variables is
constructed if there exists a type application in P where α2 is the
formal type parameter and α1 is the supplied type argument.

For a simple binder, bs to flow to an expression variable, x, we
need to know two pieces of information. We must have already
seen that the binder could possibly flow to the variable and also that
the type of the binder is compatible with the type of the variable.
Initially, for all λ- and Λ-abstractions, we assert that the abstraction
flows to its own recursive function variable. Other conditional flow
edges are added whenever the program contains a let-x expression
using bs and x and whenever we learn of a transitive variable
flow. Whenever we see an expression application and we already
know that a λ-abstraction flows to the function variable, we add a
flow edge between the argument variable and the formal parameter
variable dependent upon the type of the parameter and also between
the return of the function and the variable being bound by the let-x
expression. The return of Λ-abstraction also flows to a let-x bound
variable dependent upon the bound variable’s type if the binder is a
type application and the Λ-abstraction flows the function variable.

4.2 Soundness
From our flow-based analysis, we prove that if we have a φ̂ and
ρ̂ that are "flow-induced" from a well-typed program, then they
soundly model the program. Before we begin, we introduce the
following lemma:

Lemma 1. For all P , φ̂, if
∀α, τ . τ ∈ φ̂(α)⇔ P �G τ � α

then P �G α1 ∼∼∼ α2 ⇔ φ̂ �S α1 ∼∼∼ α2

We assert that the lemma is true without an accompanying
proof. By inspection, the forward case must be true because the
derivation of P �G α1 ∼∼∼ α2 tells us that there exists a τ1 flowing
to α1 and a τ2 flowing to α2 such that P �G τ1 ∼∼∼ τ2. We assume
that this can be translated to φ̂ �S τ1 ⇒⇒ θ and φ̂ �S τ2 ⇒⇒ θ,

thus allowing us to derive our conclusion. The backwards case is a
reflection of the logic in the forward case.

Theorem 1. For all P , φ̂, and ρ̂, if

• ∀α, τ . τ ∈ φ̂(α)⇔ P �G τ � α, and
• ∀x, bs . bs ∈ ρ̂(x)⇔ P �G bs � x

then φ̂; ρ̂ �s P .

Proof. By induction on P . The interesting cases are when P is a
let-x bound to a λ-abstraction and also when P is a let-x bound
to a type application.

Case P of let x:αx = µf:αf.λz:αz.eb in e: Knowing
that P is unconditionally a sub-term of itself, we can deduce that
let x:αx = µf:αf.λz:αz.eb in e is a subterm of P . Thus we
can build a conditional edge in the flow graph from the abstraction
to x. Since P is well-typed, we know that P �G αf ∼∼∼ αx

and can thus derive P �G µf:αf.λz:αz.eb � x and
φ̂ �S αf ∼∼∼ αx. Our assumption thus gives us bs ∈ ρ̂(x) from
P �G µf:αf.λz:αz.eb � x. We have φ̂; ρ̂ �S eb and φ̂; ρ̂ �S e
by our inductive hypothesis, and thus we have our derivation for
φ̂; ρ̂ �S let x:αx = µf:αf.λz:αz.eb in e.

Case P of let x:αx = xf [αa] in e: We again start by as-
serting that αx = xf [αa] in e is a subterm of P . If there is a
µf:αf.Λβ.eb that flows to xf , then we can create a conditional
edge from the result of the Λ-abstraction to x and an unconditional
edge from αa and β. The conditional edge only allows binders that
are type compatible in the flow specification to flow transitively
from the result variable to x. By our Lemma we can show that the
binders that flow to x are type compatible with αx and our assump-
tion tells us that those binders are in the entry for x in ρ̂. The graph
also tells us that any τ flowing to αa flows to β, which we can use
to show that τ is in the entry for β in φ̂ from our assumption. Our
inductive hypothesis allows us to show that φ̂ and ρ̂ soundly model
e, and we thus derive that φ̂; ρ̂ �G let x:αx = xf [αa] in e.

short description of paper 5 2014/9/25

P �G τ1 ∼∼∼ τ2

TYCOMPATARROW

P �G αa1 ∼∼∼ αa2 P �G αb1 ∼∼∼ αb2

P �G αa1 → αb1 ∼∼∼ αa2 → αb2

TYCOMPATFORALL

P �G αb1 ∼∼∼ αb2

P �G ∀. αb1 ∼∼∼ ∀. αb2

TYCOMPATTYIDX

P �G #n ∼∼∼ #n

P �G α1 ∼∼∼ α2

TYVARCOMPAT

P �G τ1 � α1 P �G τ2 � α2 P �G τ1 ∼∼∼ τ2
P �G α1 ∼∼∼ α2

P �G τ � α

LETTYBND

let α = τ in e �Exp P

P �G τ � α

TRANSTYBND

P �G τ � α P �G α� β

P �G τ � β

P �G α� β

TYAPPARG

P �G µf:αf.Λβ.eb � x let xr:αr = x [αa] in e �Exp P

P �G αa � β

P �G bs � x

TYVARCOMPATEXPBNDs

P �G bs �
? x : αx P ` TyOf(bs) ∼∼∼ αx

P �G bs � x

P �G bs �? x : αx

LETEXPBNDs

let x:αx = bs in e �Exp P

P �G bs �
? x : αx

TRANSEXPBNDs

P �G bs � x P �G x� y : αy

P �G bs �
? y : αy

µλEXPBNDs

let x:αx = µf:αf.λz:αz.eb in e �Exp P

P �G µf:αf.λz:αz.eb �
? f : αf

µΛEXPBNDs

let x:αx = µf:αf.Λβ.eb in e �Exp P

P �G µf:αf.Λβ.eb �
? f : αf

P �G x� y : αy

EXPAPPARG

P �G µf:αf.λz:αz.eb � x let xr:αr = x xa in e �Exp P

P �G xa � z : αz

EXPAPPRES

P �G µf:αf.λz:αz.eb � x let xr:αr = xf xa in e �Exp P

P �G ResOf(eb)� xr : αr

TYAPPRES

P �G µf:αf.Λβ.eb � x let xr:αr = x [αa] in e �Exp P

P �G ResOf(eb)� xr : αr

Figure 4. Flow-Graph-Based Formulation of TCFA

short description of paper 6 2014/9/25

5. Algorithm
In Figures 5, 6, and 7, we give a direct algorithm implementing the
flow-graph-based formulation of the type- and control-flow anal-
ysis. The algorithm returns a result set R whose elements corre-
spond to judgements from Figure 4 that are proven to be derivable
with respect to the input program P . After an initialization phase,
the algorithm uses a work-queue W to process each element that
is added to R; when a newly added element is processed, all of
the inference rules for which the newly added element could be an
antecedent are inspected to determine if the corresponding conclu-
sion can now be added to R. In order to achieve our desired time
complexity, there is a map T from elements of the form α1 ∼∼∼ α2

to a queue of conclusions that may be added to R when α1 ∼∼∼ α2

is proved to be derivable; the queues in T will serve as “banks”
holding credit for the amortized complexity analysis.

5.1 Commentary
5.1.1 Initialization Phase
The first initialization phase (lines 5–18) adds to R and W all ele-
ments of the form bs �? x : αx that are derivable using the rules
LETEXPBNDs, µλEXPBNDs, and µΛEXPBNDs, rules whose conclusion
follows directly from the input program. Similarly, the second ini-
tialization phase (lines 19–22) adds to R and W all elements of the
form τ � α that are derivable using the rule LETTYBNDs.

The third initialization phase (lines 23–27) prepares the map T ,
creating an empty queue for each pair of type variables that appear
in the input program.

The fourth initialization phase (lines 28–48) handles the rules
TYCOMPATARROW, TYCOMPATFORALL, and TYCOMPATTYIDX for all type
binds that appear in the input program. When τ1 and τ2 are arrow
types, then τ1 ∼∼∼ τ2 is derivable using the rule TYCOMPATARROW

when the argument type variables are known to be compatible and
the result type variables are known to be compatible. Therefore, we
create a counter c initialized with the value 2 and add the element
〈c, τ1 ∼∼∼ τ2〉 to the queues in map T for the elements αa1 ∼∼∼ αa2

and αb1 ∼∼∼ αb2. The element 〈c, τ1 ∼∼∼ τ2〉 indicates that τ1 and τ2
will be known to be compatible when two pairs of type variables
are known to be compatible; when αa1 ∼∼∼ αa2 and αb1 ∼∼∼ αb2 are
known to be compatible, the counter will be decremented and
when the counter is zero, τ1 ∼∼∼ τ2 will be added to R and W (see
lines 148–156). Similarly, when τ1 and τ2 are forall types, then
τ1 ∼∼∼ τ2 is derivable using the rule TYCOMPATFORALL when the result
type variables are known to be compatible and we create a counter c
initialized with the value 1 and add the element 〈c, τ1 ∼∼∼ τ2〉 to the
queue in map T for the element αb1 ∼∼∼ αb2. Finally, when τ1 and
τ2 are the same type index, then τ1 ∼∼∼ τ2 is immediately derivable
using the rule TYCOMPATTYIDX and τ1 ∼∼∼ τ2 is added to R and W .

5.1.2 Work-queue Phase
The work-queue phase repeatedly pops an element from the work-
queueW and processes the element (possibly adding new elements
to R and W) until W is empty. To process an element, all of the
inference rules for which the element could be an antecedent are
inspected to determine if the corresponding conclusion can now be
added to R and W .

When the work-queue element is of the form x� y : αy

(lines 51–58), only the rule TRANSEXPBNDs need be inspected.
For each bs � x that is already known to be derivable, then
TRANSEXPBNDs may derive bs �? y : αy and it is added to R and
W .

When the work-queue element is of the form bs � x : αx

(lines 59–68), only the rule TYVARCOMPATEXPBNDs need be in-
spected. If TyOf(bs) and αx are already known to be compati-
ble, then TYVARCOMPATEXPBNDs may derive bs � x and it is added

to R and W . If TyOf(bs) and αx are not yet known to be com-
patible, then the element bs � x is added to the queue given by
Map.get(T,TyOf(bs) ∼∼∼ αx), indicating that when TyOf(bs) and
αx are known to be compatible, bs � x will be added to R and W
(see lines 142–147).

When the work-queue element is of the form bs � x (lines 69–
104), the rules TRANSEXPBNDs, EXPAPPARG, EXPAPPRES, TYAPPARG,
and TYAPPRES need to be inspected. For each x� y : αy that
is already known to be derivable, then TRANSEXPBNDs may derive
bs �? y : αy and it is added to R and W . When bs is of the form
µf:αf.λz:αz.eb where xb = ResOf(eb) (lines 77–89), all ex-
pression applications let xr:αr = x xa in e in the input program
are examined to determine if EXPAPPARG may derive xa � z : αz

and if EXPAPPRES may derive xb � xr : αr . Similarly, when bs is
of the form µf:αf.Λβ.eb where xb = ResOf(eb) (lines 90–102),
all expression applications let xr:αr = x [αa] in e in the in-
put program are examined to determine if TYAPPARG may derive
αa � β and if TYAPPRES may derive xb � xr : αr .

When the work-queue element is of the form τ � α (lines 105–
120), the rules TRANSTYBND and TYVARCOMPAT need to be inspected.
For each α� β that is already known to be derivable, then
TRANSTYBND may derive τ � β and it is added to R and W . For
each π� β that is already known to be derivable, if τ and π
are already known to be compatible, then TYVARCOMPAT may derive
α ∼∼∼ β and it is added to R and W .

When the work-queue element is of the formα� β (lines 121–
128), only the rule TRANSTYBND need be inspected. For each τ � α
that is already known to be derivable, then TRANSTYBND may derive
τ � β and it is added to R and W .

When the work-queue element is of the form τ1 ∼∼∼ τ2
(lines 129–138), only the rule TYVARCOMPAT need be inspected. For
each τ1 � α1 and τ2 � α2 that are known to be derivable, then
TYVARCOMPAT may derive α1 ∼∼∼ α2 and it is added to R and W .

Finally, when the work-queue element is of the form α1 ∼∼∼ α2

(lines 139–159), the rules TYVARCOMPATEXPBNDs and TYVARCOMPAT

need to be inspected. Each time that bs � x : αx was known to be
derivable but TyOf(bs) and αx were not yet known to be com-
patible (preventing TYVARCOMPATEXPBNDs from deriving bs � x),
an element of the form bs � x was added to the queue given by
Map.get(T,TyOf(bs) ∼∼∼ αx) (see line 66); hence, processing these
elements of the queue will add each bs � x that may be derived by
TYVARCOMPATEXPBNDs to R and W . For each pair of type binds τ1
and τ2 whose compatibility depends upon the compatibility of α1

and α2 (and possibly upon the compatibility of other pairs of type
variables), an element of the form 〈c, τ1 ∼∼∼ τ2〉, where c indicates
the total number of pairs of type variables whose compatibility will
establish the compatibility of τ1 and τ2, was added to the queue
given by Map.get(T, α1 ∼∼∼ α2) (see lines 33, 34, and 38); hence,
processing these elements of the queue will add each τ1 ∼∼∼ τ2 that
may be derived by TYVARCOMPAT to R and W .

5.1.3 Termination
Note that throughout the algorithm, whenever an element is added
to the result setR, it is simultaneously added to the work-queueW .
Furthermore, an element is added to R and W only after checking
that the element is not already in R, except during the initialization
phase when all elements added to R and W are necessarily not
already in R. Hence, elements are only added to W once and the
work-queue phase of the algorithm terminates because, for a given
input program, there are only a finite number of elements that may
be added to R and W .

short description of paper 7 2014/9/25

Ensure: ∀τ1 �TyBnd P . ∀τ2 �TyBnd P . τ1 ∼∼∼ τ2 ∈ R⇔ P �G τ1 ∼∼∼ τ2
Ensure: α1 ∼∼∼ α2 ∈ R⇔ P �G α1 ∼∼∼ α2

Ensure: τ � α ∈ R⇔ P �G τ � α
Ensure: α� β ∈ R⇔ P �G α� β
Ensure: bs � x ∈ R⇔ P �G bs � x
Ensure: bs �? x : αx ∈ R⇔ P �G bs �? x : αx

Ensure: x� y : αy ∈ R⇔ P �G x� y : αy

1: procedure TCFA(P) B O(l3 +m4) = O(l2) +O(m2) +O(1) +O(m2)
+O(l) +O(m) +O(m2) +O(m2)
+O(l3) +O(l2) +O(l3)
+O(m4) +O(m3) +O(m4) +O(m2)

2: R← Set.newEmpty() B O(l2) +O(m2)
3: W ← Queue.newEmpty() B O(1)
4: T ← Map.newEmpty() B O(m2)

5: for all let x:αx = bs in e �Exp P do B O(l) = O(l)×O(1)
6: Set.insert(R, bs �? x : αx)
7: Queue.push(W, bs �? x : αx)
8: match bs with
9: case µf:αf.λz:αz.eb do

10: Set.insert(R, bs �? f : αf)
11: Queue.push(W, bs �? f : αf)
12: end case
13: case µf:αf.Λβ.eb do
14: Set.insert(R, bs �? f : αf)
15: Queue.push(W, bs �? f : αf)
16: end case
17: end match
18: end for

19: for all let α = τ in e �Exp P do B O(m) = O(m)×O(1)
20: Set.insert(R, τ � α)
21: Queue.push(W, τ � α)
22: end for

23: for all α1 �TyVar P do B O(m2) = O(m)×O(m)
24: for all α2 �TyVar P do B O(m) = O(m)×O(1)
25: Map.set(T, α1 ∼∼∼ α2,Queue.newEmpty())
26: end for
27: end for

28: for all τ1 �TyBnd P do B O(m2) = O(m)×O(m)
29: for all τ2 �TyBnd P do B O(m) = O(m)×O(1)
30: match 〈τ1, τ2〉 with
31: case 〈αa1 → αb1, αa2 → αb2〉 do
32: c← Counter.new(2)
33: Queue.push(Map.get(T, αa1 ∼∼∼ αa2), 〈c, τ1 ∼∼∼ τ2〉) B O(1) credit into T [αa1 ∼∼∼ αa2] queue
34: Queue.push(Map.get(T, αb1 ∼∼∼ αb2), 〈c, τ1 ∼∼∼ τ2〉) B O(1) credit into T [αb1 ∼∼∼ αb2] queue
35: end case
36: case 〈∀. αb1, ∀. αb2〉 do
37: c← Counter.new(1)
38: Queue.push(Map.get(T, αb1 ∼∼∼ αb2), 〈c, τ1 ∼∼∼ τ2〉) B O(1) credit into T [αb1 ∼∼∼ αb2] queue
39: end case
40: case 〈#n, #m〉 do
41: if n = m then
42: Set.insert(R, τ1 ∼∼∼ τ2)
43: Queue.push(W, τ1 ∼∼∼ τ2)
44: end if
45: end case
46: end match
47: end for
48: end for

Figure 5. TCFA Algorithm

short description of paper 8 2014/9/25

49: while ¬Queue.empty?(W) do
50: match Queue.pop(W) with

51: case x� y : αy do B O(l3) = O(l2)×O(l)
52: for all bs � x ∈ R do B O(l) = O(l)×O(1)
53: if bs �? y : αy /∈ R then
54: Set.insert(R, bs �? y : αy)
55: Queue.push(W, bs �? y : αy)
56: end if
57: end for
58: end case

59: case bs �? x : αx do B O(l2) = O(l2)×O(1)
60: if TyOf(bs) ∼∼∼ αx ∈ R then
61: if bs � x /∈ R then
62: Set.insert(R, bs � x)
63: Queue.push(W, bs � x)
64: end if
65: else
66: Queue.push(Map.get(T,TyOf(bs) ∼∼∼ αx), bs � x) B O(1) credit into T [TyOf(bs) ∼∼∼ αx] queue
67: end if
68: end case

69: case bs � x do B O(l3) = O(l2)×O(l)
70: for all x� y : αy ∈ R do B O(l) = O(l)×O(1)
71: if bs �? y : αy /∈ R then
72: Set.insert(R, bs �? y : αy)
73: Queue.push(W, bs �? y : αy)
74: end if
75: end for
76: match bs with
77: case µf:αf.λz:αz.eb do
78: xb ← ResOf(eb)
79: for all let xr:αr = x xa in e �Exp P do B O(l) = O(l)×O(1)
80: if xa � z : αz /∈ R then
81: Set.insert(R, xa � z : αz)
82: Queue.push(W,xa � z : αz)
83: end if
84: if xb � xr : αr /∈ R then
85: Set.insert(R, xb � xr : αr)
86: Queue.push(W,xb � xr : αr)
87: end if
88: end for
89: end case
90: case µf:αf.Λβ.eb do
91: xb ← ResOf(eb)
92: for all let xr:αr = x [αa] in e �Exp P do B O(l) = O(l)×O(1)
93: if αa � β /∈ R then
94: Set.insert(R,αa � β)
95: Queue.push(W,αa � β)
96: end if
97: if xb � xr : αr /∈ R then
98: Set.insert(R, xb � xr : αr)
99: Queue.push(W,xb � xr : αr)
100: end if
101: end for
102: end case
103: end match
104: end case

Figure 6. TCFA Algorithm (continued)

short description of paper 9 2014/9/25

105: case τ � α do B O(m4) = O(m2)×O(m2)
106: for all α� β ∈ R do B O(m) = O(m)×O(1)
107: if τ � β /∈ R then
108: Set.insert(R, τ � β)
109: Queue.push(W, τ � β)
110: end if
111: end for
112: for all π� β ∈ R do B O(m2) = O(m2)×O(1)
113: if τ ∼∼∼ π ∈ R then
114: if α ∼∼∼ β /∈ R then
115: Set.insert(R,α ∼∼∼ β)
116: Queue.push(W,α ∼∼∼ β)
117: end if
118: end if
119: end for
120: end case

121: case α� β do B O(m3) = O(m2)×O(m)
122: for all τ � α ∈ R do B O(m) = O(m)×O(1)
123: if τ � β /∈ R then
124: Set.insert(R, τ � β)
125: Queue.push(R, τ � β)
126: end if
127: end for
128: end case

129: case τ1 ∼∼∼ τ2 do B O(m4) = O(m2)×O(m2)
130: for all τ1 � α1 ∈ R do B O(m2) = O(m)×O(m)
131: for all τ2 � α2 ∈ R do B O(m) = O(m)×O(1)
132: if α1 ∼∼∼ α2 /∈ R then
133: Set.insert(R,α1 ∼∼∼ α2)
134: Queue.push(W,α1 ∼∼∼ α2)
135: end if
136: end for
137: end for
138: end case

139: case α1 ∼∼∼ α2 do B O(m2) = O(m2)×O(1)
140: while ¬Queue.empty?(Map.get(T, α1 ∼∼∼ α2)) do
141: match Queue.pop(Map.get(T, α1 ∼∼∼ α2)) with B O(1) credit from T [αa1 ∼∼∼ αa2] queue
142: case bs � x do
143: if bs � x /∈ R then
144: Set.insert(R, bs � x)
145: Queue.push(W, bs � x)
146: end if
147: end case
148: case 〈c, τ1 ∼∼∼ τ2〉 do
149: Counter.dec(c)
150: if Counter.get(c) = 0 then
151: if τ1 ∼∼∼ τ2 /∈ R then
152: Set.insert(R, τ1 ∼∼∼ τ2)
153: Queue.push(W, τ1 ∼∼∼ τ2)
154: end if
155: end if
156: end case
157: end match
158: end while
159: end case

160: end match
161: end while

162: return R
163: end procedure

Figure 7. TCFA Algorithm (continued)

short description of paper 10 2014/9/25

5.2 Complexity
5.2.1 Preliminaries
Before analyzing the time complexity of the algorithm, we first
make some (standard) assumptions about the representation of the
input program.

We assume that all let-, µ-, and λ-bound expression variables
and all let-, and Λ-bound type variables in the program are dis-
tinct. We further assume that expression variables and type vari-
ables can be mapped (in O(1) time) to unique integers (for O(1)
time indexing into an array) and that integers can be mapped (in
O(1) time) to corresponding expression variables and type vari-
ables.2 Given the assumption that all let-, µ-, and λ-bound ex-
pression variables in the program are unique, each expression vari-
able in the program is annotated with a single type variable at its
unique binding occurrence. We therefore assume that expression
variables can be mapped (in O(1) time) to its annotating type vari-
able. Given the assumption that all µ-bound expression variables in
the program are unique, each simple expression bind in the program
is unique and can be mapped (in O(1) time) to and from unique in-
tegers.3 We do not assume that each type bind in the program is
unique, but we do assume that each type bind in the program can
be mapped (in O(1) time) to and from unique integers. Finally, we
assume that ResOf(·) can be computed in O(1) time.4

5.2.2 Data Structures and Operations
We next consider the data structures used to implement the result
set R and the map T and the cost of various operations.

The result set R is implemented as seven multi-dimensional
arrays, each corresponding to one of the seven judgements from
Figure 4. Given the assumptions above, it is easy to see that the
arrays corresponding to τ1 ∼∼∼ τ2, α1 ∼∼∼ α2, τ � α, α� β, and
bs � x are simple two-dimensional arrays with O(1) time index-
ing by mapping components to unique integers. Furthermore, the
arrays corresponding to bs � x : αx and x� y : αy can also be
implemented with simple two-dimensional arrays (indexed by bs/x
and x/y, respectively), because the type variable is always the sin-
gle type variable at the unique binding occurrence of the expression
variable and can be left implicit. Thus, queries like bs � x /∈ R
and operations like Set.insert(R, bs � x) can be performed in
constant time. Loops like “for all bs � x ∈ R do” for fixed bs in-
stantiating x or for fixed x instantiating bs can be implemented as a
linear scan of an array column or array row.

The map T is implemented with a simple two-dimensional
array, indexed by pairs of type variables. Operations like
Map.set(T, α1 ∼∼∼ α2, q) and Map.get(T, α1 ∼∼∼ α2) can be per-
formed in constant time.

The work-queue W and the queues in map T are implemented
with a simple linked-list queue. Queries like Queue.empty?(W)
and operations like Queue.push(W, bs � x) and Queue.pop(W)
can be performed in constant time.

5.2.3 Coarse Analysis
We first argue that the algorithm is O(n4) time, where n is the
size of the input program P . First, note that there are O(n) type

2 These mappings can established with a linear-time preprocessing step.
3 In a richer language with simple-expression-bind forms that do not include
a bound expression variable (e.g., 〈x1, x2〉 pairs), we can assume a num-
bering of all simple expression binds in the program, similar to the labeling
found in textbook presentations of CFA [10].
4 This can be established either by a linear-time preprocessing step (associ-
ating each result variable with its corresponding abstraction) or by changing
the representation of expressions to a list of α = τ and x:αx = b bindings
paired with the result variable.

variables, O(n) type binds, O(n) expression variables, and O(n)
simple expression binds in the program. Thus, the result set R
requires O(n2) space for (and is O(n2) time to create) each of
the seven two-dimensional arrays and the map T requires O(n2)
space for (and is O(n2) time to create) the two-dimensional array.

The first initialization phase is O(n) time to traverse the pro-
gram and process each simple expression bind. Similarly, the sec-
ond initialization phase is O(n) time to traverse the program and
process each type bind. The third initialization phase is O(n2)
time to process each pair of type variables. The fourth initialization
phase is O(n2) time to process each pair of type binds. Altogether,
the initialization phase isO(n2) = O(n)+O(n)+O(n2)+O(n2)
time.

As noted above, elements are only added toW once. Therefore,
the time complexity of the “while ¬Queue.empty?(W) do”-loop
is the sum of the time required to process an element of each
kind times the number of elements of that kind. There are
O(n2) elements of the form x� y : αy (recall that the αy is
implicitly determined by the y) and processing an x� y : αy

element is O(n) time to scan for all bs � x ∈ R. There are
O(n2) elements of the form bs �? x : αx and processing a
bs �? x : αx element is O(1) time. There are O(n2) ele-
ments of the form bs � x and processing a bs � x element
is O(n) time to scan all x� y : αy ∈ R and O(n) time
to find all let xr:αr = x xa in e �Exp P and to find all
let xr:αr = x [αa] in e �Exp P . There are O(n2) elements of
the form τ � α and processing a τ � α element is O(n) time
to scan for all α� β ∈ R and O(n2) to process all π� β ∈ R.
There are O(n2) elements of the form α� β and processing
an α� β element is O(n) time to scan for all τ � α ∈ R.
There are O(n2) elements of the form τ1 ∼∼∼ τ2 and processing a
τ1 ∼∼∼ τ2 element is O(n2) time to scan for all τ1 � α1 ∈ R and
τ2 � α2 ∈ R. There are O(n2) elements of the form α1 ∼∼∼ α2,
processing an α1 ∼∼∼ α2 element must process each element in the
queue Map.get(T, α1 ∼∼∼ α2), and, therefore, the time complexity
to process an α1 ∼∼∼ α2 element is the sum of the time required to
process the elements in the queue of each kind times the number
of elements of that kind; there are O(n2) elements of the form
bs � x in the queue (since an element of the form bs � x are
added at most once to at most one queue (see line 66)) and process-
ing an bs � x element is O(1) time and there are O(n2) elements
of the form 〈c, τ1 ∼∼∼ τ2〉 (since an element of the form 〈c, τ1 ∼∼∼ τ2〉
is added at most twice to at most one queue (see lines 33–34 and
line 38)) and processing a 〈c, τ1 ∼∼∼ τ2〉 element is O(1) time. Alto-
gether, the work-queue phase is O(n4) = O(n2)×O(n) +
O(n2)×O(1) + O(n2)× (O(n) +O(n) +O(n)) +
O(n2)× (O(n) +O(n2))+O(n2)×O(n)+O(n2)×O(n2)+
O(n2)× (O(n2)×O(1) +O(n2)×O(1)).

Thus, the entire algorithm is O(n4). Recall that algorithms
for classic (untyped) control-flow analysis have been shown to be
O(n3) [2, 7, 10, 11], though recently improved to O(n2 logn) [8].

5.2.4 Refined Analysis
In order to clarify the relationship between the time complexity
of algorithms for classic (untyped) control-flow analysis and our
algorithm for type- and control-flow analysis, we perform a refined
analysis of our algorithm.

First, note that the quartic components of the algorithm are due
to the processing of elements of the form τ � α, τ1 ∼∼∼ τ2, and
α1 ∼∼∼ α2. Intuitively, the increased time complexity of the algo-
rithm for type- and control-flow analysis compared to algorithms
for classic (untyped) control-flow analysis is due to the computa-
tion of the type-compatibility relations.

short description of paper 11 2014/9/25

Second, in typical programs of interest, we expect that the total
size of the program to be dominated by the contribution of (bound)
expression variables and expression binds, with the contribution
of (bound) type variables and type binds significantly (asymptot-
ically?) less. For example, a program may have many definitions of
and uses of int→ int functions, all of which can share the same
(top-level) let αi = int in let αi→i = αi → αi in . . . type
bindings. Indeed, our ANF representation of types encourages
type-level optimizations such as let-floating, common subexpres-
sion elimination (CSE), and copy propagation, which would fur-
ther reduce the contribution of types to the total program size.
Therefore, we consider it useful to distinguish l, the size of
(bound) expression variables and expression binds, and m, the
size of (bound) type variables and type binds, where we have
O(l) +O(m) is O(n) and we expect O(l) � O(m), though,
in the worst-case, both O(l) and O(l) are O(n). We further as-
sume an O(n) preprocessing step that provides an enumeration of
all let x:αx = b in e �Exp P inO(l) time and an enumeration of
all let α = τ in e �Exp P in O(m) time.

We now argue that the algorithm is O(l3 + m4) time. First,
note that there are O(m) type variables, O(m) type binds, O(l)
expression variables, and O(l) simple expression binds in the pro-
gram. Thus, the result set R requires O(l2 +m2) space for (and is
O(l2 + m2) time to create) the seven two-dimensional arrays and
the map T requiresO(m2) space for (and isO(m2) time to create)
the two-dimensional array.

The first initialization phase isO(l) time to process each simple
expression bind. Similarly, the second initialization phase is O(m)
time to process each type bind. The third initialization phase is
O(m2) time to process each pair of type variables. The fourth ini-
tialization phase is O(m2) time to process each pair of type binds;
included in this processing time is an O(1) credit “deposited” into
the queues in T when pushing elements, which “pre-pays” for the
processing of the elements when popped. Altogether, the initializa-
tion phase is O(l + m2) = O(l) + O(m) + O(m2) + O(m2)
time.

The analysis of the work-queue phase is similar
to that performed above: the time complexity of the
“while ¬Queue.empty?(W) do”-loop is the sum of the time
required to process an element of each kind times the number
of elements of that kind; we simply refine n to l or m as ap-
propriate. We further perform an amortized analysis of the time
complexity to process an bs �? x : αx element and to process an
α1 ∼∼∼ α2 element. Included in the time to process an bs �? x : αx

element is an O(1) credit “deposited” into the queue given by
Map.get(T,TyOf(bs) ∼∼∼ αx) when pushing elements, which
“pre-pays” for the processing of the elements when popped. As
before, processing an α1 ∼∼∼ α2 element must process each element
in the queue Map.get(T, α1 ∼∼∼ α2); however, an O(1) credit
may be “withdrawn” from the queue Map.get(T, α1 ∼∼∼ α2) when
popping elements and this O(1) credit may be used to “pay” for
the popping and processing of the element. Thus, processing an
α1 ∼∼∼ α2 element is (amortized) O(1) time.5 Altogether, the work-
queue phase is O(l3 + m4) = O(l2)×O(l) + O(l2)×O(1) +
O(l2)× (O(l) +O(l) +O(l)) +O(m2)× (O(m) +O(m2)) +
O(m2)×O(m) +O(m2)×O(m2) +O(m2)×O(1).

Thus, the entire algorithm is O(l3 +m4).

5 Note that without the amortized analysis, processing an α1 ∼∼∼ α2 ele-
ment would be O(l2) + O(m2) time and the entire algorithm would be
O(l3 + l2m2 +m4).

6. Conclusion
References
[1] A. Aiken and B. R. Murphy. Implementing regular tree expressions. In

J. Hughes, editor, FPCA’91: Proceedings of the Fifth ACM Conference
on Functional Programming Languages and Computer Architecture,
volume 523 of Lecture Notes in Computer Science, pages 427–447,
Cambridge, Massachusetts, Aug. 1991. Springer-Verlag.

[2] A. E. Ayers. Efficient closure analysis with reachability. In M. Bil-
laud, P. Castéran, M.-M. Corsini, K. Musumbu, and A. Rauzy, edi-
tors, Actes WSA’92 Workshop on Static Analysis, Bigre, pages 126–
134, Bordeaux, France, Sept. 1992. Atelier Irisa, IRISA, Campus de
Beaulieu.

[3] P. Cousot and R. Cousot. Formal language, grammar and set-
constraint-based program analysis by abstract interpretation. In
S. Peyton Jones, editor, FPCA’95: Proceedings of the Seventh Interna-
tional Conference on Functional Programming Languages and Com-
puter Architecture, pages 170–181, La Jolla, California, June 1995.

[4] M. Fluet. A type- and control-flow analaysis for System F. In
R. Hinze, editor, IFL’12: Post-Proceedings of the 24th International
Symposium on Implementation and Application of Functional Lan-
guages, Lecture Notes in Computer Science, Oxford, England, 2013.
Springer-Verlag. To appear.

[5] M. Fluet. A type- and control-flow analysis for System F. Tech-
nical report, Rochester Institute of Technology, February 2013.
https://ritdml.rit.edu/handle/1850/15920.

[6] F. Gecseg and M. Steinby. Tree Automata. Akademiai Kiado, Bu-
dapest, Hungary, 1984.

[7] N. Heintze. Set-based program analysis of ML programs. In C. L.
Talcott, editor, LFP’94: Proceedings of the 1994 ACM Conference on
Lisp and Functional Programming, pages 306–317, Orlando, Florida,
June 1994.

[8] J. Midtgaard and D. V. Horn. Subcubic control flow analysis algo-
rithms. Computer Science Research Report 125, Roskilde University,
Roskilde, Denmark, May 2009. Revised version to appear in Higher-
Order and Symbolic Computation.

[9] P. Mishra and U. S. Reddy. Declaration-free type checking. In M. S.
Van Deusen, Z. Galil, and B. K. Reid, editors, POPL’85: Proceed-
ings of the Twelfth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 7–21, New Orleans,
Louisiana, Jan. 1985. ACM, ACM.

[10] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program
Analysis. Springer-Verlag, 1999.

[11] J. Palsberg and M. I. Schwartzbach. Safety analysis versus type
inference. Information and Computation, 118(1):128–141, 1995.

[12] C. A. Stone. Type definitions. In B. C. Pierce, editor, Advanced Topics
in Types and Programming Languages. The MIT Press, 2005.

short description of paper 12 2014/9/25

https://ritdml.rit.edu/handle/1850/15920

	Introduction
	Language and Semantics
	Syntax
	Scanning Input Program
	Semantics

	Specification-Based Formulation of TCFA
	Soundness, Decidability, and Computability

	Flow-Graph-Based Formulation of TCFA
	Flow-Graph Analysis
	Soundness

	Algorithm
	Commentary
	Initialization Phase
	Work-queue Phase
	Termination

	Complexity
	Preliminaries
	Data Structures and Operations
	Coarse Analysis
	Refined Analysis

	Conclusion

