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Abstract
Racket’s macro system enables language extension and definition
primarily for programs that are run on the Racket virtual machine,
but macro facilities are also useful for implementing languages and
compilers that target different platforms. Even when the core of
a new language differs significantly from Racket’s core, macros
offer a maintainable approach to implementing a larger language
by desugaring into the core. Users of the language gain the bene-
fits of Racket’s programming environment, its build management,
and even its macro support (if macros are exposed to programmers
of the new language), while Racket’s syntax objects and submod-
ules provide convenient mechanisms for recording and extracting
program information for use by an external compiler. We illustrate
this technique with Magnolisp, a programming language that runs
within Racket for testing purposes, but that compiles to C++ (with
no dependency on Racket) for deployment.

Categories and Subject Descriptors D.2.13 [Software Engineer-
ing]: Reusable Software; D.3.4 [Programming Languages]: Pro-
cessors

General Terms Design, Languages

Keywords Compiler frameworks, language embedding, macro
systems, module systems, syntactic extensibility

1. Introduction
The Racket programming language (Flatt and PLT 2010) builds
on the Lisp tradition of language extension through compile-time
transformation functions, a.k.a. macros. Racket macros not only
support language extension, where the existing base language is
enriched with new syntactic forms, but also language definition,
where a completely new language is implemented though macros
while hiding or adapting the syntactic forms of the base language.

Racket-based languages normally target the Racket virtual ma-
chine (VM), where macros expand to a core Racket language, core
Racket is compiled into bytecode form, and then the bytecode form
is run:

Racket
macroexpand

core Racket

Racket VM
run

bytecode

compile

The macro-expansion step of this chain is an example of a
source-to-source compiler (or transcompiler for short), i.e., a trans-
lator that takes the source code in one language and outputs source
code of another language. Transcompilers have potential bene-
fits compared with compilation to machine code, such as more

economical cross-platform application development by targeting
widely supported languages, which enables the building of executa-
bles with various platform-vendor-provided toolchains.

A Racket-based language can also benefit by avoiding a run-
time dependency on the Racket VM. Breaking the dependency can
sometimes ease deployment, as the Racket VM is not well sup-
ported in every environment. Furthermore, for a mobile “app” to
be distributed in an “app store,” for example, it is desirable to keep
startup times short and in-transit and in-memory footprints low;
even in a stripped-down form, Racket can add significantly to the
size of an otherwise small installation package. Factors relating to
app-store terms and conditions and submission review process may
also mean that avoiding linking in additional runtimes may be sen-
sible or even necessary.

One example of an existing source-to-source compiler that
avoids the Racket VM is Whalesong (Yoo and Krishnamurthi
2013), which compiles Racket to JavaScript via Racket bytecode:
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In this approach, a number of optimizations (such as inlining)
are performed for bytecode by the normal Racket compiler, making
it a sensible starting point for transcompilers that aim to implement
variants of Racket efficiently.

Compiling via Racket bytecode may be less appropriate when
the language being compiled is not Racket or when optimizing for
properties other than efficiency. Racket’s bytecode does not retain
all of the original (core) syntax, making it less suitable for imple-
menting semantics-retaining compilation that happens primarily at
the level of abstract syntax.

Thus, depending on the context, it may make more sense to
compile from macro-expanded core language instead of bytecode.1

Scheme-to-C compilers (e.g., CHICKEN and Gambit-C) typically
work that way, as does the old mzc compiler for Racket:

1 In Racket, one can acquire core language for a Racket source file by
read-syntaxing the file contents and then invoking expand on the read
(top-level) forms.
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To try out a different Racket-exploiting transcompilation pipe-
line, we implemented a to-C++ compiler for a small programming
language named Magnolisp. Conceptually, the Magnolisp imple-
mentation is like a Scheme-to-C compiler, but instead of handling
all of Racket, it handles only a particular subset of Racket that cor-
responds to the expansion of the Magnolisp macros (although the
“subset” includes additional macro-introduced annotations to guide
compilation to C++). A traditional compilation pipeline for mglc
(the Magnolisp compiler) would be the following, with the smaller
box representing the part of the program to be transcompiled (addi-
tionally, there can be macro definitions, for example, which are not
relevant when transcompiling):

C++
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However, directly manipulating core Racket S-expression syn-
tax is not especially convenient from outside of the Racket pipeline.
Racket’s strength is in support for the macro-expansion phase, es-
pecially its support for multiple modules and separate compilation
at the module level. It can be useful to be able to do back-end-
specific work in macro expansion. In the Magnolisp case, such
work includes recording type annotations and catching syntax er-
rors early, for the benefit of mglc.

Magnolisp demonstrates a source-to-source compilation ap-
proach that takes advantage of the macro-expansion phase to pre-
pare for “transcompile time.”2 More precisely, Magnolisp arranges
for macro expansion to embed into the Racket program the in-
formation that the Magnolisp compiler needs. The compiler ex-
tracts the information by running the program in a mode in which
transcompile-time code is evaluated. This results in the following,
distinctly non-traditional compilation pipeline; here, the smaller
boxes still correspond to the part of the program that is transcom-
piled, but they now denote code that encodes the relevant informa-
tion about the program, and only gets run in the transcompile-time
mode (as depicted by the longer arrow of the “run” step):

2 Our use of the word “time” here refers to the idea behind Racket’s sub-
modules (Flatt 2013), which is to make it possible for programmers to de-
fine new execution phases beyond the macro-expansion and run-time phases
that are built into the language model. In our case we want to introduce a
transcompile-time phase, and designate some of the code generated during
macro expansion as belonging to that phase. In practice, this is done by
putting said code into a separately loadable module within a module, i.e. a
submodule of a known name within the module whose transcompile-time
code it is.
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In essence, this strategy works because Racket is already able to
preserve syntactic information in bytecode, so that Racket can im-
plement separately compiled macros. Recent generalizations to the
Racket syntax system—notably, the addition of submodules (Flatt
2013)—let us conveniently exploit that support for Magnolisp com-
pilation.

The information that Magnolisp makes available (via a submod-
ule) for compilation consists of abstract syntax trees (which incor-
porate any compilation-guiding annotations), along with some aux-
iliary data structures. As the particular abstract syntax is only for
compilation, it need not conform to the Racket core language se-
mantics; indeed, Magnolisp deviates from Racket semantics where
deemed useful for efficient and straightforward translation into
C++.

Even for a language that is primarily designed to support
transcompilation, it can be useful to also have an evaluator. We
envision direct evaluation being useful for simulating the effects
of compiled programs, probably with “mock” implementations
of primitives requiring functionality that is not available locally.
The idea is to gain some confidence that programs (or parts
thereof) work as intended before actually compiling them. Cross-
compilation and testing on embedded devices can be particularly
time consuming; compilation times generally pale in comparison
to the time used to transfer, install, and launch a program.

The usual way of getting a Racket-hosted language to evaluate
is to macro transform its constructs into the Racket core language,
for execution in the Racket VM. Having macro-expansion gener-
ate separately loadable transcompile-time code does mean that it
could not also generate evaluatable Racket run-time definitions.
Magnolisp demonstrates this by supporting both transcompilation
and Racket-VM-based evaluation.

1.1 Motivation for Racket-Hosted Transcompiled Languages
Hosting a language via macros offers the potential for extensibil-
ity in the hosted language. This means leveraging the host lan-
guage both to provide a language extension mechanism and a lan-
guage for programming any extensions. While a basic language
extension mechanism (such as the C preprocessor or a traditional
Lisp macro system) may be implementable with reasonable effort,
safer and more expressive mechanisms require substantial effort to
implement from scratch. Furthermore, supporting programmable
(rather than merely substitution based) language extensions calls
for a compile-time language evaluator, which may not be readily
available for a transcompiled language.

Hosting in Racket offers safety and composability of language
extensions through lexical scope and phase separation respecting
macro expansion. Racket macros’ hygiene and referential trans-
parency help protect the programmer from inadvertent “capturing”
of identifiers, making it more likely that constructs defined modu-
larly (or even independently) compose successfully. Phase separa-
tion (Flatt 2002) means that compile time and run time have distinct
bindings and state. The separation in the time dimension is partic-
ularly crucial for a transcompiler, as it must be possible to parse
code without executing it. The separation of bindings, in turn, helps
achieve language separation, in that one can have Racket bindings



in scope for compile-time code, and hosted-language bindings for
run-time code.

Racket’s handling of modules can also be leveraged to support
modules in the hosted language, with Racket’s raco make tool
for rebuilding bytecode then automatically serving as a build tool
for multi-module programs in the language. The main constraint is
that Racket does not allow cycles among module dependencies.

Particularly for new languages it can be beneficial to reuse
existing language infrastructure. With a Racket embedding one is in
the position to reuse Racket infrastructure on the front-end side, and
the target language’s infrastructure (typically libraries) on the back-
end side. Reusable front-end side language tools might include
IDEs (Findler et al. 2002), documentation tools (Flatt et al. 2009),
macro debuggers (Culpepper and Felleisen 2007), etc. Although
some tools might not be fully usable with programs that cannot
be executed as Racket, the run vs. compile time phase separation
means that a tool whose functionality does not entail running a
program should function fully.

Racket’s language extension and definition machinery may be
useful not only for users, but also for language implementors.
Its macros have actually become a compiler front end API that
is sufficient for implementing many general-purpose abstraction
mechanisms in a way that is indistinguishable from built-in fea-
tures (Culpepper and Felleisen 2006). In particular, a basic “sug-
ary” construct is convenient to implement as a macro, as both sur-
face syntax and semantics can be specified in one place.

1.2 Contributions
The main contributions of this paper are:

• we describe a generic approach to replacing the runtime lan-
guage of Racket in such a manner that information about code
in the language can be processed at macro-expansion time, and
selectively made available for separate loading for purposes of
source-to-source compilation to another high-level language;

• we show that the core language and hence the execution seman-
tics of such a source-to-source compiled language can differ
from Racket’s;

• we suggest that it may be useful to also make a transcompiled
language executable as Racket, and show that this is possible at
least for our proof-of-concept language implementation; and

• we show that this approach to language implementation allows
Racket’s expressive macro and module systems to be reused to
make the implemented language user extensible, and to make
the scope of language extensions user controllable.

Some of the presented language embedding techniques have
been previously used in the implementation of Dracula, to allow for
compilation of Racket-hosted programs to the ACL2 programming
language; they have remained largely undocumented, however.

The significance of the reported approach beyond the Racket
ecosystem is that it supports transcompiler implementation for lan-
guages that have all three of the following properties:

• the language is extensible from within itself;
• the scope of each language extension can be controlled sepa-

rately, also from within the language; and
• there are some guarantees of independently defined extensions

composing safely.3

3 In the case of Racket, macros that do not explicitly capture free variables
are safe to compose in the limited sense that they preserve the meaning
of variable bindings and references during macro expansion (Eastlund and
Felleisen 2010).

2. Magnolisp
Magnolisp is a proof-of-concept implementation of a Racket-
hosted transcompiled language, and the running example that we
use to discuss the associated implementation techniques. As a lan-
guage, Magnolisp is not exceptional in being suitable for hosting;
the techniques described in this paper constitute a general method
for hosting a transcompiled language in Racket.

Code and documentation for Magnolisp is available at:

https://www.ii.uib.no/~tero/magnolisp-ifl-2014/

2.1 The Magnolisp Language
To help understand the Magnolisp-based examples given later, we
give some idea of the syntax and constructs of the language. We
assume some familiarity with Racket macro syntax.

Magnolisp is significantly different from Racket in that its over-
riding design goal is to be amenable to static reasoning; Racket
compatibility, for better reuse of Racket’s facilities, is secondary.
Magnolisp disallows many forms of runtime-resolved dispatch of
control that would make reasoning about code harder. Unlike in
Racket, all data types and function invocations appearing in pro-
grams are resolvable to specific implementations at compile time.

Requiring fully, statically typed Magnolisp programs facilitates
compilation to C++, as the static types can be mapped directly to
their C++ counterparts. To reduce syntactic clutter due to annota-
tions, and hence to help retain Racket’s untyped “look and feel,”
Magnolisp features whole-program type inference à la Hindley-
Milner.

Magnolisp reuses Racket’s module system for managing names
internally within programs (or libraries), both for run-time names
and macros. The exported C++ interface is defined separately
through export annotations appearing in function definitions;
only exported functions are declared in the generated C++
header file.

The presented language hosting approach involves the definition
of a Racket language for the hosted language. The Racket language
for Magnolisp is named magnolisp. At the top-level of a module
written in magnolisp, one can declare functions, for exam-
ple. A function may be marked foreign, in which case it is as-
sumed to be implemented in C++; such a function may also have a
Racket implementation, given as the body expression, to also allow
for running in the Racket VM. Types can only be defined in C++,
and hence are always foreign, and typedef can be used to give
the corresponding Magnolisp declarations. The type annotation is
used to specify types for functions and variables, and the type ex-
pressions appearing within may refer to declared type names. The
#:annos keyword is used to specify the set of annotations for a
definition.

In this example, get-last-known-location is a Magno-
lisp function of type (fn Loc), i.e., a function that returns a value
of type Loc. The (rkt.get-last-known-location) ex-
pression in the function body might be a call to a Racket function
from module "positioning.rkt", simulating position infor-
mation retrieval:

#lang magnolisp
(require (prefix-in rkt. "positioning.rkt"))

(typedef Loc (#:annos foreign))

(function (get-last-known-location)
(#:annos foreign [type (fn Loc)])
(rkt.get-last-known-location))

No C++ code is generated for the above definitions, as they are
both declared as foreign. For an example that does have a C++
translation, consider the following code, which introduces Magno-

https://www.ii.uib.no/~tero/magnolisp-ifl-2014/


lisp’s predefined predicate type for boolean values, variable
declarations, if expressions and statements, and do and return
constructs. The latter two are an example of language that does not
directly map into Racket core language; the do expression contains
a sequence of statements, with any executed return statement de-
termining the value of the overall expression. Magnolisp syntax is
not particularly concise, but shorthands can readily be defined, as is
here demonstrated by the declare-List-op macro for declar-
ing primitives that accept a List argument:

#lang magnolisp
; list and element data types (defined in C++)
(typedef List (#:annos foreign))
(typedef Elem (#:annos foreign))

(define-syntax-rule (declare-List-op [n t] ...)
(begin (function (n lst)

(#:annos [type (fn List t)] foreign))
...))

; list and element primitives (implemented in C++)
(declare-List-op [empty? predicate]

[head Elem]
[tail List])

(function (zero)
(#:annos [type (fn Elem)] foreign))

(function (add x y)
(#:annos [type (fn Elem Elem Elem)] foreign))

; sum of first two list elements
; (or fewer for shorter lists)
(function (sum-2 lst) (#:annos export)

(if (empty? lst)
(zero)
(do (var h (head lst))

(var t (tail lst))
(if (empty? t)

(return h)
(return (add h (head t)))))))

The transcompiler-generated C++ implementation for the sum-
2 function is the following (but hand-formatted for readability).
The translation is verbose, and could be simplified with additional
optimizations; its redeeming quality is that it closely reflects the
structure of the original code, which was made possible by our
use of GCC-specific C++ language extensions (e.g., “statement
expressions”):
MGL_API_FUNC Elem sum_2 ( List const & lst )
{

return ( is_empty ( lst )) ? ( zero ()) :
(({ __label__ b;

Elem r;
{

Elem h = head ( lst );
{

List t = tail ( lst );
if ( is_empty (t))

{ r = h; goto b; }
else

{ r = add (h, head (t ));
goto b; }

}
}
b: r;

}));
}

2.2 Magnolisp Implementation
The collection of techniques for embedding a transcompiled lan-
guage within Racket, as described in this paper, only concern the
front end of a transcompiler. Wildly differing designs for the rest of

the compilation pipeline are possible; we merely sketch the struc-
ture of our Magnolisp-to-C++ compiler as a concrete example.

Magnolisp is implemented in Racket, and in a way there are two
implementations of the language: one targeting the Racket VM, and
one targeting C++. The magnolisp Racket language has the dual
role of defining execution semantics for the Racket VM, and also
effectively being the front end for the transcompiler.

Figure 1 shows an overview of the transcompiler architecture,
including both the magnolisp-defined front end, and the mglc-
driven middle and back ends. One detail omitted from the figure is
that the macro-expanded "a.rkt" module gets compiled before
it or any of its submodules are evaluated; if this is not done ahead
of time, with the result serialized into a file as bytecode, it will
get done on demand by Racket when the for-transcompile-time
submodule is accessed.

Figure 2 illustrates the forms of data running through the com-
pilation pipeline. The "a.rkt" module’s transcompile-time code
gets run when its magnolisp-s2s submodule gets instantiated,
which means that variables are created for module-level definitions.
Transcompilation triggers instantiation by invoking dynamic-
require to fetch values for said variables (e.g., def-lst); the
values describe "a.rkt", and are already in the compiler’s inter-
nal data format. Any referenced dependencies of "a.rkt" (e.g.,
"num-types.rkt") are processed in the same manner, and the
relevant definitions are incorporated into the compilation result
(i.e., "a.cpp" and "a.hpp").

The middle and back ends may be accessed via the mglc
command-line tool, or programmatically via the underlying API.
The expected input for these is a set of modules for transcom-
piling to C++. The compiler loads any transcompile-time code in
the modules and their dependencies. Dependencies are determined
by inspecting binding information for appearing identifiers, as re-
solved by Racket during macro expansion. Any modules with a
magnolisp-s2s submodule are assumed to be Magnolisp, but
other Racket-based languages may also be used for macro program-
ming or simulation. The Magnolisp compiler effectively ignores
any code that is not run-time code in a Magnolisp module.

The program transformations performed by the compiler are
generally expressed in terms of term rewriting strategies. These
are implemented based on a custom strategy combinator library in-
spired by Stratego (Bravenboer et al. 2008). The syntax trees pre-
pared for the transcompilation phase use data types supporting the
primitive strategy combinators that the combinator library expects.

The compiler middle end implements whole-program optimiza-
tion (by dropping unused definitions), type inference, and some
simplifications (e.g., removal of condition checks where the con-
dition is (TRUE) or (FALSE)). The back end implements trans-
lation from Magnolisp core to C++ syntax (including e.g. lambda
lifting), C++-compatible identifier renaming, splitting of code into
sections (e.g.: public declarations, private declarations, and private
implementations), and pretty printing.

3. Hosting a Transcompiled Language in Racket
Building a language in Racket means defining a module or set of
modules to implement the language. The language’s modules de-
fine and export macros to compile the language’s syntactic forms to
core forms. In the case of a transcompiled language, the expansion
of the language’s syntactic forms might produce nested submod-
ules to separate code than can be run directly in the Racket VM
from information that is used to continue compilation to a different
target.

In this section, we describe some of the details of that process
for some transcompiled language L. Where the distinction matters,
we use LR to denote a language intended to also run in the Racket
VM (possibly with mock implementations of some primitives), and



front end
middle end

back end

a.rkt
(Magnolisp

source)

Racket
macro

expander

inputOf

Magnolisp
libraries

refersTo

a.rkt
(core

Racket)

expandsTo

a.rkt
magnolisp-s2s

submodule

contains

module
loader

evaluates

analyses &
optimizations

middle-end
API

invokes invokes

IR

outputs

back-end
API

C++
back-end

driver

invokes

translator

invokes

sectioner

invokes

pretty
printer

invokes

a.cpp

generates

a.hpp

generates

inputOf

mglc
(CLI tool)

invokes

invokes

Figure 1: The overall architecture of the Magnolisp compiler, showing some of the components involved in compiling a Magnolisp source
file "a.rkt" into a C++ implementation file "a.cpp" and a C++ header file "a.hpp". The dotted arrows indicate that the use of the
mglc command-line tool is optional; the middle and back end APIs may also be invoked by other programs. The dashed ‘‘evaluates’’ arrow
indicates a conditional connection between the left and right hand sides of the diagram; the magnolisp-s2s submodule is only loaded
when transcompiling. The ‘‘expandsTo’’ connection is likewise conditional, as "a.rkt" may have been compiled ahead of time, in which
case the module is already available in a macro-expanded form.

a.rkt

#lang magnolisp
(require "num-types.rkt")
(function (int-id x)
  (#:annos [type (fn int int)] export)
  x)

(module a magnolisp/main
  (#%module-begin

(module magnolisp-s2s racket/base
  (#%module-begin

....
(define-values (def-lst)
  (#%app list

  (#%app DefVar ....)
  ....))

....))

....
(#%require "num-types.rkt")
(define-values (int-id) ....)))
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a.cpp

#include "a.hpp"
MGL_API_FUNC int int_id(int const& x) {
  return x;
}

#ifndef __a_hpp__
#include "a_config.hpp"
MGL_API_PROTO int int_id(int const& x);
#endif

a.hpp

translaterun

Figure 2: An illustration of the processing of a Magnolisp module as it passes through the compilation pipeline. Transcompile-time Racket
code is shown in a dashed box.



LC to denote a language that only runs through compilation into a
different language.

3.1 Modules and #lang

All Racket code resides within some module, and each module
starts with a declaration of its language. A module’s language
declaration has the form #lang L as the first line of the module.
The remainder of the module can access only the syntactic forms
and other bindings made available by the language L.

A language is itself implemented as a module.4 A language
module is connected to the name L—so that it will be used by
#lang L—by putting the module in a particular place in the
filesystem or by appropriately registering the module’s parent di-
rectory.

In general, a language’s module provides a reader that gets
complete control over the module’s text after the #lang line. A
reader produces a syntax object, which is kind of S-expression
(that combines lists, symbols, etc.) that is enriched with source
locations and other lexical context. We restrict our attention here
to a language that uses the default reader, which parses module
content directly as S-expressions, adding source locations and an
initially empty lexical context.

For example, to start the implementation of L such that it uses
the default reader, we might create a "main.rkt" module in an
"L" directory, and add a reader submodule that points back to
L/main as implementing the rest of L:

#lang racket
(module reader syntax/module-reader L/main)

The S-expression produced by a language’s reader serves as
input to the macro-expansion phase. A language’s module provides
syntactic forms and other bindings for use in the expansion phase
by exporting macros and variables. A language L can re-export all
of the bindings of some other language, in which case L acts as an
extension of that language, or it can export an arbitrarily restrictive
set of bindings.

For example, if "main.rkt" re-exports all of racket, then
#lang L is just the same as #lang racket:

#lang racket
(module reader syntax/module-reader L/main)
(provide (all-from-out racket))

A language must at least export a macro named #%module-
begin, because said macro implicitly wraps the body of a module.
Most languages simply use #%module-begin from racket,
which treats the module body as a sequence of require importing
forms, provide exporting forms, definitions, expressions, and
nested modules, where a macro use in the module body can expand
to any of the expected forms. A language might restrict the body
of modules by either providing an alternative #%module-begin
or by withholding other forms. A language might also provide a
#%module-begin that explicitly expands all forms within the
module body, and then applies constraints or collects information
in terms of the core forms of the language.

For example, the following "main.rkt" re-exports all of
racket except require (and the related core language name
#%require), which means that modules in the language L cannot
import other modules. It also supplies an alternate #%module-
begin macro to pre-process the module body in some way:

#lang racket
(module reader syntax/module-reader L/main)
(provide

(except-out (all-from-out racket)

4 Some language must be predefined, of course. For practical purposes,
assume that the racket module is predefined.

require #%require #%module-begin)
(rename-out [L-module-begin #%module-begin]))

(define-syntax L-module-begin ....)

The language definition facilities described so far are gen-
eral, and useful regardless of whether the language is transcom-
piled or not. We now proceed to provide the specifics of this pa-
per’s transcompiled language implementation approach. In it, the
#%module-begin macro in particular plays a key role, and over-
all, a Racket language L that is intended for transcompilation is
defined as follows:

• Have the language’s module export bindings that define the
surface syntax of the language. The provided bindings should
expand only to transcompiler-supported run-time forms. We
describe this step further in section 3.2

• Where applicable, have macros record additional metadata that
is required for transcompilation. We describe this step further
in section 3.3

• Have the #%module-begin macro fully expand all the
macros in the module body, so that the rest of the transcompiler
pipeline need not implement macro expansion. We describe this
step further in section 3.4

• After full macro expansion, have #%module-begin add ex-
ternally loadable information about the expanded module into
the module. We describe this step further in section 3.5

• Provide any run-time support for running programs alongside
the macros that define the syntax of the language. We describe
this step further in section 3.6

The export bindings of L may include variables, and the pres-
ence of transcompilation introduces some nuances into their mean-
ing. When the meaning of a variable in L is defined in L, we say
that it is a non-primitive. When its meaning is defined in the exe-
cution language, we say that it is a primitive. When the meaning
of its appearances is defined by a compiler of L, we say that it is a
built-in. As different execution targets may have different compil-
ers, what is a built-in for one target may be a primitive for another.
It is typically not useful to have built-ins for the Racket VM target,
for which the #%module-begin macro may be considered to be
the “compiler.”

3.2 Defining Surface Syntax
To define the surface syntax of a language L, its implementation
module’s exports should ideally name a variable of L, a core lan-
guage construct of L, or a macro that expands only to those con-
structs. Where the core language is a subset of Racket’s, it should
be ensured that only the transcompiler-supported set appears in an
expansion. Where the core of L is a superset of Racket, the ad-
ditional constructs should be encoded in terms of Racket’s core
forms.

Possible strategies for encoding foreign code forms include:

• E1. Use a variable binding to identify a core-language form.
Use it in application position to allow other forms to appear
within the application form. Subexpressions within the form
can be delayed with suitable lambda wrappers, if necessary.

• E2. Attach information to a syntax object through its syntax
property table; macros that manipulate syntax objects must
propagate properties correctly.

• E3. Store information about a form in a compile-time table that
is external to the module’s syntax objects.

• E4. Use Racket core forms that are not in L (not under their
original meaning), or combinations of forms involving such
forms.



A caveat for E2 and E3 is that both syntax properties and
compile-time tables are transient, and they generally become un-
available after a module is fully expanded, so any information to
be preserved must be reflected as generated code in the expansion
of the module; we describe this step further in section 3.5. Another
caveat of such “out-of-band” storage locations is that where the
stored data includes identifiers, one must beware of extracting iden-
tifiers out of syntax objects too early; if the identifier is in the scope
of a binding form, then the binding form must be first expanded so
that the identifier will include information about the binding.

In the case of LR there are additional constraints to encoding
foreign core forms, since the result of a macro-expansion should be
compatible with both the transcompiler and the Racket evaluator.
The necessary duality can be achieved if the surface syntax defin-
ing macros can adhere to these constraints: (C1) exclude Racket
core form uses that are not supported by the compiler; (C2) add
any compilation hints to Racket core forms in a way that does not
affect evaluation (e.g., as custom syntax properties); and (C3) en-
code any transcompilation-specific syntax in terms of Racket core
forms which only appear in places where they do not affect Racket
execution semantics.

Where the constraints C1–C3 are troublesome, the fallback op-
tion is to have #%module-begin rewrite either the run-time
code, transcompile-time code, or both, to make the program con-
form to expected core language. Such rewriting may still be con-
strained by the presence of binding forms, however.

The principal constraint on encoding a language’s form is that a
binding form in L should be encoded as a binding form in Racket,
because bindings are significant to the process of hygienic macro
expansion. Operations on a fully expanded module’s syntax ob-
jects, furthermore, can reflect the accumulated binding information,
so that a transcompiler may possibly avoid having to implement its
own management of bindings. For the cases where a language’s
forms do not map neatly to a Racket binding construct, Racket’s
macro API supports explicit definition contexts (Flatt et al. 2012),
which enable the implementation of custom binding forms that co-
operate with macro expansion.

For an example of foreign core form encoding strategy E1, con-
sider an LC with a parallel construct that evaluates two forms in
parallel. Said construct might be defined simply as a “dummy” con-
stant, recognized by the transcompiler as a specific built-in by its
identifier, translating any appearances of (parallel e1 e2)
“function applications” appropriately:

(define parallel #f)

Alternatively, as an example of strategy E2, LC’s (parallel
e1 e2) form might simply expand to (list e1 e2), but with
a ’parallel syntax property on the list call to indicate that
the argument expressions are intended to run in parallel:

(define-syntax (parallel stx)
(syntax-case stx ()

[(parallel e1 e2)
(syntax-property #’(list e1 e2)

’parallel #t)]))

For LR, parallel might instead be implemented as a simple
pattern-based macro that wraps the two expressions in lambda
and passes them to a call-in-parallel runtime function,
again in accordance to strategy E1. The call-in-parallel
variable could then be treated as a built-in by the transcompiler,
and implemented as a primitive for running in the Racket VM:

(define-syntax-rule (parallel e1 e2)
(call-in-parallel (lambda () e1) (lambda () e2)))

An example of adhering to constraint C3 is the definition of
Magnolisp’s typedef form, for declaring an abstract type. A de-
clared type t is bound as a variable to allow Racket to resolve type

references; these bindings also exist for evaluation as Racket, but
they are never referenced at run time. The #%magnolisp built-
in is used to encode the meaning of the variable, but as #%mag-
nolisp has no useful definition in Racket, the evaluation of any
(#%magnolisp ....) expressions is prevented. The CORE
macro is a convenience for wrapping (#%magnolisp ....)
expressions in an (if #f .... #f) form to “short-circuit” the
overall expression so as to make it obvious to the Racket bytecode
optimizer that the enclosed expression is never evaluated as Racket.
The let/annotate form is a macro that stores the annotations
a ..., which might e.g. include the name of t’s C++ definition.

(define #%magnolisp #f)
(define-syntax-rule (CORE kind arg ...)

(if #f (#%magnolisp kind arg ...) #f))

(define-syntax-rule (typedef t (#:annos a ...))
(define t

(let/annotate (a ...)
(CORE ’foreign-type))))

Using a macro system for syntax definition offers several ad-
vantages compared to parsing in a more traditional way:5

• Where it is sufficient to define custom syntactic forms as
macros, parsing is almost “for free.” At the same time, the
ability to customize a language’s reader makes it possible for
surface syntax not to be in Lisp’s parenthesized prefix notation.

• Macros and the macro API provide a convenient implementa-
tion for “desugaring” and other rewriting-based program trans-
formations. Such transformations can be written in a modular
and composable way.

• For making L macro extensible, its implementation can simply
expose a selection of relevant Racket constructs (directly or
through macro adapters) to enable the inclusion of compile-
time code within L modules.

3.3 Storing Metadata
We use the term metadata to mean data that describes a syntax
object, but is not itself a core syntactic construct in the imple-
mented language. Such data may encode information (e.g., opti-
mization hints) that is meaningful to a transcompiler or other kinds
of external tools. Some metadata may be collected automatically
by the language infrastructure (e.g., source locations in Racket),
some might be inferred by L’s macros at expansion time, and some
might be specified as explicit annotations in source code (e.g., the
export annotation of Magnolisp functions, or the weak modifier
of variables in the Vala language).

There is no major difference between encoding foreign syntax
in terms of Racket core language, or encoding metadata; the strate-
gies E1–E4 apply for both. The main way in which metadata differs
is that it does not tend to appear as a node of its own in a syntax tree.
Any annotations in L do have surface syntax, but no core syntax,
and hence they disappear during macro expansion; they do appear
explicitly in unexpanded code, but such code cannot in general be
directly analyzed, as unexpanded L code cannot be parsed. A more
workable strategy is to have L’s syntactic forms store any necessary
metadata during macro expansion.

For metadata, storage in syntax properties is a typical choice.
Typed Racket, for example, stores its type annotations in the a
custom ’type-annotation syntax property (Tobin-Hochstadt
et al. 2011).

5 A macro’s process of validating and destructuring its input syntax can also
be regarded as parsing, even though the input is syntax objects rather than
raw program text or token streams (Culpepper 2012).



Compile-time tables are another likely option for metadata stor-
age. For storing data for a named definition, one might use an iden-
tifier table, which is a dictionary data structure where each entry is
keyed by an identifier. An identifier, in turn, is a syntax object for
a symbol. Such a table is suitable for both local and top-level bind-
ings, because the syntax object’s lexical context can distinguish dif-
ferent bindings that have the same symbolic name. Magnolispit, a
variant implementation of Magnolisp, uses an identifier table for
metadata storage. Magnolispit exports an anno! macro, which
may be used to annotate an identifier, and is used internally e.g.
by function and typedef. It is strictly a compile-time con-
struct, and has no corresponding core syntax. Its advantage is that
it may be used to post-facto annotate an already declared binding:

#lang magnolisp
(typedef int (#:annos foreign))
; MGL_API_FUNC int id(int const& x) { return x; }
(function (id x) x)
(anno! id [type (fn int int)] export)

It is also possible to encode annotations in the syntax tree
proper, which has the advantage of fully subjecting annotations to
macro expansion. Magnolisp adopts this approach for its annotation
recording, using a special ’annotate-property-flagged let-
values form to contain annotations. Each contained annotation
expression a is encoded as (if #f (#%magnolisp ’anno
....) #f) to prevent evaluation at Racket run time, and e.g.
[type ....] expands to such a form, via the intermediate CORE
form given in section 3.2:

(define-syntax-rule (type t) (CORE ’anno ’type t))

(define-syntax (let/annotate stx)
(syntax-case stx ()

[(_ (a ...) e)
(syntax-property

(syntax/loc stx
(let-values ([() (begin a (values))] ...)

e))
’annotate #t)]))

The let/annotate-generated let-values forms introduce
no bindings, and their right-hand-side expressions yield no values;
only the expressions themselves matter. Where the annotated ex-
pression e is an initializer expression, the Magnolisp compiler de-
cides which of the annotations are actually associated with the ini-
tialized variable.

3.4 Expanding Macros
One benefit of reusing the Racket macro system with L is to avoid
having to implement an L-specific macro system. When the Racket
macro expander takes care of macro expansion, the remaining
transcompilation pipeline only needs to understand L’s core syn-
tax (and any related metadata). Racket includes two features that
make it possible to expand all the macros in a module body, and
afterwards process the resulting syntax, all within the language.

The first of these features is the #%module-begin macro,
which can transform the entire body of a module. The second is
the local-expand (Flatt et al. 2012) function, which may be
used to fully expand all the #%module-begin sub-forms. Using
the two features together is demonstrated by the following macro
skeleton, which might be exported as the #%module-begin of a
language:

(define-syntax (module-begin stx)
(syntax-case stx ()

[(module-begin form ...)
(let ([ast (local-expand

#’(#%module-begin form ...)
’module-begin null)])

(do-some-processing-of ast))]))

The local-expand operation also supports partial sub-form
expansion, as it takes a “stop list” of identifiers that prevent de-
scending into sub-expressions with a listed name. At first glance
one might imagine exploiting this feature to allow foreign core syn-
tax to appear in a syntax tree, and simply prevent Racket from pro-
ceeding into such forms. The main problem with this strategy is
that foreign binding forms would not be accounted for in Racket’s
binding resolution. That problem is compounded if foreign syn-
tactic forms can include Racket syntax sub-forms; the sub-forms
need to be expanded along with enclosing binding forms. To pre-
vent these problems, a stop list is automatically expanded to in-
clude all Racket core forms if it includes any form so that partial
expansion is constrained to the consistent case that stays outside of
binding forms.

3.5 Exporting Information to External Tools
After the #%module-begin macro has fully expanded the con-
tent of a module, it can gather information about the expanded con-
tent to make it available for transcompilation. The gathered infor-
mation can be turned into an expression that reconstructs the in-
formation, and that expression can be added to the overall module
body that is produced by #%module-begin.

The expression to reconstruct the information should not be
added to the module as a run-time expression, because extract-
ing the information for transcompilation would then require run-
ning the program (in the Racket VM). Instead, the information is
better added as compile-time code. The compile-time code is then
available from the module while compiling other L modules, which
might require extra compile-time information about a module that
is imported into another L module. More generally, the information
can be extracted by running only the compile-time portions of the
module, instead of running the module normally.

As a further generalization of the compile-time versus run-time
split, the information can be placed into a separate submodule
within the module (Flatt 2013). A submodule can have a dynamic
extent (i.e., run time) that is unrelated to the dynamic extent of its
enclosing module, and its bytecode may even be loaded separately
from the enclosing module’s bytecode. As long as a compile-
time connection is acceptable, a submodule can include syntax-
quoted data that refers to bindings in the enclosing module, so that
information can be easily correlated with bindings that are exported
from the module.

For example, suppose that L implements definitions by produc-
ing a normal Racket definition for running within the Racket virtual
machine, but also needs a syntax-quoted version of the expanded
definition to compile to a different target. The module+ form can
be used to incrementally build up a to-compile submodule that
houses definitions of the syntax-quoted expressions:

(define-syntax (L-define stx)
(syntax-case stx ()

[(L-define id rhs)
(with-syntax ([rhs2 (local-expand #’rhs

’expression null)])
#’(begin

(define id rhs2)
(begin-for-syntax

(module+ to-compile
(define id #’rhs2)))))]))

Wrapping (module+ to-compile ...) with begin-for-
syntax makes the to-compile submodule reside at compi-
lation time relative to the enclosing module, which means that
loading the submodule will not run the enclosing module. Within
to-compile, the expanded right-hand side is quoted as syntax
using #’.

Syntax-quoted code is often a good choice of representation
for code to be compiled again to a different target language, be-



cause lexical-binding information is preserved in a syntax quote.
Certain syntax-quoting forms—such as quote-syntax/keep-
srcloc—additionally preserve source locations for syntax ob-
jects, so that a compiler can report errors or warnings in terms of a
form’s original source location.

Another natural representation choice is to use any custom inter-
mediate representation (IR) of the compiler. Magnolisp, for exam-
ple, processes each Racket syntax tree already within the module
where macro expansion happens, turning them into its IR format,
which also incorporates metadata. The IR uses Racket struct in-
stances to represent abstract syntax tree (AST) nodes, while still re-
taining some of the original Racket syntax objects as metadata, for
purposes of transcompile-time reporting of semantic errors. Mag-
nolisp programs are parsed at least twice, first from text to Racket
syntax objects by the reader, and then from syntax objects to the IR
by #%module-begin; additionally, any macros effectively parse
syntax objects to syntax objects. As parsing is completed already in
#%module-begin, any Magnolisp syntax errors are discovered
even when just evaluating programs as Racket.

The #%module-begin macro of magnolisp exports the
IR via a submodule named magnolisp-s2s; it contains an ex-
pression that reconstructs the IR, albeit in a somewhat lossy way,
excluding detail that is irrelevant for compilation. The IR is ac-
companied by a table of identifier binding information indexed by
module-locally unique symbols, which the transcompiler uses for
cross-module resolution of top-level bindings, to reconstruct the
identifier binding relationships that would have been preserved by
Racket if exported as syntax-quoted code. As magnolisp-s2s
submodules do not refer to the bindings of the enclosing module,
they are loadable independently.

3.6 Run-Time Support
The modules implementing a Racket language may also define run-
time support for executing programs. For L, such support may be
required for the compilation target environment; for LR, any sup-
port would also be required for the Racket VM. Run-time support
for L is required when the macro expansion of L can produce code
referring to run-time variables, or when L exports bindings to run-
time variables.

Any non-primitive run-time support variables are by definition
defined in L itself, with each definition thus also compilable for the
target. When L includes specific language for declaring primitives,
then it may be convenient to define any variables corresponding
to primitives in L, with any associated annotations; for LR one
would additionally specify any Racket VM implementation, either
in Racket or another Racket-VM-hosted language. For variables
representing built-ins of LC, one might just use dummy initial value
expressions, as the expressions are not evaluated, and the meaning
of the variables is known to the compiler.

The primary constraint in implementing run-time support is that
the Racket module system does not allow cyclic dependencies.
Strictly speaking, then, any runtime library exported by a Racket
module L cannot itself be implemented in L, but must use a smaller
language. The magnolisp language, for example, exports the
magnolisp/prelude module, which declares all the primitives
of the language; the language of magnolisp/prelude is mag-
nolisp/base, which does not include any runtime library.

The magnolisp language only exports four variables: the
#%magnolisp built-in, and the TRUE, FALSE, and predicate
primitives. The primitives are “semi-built-ins” in that the compiler
knows that conditional expressions must always be of type pred-
icate, and that the nullary operations TRUE and FALSE yield
“true” and “false” values, respectively; this knowledge is useful
during type checking and optimization:

#lang magnolisp/base

(require "surface.rkt")
(provide predicate TRUE FALSE)
(typedef predicate (#:annos [foreign

mgl_predicate]))
(function (TRUE) (#:annos [foreign mgl_TRUE]

[type (fn predicate)])
#t)

(function (FALSE) (#:annos [foreign mgl_FALSE]
[type (fn predicate)])

#f)

4. Evaluation
We believe that the presented Racket-hosted transcompilation ap-
proach is quite generic, in theory capable of accommodating a
large class of languages. In practice, however, we would imag-
ine it mostly being used to host new languages, with suitable de-
sign compromises made to achieve a high degree of reuse of the
Racket infrastructure. Also, while macros are useful for language
implementation alone, we would expect Racket’s support for cre-
ating macro-extensible languages to be a significant motivation for
choosing Racket as the implementation substrate.

Racket hosting should be particularly appropriate for research
languages, as macros facilitate quick experimentation with lan-
guage features, and design constraints should be acceptable if they
do not compromise the researchers’ ability to experiment with the
concepts that are under investigation.

4.1 Language Design Constraints
The two design constraints for enabling effective Racket reuse that
we have discovered are the following: (1) the hosted language’s
name resolution must be compatible with Racket’s; and (2) S-
expression-based syntax must be chosen to directly and effectively
reuse Racket’s default parsing machinery and existing macro pro-
gramming APIs. The compilation requirement, in turn, may intro-
duce constraints to the choice of core language, especially where
one wants to output human-readable code.

Overloading as a language feature, for instance, appears a bad
fit for Racket’s name resolution. To alleviate the issue of naming
clashes being more likely without overloading, Racket provides
good support for renaming, including module system constructs
such as prefix-in and prefix-out for mass renaming.

Defaulting to something S-expression based for surface syn-
tax is advantageous, as then there is no custom reader to imple-
ment. Furthermore, as Racket syntax trees are also (enriched) S-
expressions, and macros operate on them, one can then essentially
use concrete syntax in patterns and templates for matching and
generating code. This is comparable to the language-specific con-
crete syntax support in program transformation toolkits such as
Rascal (Klint et al. 2009) and Spoofax (Kats and Visser 2010).
Still, where important, other kinds of concrete syntaxes can be
adopted for Racket languages, with or without support for ex-
pressing macro patterns in terms of concrete syntax; this has been
demonstrated by implementations of Honu (Rafkind and Flatt
2012) and Python (Ramos and Leitão 2014), respectively.

In choice of core syntax, designing for natural and efficient
mapping into the target language places fewer demands on the so-
phistication of the compiler’s analyses and transformations. Mag-
nolisp, for instance, is intended to map easily into most mainstream
languages. It distinguishes between expressions and statements, for
example, as do many mainstream languages (e.g., C++ and Java);
making this distinction makes translation into said mainstream lan-
guages more direct.

4.2 Example Use Case: A Static Component System
As suggested above, macro-based extensibility might be an im-
portant motivation for implementing a Racket-based language, and



choosing a constrained core language might also be important for
ease of transcompilation. One can reasonably wonder what the lim-
its of macro-based expression then are, if constructs are defined in
terms of their mapping into a limited run-time language. We ad-
dress this question indirectly by considering a relatively advanced
use case for macros as an example, namely that of component sys-
tem implementation.

When organizing a collection of software building blocks, it can
be useful to have a mechanism for “wiring up” and parameterizing
said building blocks to form larger wholes (e.g., individual software
products of a product line). Racket has a component system that in-
cludes such a mechanism; more specifically, the system supports
external linking, i.e., parameterized reference to an arbitrary im-
plementation of an interface (Owens and Flatt 2006). The system’s
units (Culpepper et al. 2005) are first-class, dynamically composed
components.

Magnolisp lacks the run-time support for expressing units, and
in this sense the language is severely constrained by its limited core
language, and our lack of a comprehensive library of primitives
for it. However, at compile time it has access to all of Racket,
and hence enough power to implement a purely static component
system. No such system is included, but to give an idea of how one
might implement one, we provide a complete implementation of a
rudimentary, yet potentially useful “component” system in figure 3.

Existing solutions suggest that it should also be possible to im-
plement a more capable static component system in terms of Racket
macros. Chez Scheme’s modules support static, external linking,
and have been shown to cater for a variety of use cases (Waddell
and Dybvig 1999). Racket’s built-in “packages” system (Flatt et al.
2012) resembles the Chez design, and is implemented in terms of
macros, relying on features such as sub-form expansion, definition
contexts, and compile-time binding. As packages are implemented
statically, they require little from the run-time language.

5. Related Work
While most languages previously implemented on Racket have
been meant for execution only on the Racket virtual machine, a
notable exception is Dracula (Eastlund 2012), which also compiles
macro-expanded programs to ACL2. Dracula’s compilation strat-
egy follows the encoding strategy described in section 3.2 where
syntactic forms expand to a subset of Racket’s core forms, and ap-
plications of certain functions (such as make-generic) are rec-
ognized specially for compilation to ACL2. The part of a Dracula
program that runs in Racket is expanded normally, while the part to
be translated to ACL2 is recorded in a submodule through a combi-
nation of structures and syntax objects, where binding information
in syntax objects helps guide the translation.

Sugar* (Erdweg and Rieger 2013) is a system for turning non-
extensible languages into extensible ones. The resulting languages
are extensible from within themselves, in a modular way, so that
extensions are in scope following their respective module imports.
While the aim of Sugar* is extended language into base language
desugaring, one might also define a Sugar* “base language pro-
cessor” that translates into another language before pretty print-
ing. From among previously reported solutions, Sugar* perhaps
comes closest to being a general solution to the implementation of
transcompiled languages possessing the three characteristics listed
in section 1.2. While Sugar* is liberal with respect to the definition
of language grammars, one might arguably also gain guarantees
of safe composition of language extensions through user-imposed
discipline in defining them. The relative novelty of our solution is
that it is itself based on a language-extension mechanism, whereas
Sugar* is a special-purpose language implementation framework.

Silver (Wyk et al. 2010), like Racket, is a language capable of
specifying extensible languages such that the extensions are mod-

#lang magnolisp
(define-syntax-rule (define<> x f e)

(define-syntax f (cons #’x #’e)))

(define-syntax (use stx)
(syntax-case stx (with as)

[(_ f with new-x as fx)
(let ([v (syntax-local-value #’f)])

(with-syntax ([old-x (car v)] [e (cdr v)])
#’(define fx

(let-syntax ([old-x
(make-rename-transformer #’new-x)])
e))))]))

(typedef int (#:annos foreign))
(typedef long (#:annos foreign))

(function (->long x)
(#:annos [type (fn int long)] foreign))

(define<> T id
(let/annotate ([type (fn T T)])

(lambda (x) x)))

; int int_id(int const& x) { return x; }
(use id with int as int-id)
; long long_id(long const& x) { return x; }
(use id with long as long-id)

; long run(int const& x)
; { return long_id(to_long(int_id(x))); }
(function (run x) (#:annos export)

(long-id (->long (int-id x))))

Figure 3: A primitive ‘‘component’’ system for Magnolisp. The
macro define<> declares a named ‘‘expression template’’ f, and
the macro use specializes such templates for a specific parame-
ter x. Use of the two macros is demonstrated by a C++-inspired
function template id with a type parameter T, also showing how
macros can compensate for the lack of parametric polymorphism
in Magnolisp. Corresponding mglc-generated C++ code is given
in comments.

ular and composable. Silver’s specifications are based on attribute
grammars (Knuth 1968), and the same formalism is used to specify
both the base language and its extensions; therefore, even more so
than with Racket, any extensions are indistinguishable from core
language features. Silver supports safe composition of indepen-
dently defined extensions by providing analyses to check whether
extensions are suitably restricted to be guaranteed to compose;
Racket provides some guarantees of safe composition, and even
without analysis tools it tends to be obvious whether e.g. the “hy-
giene condition” (Kohlbecker et al. 1986) holds for the expansion
of a given macro. While modular specification of syntax is sup-
ported by both Silver and Racket, only the former supports modular
specification of semantic analyses. Such analyses—expressed as at-
tribute grammar rules—may also be used to derive a translation to
another language; Silver has been used to implement an extensible-
C-to-C transcompiler, for example (Williams et al. 2014).

Lightweight Modular Staging (LMS) (Rompf and Odersky
2010) is similar to our technique in goals and overall strategy, but
leveraging Scala’s type system and overloading resolution instead
of a macro system. With LMS, a programmer writes expressions
that resemble Scala expressions, but the type expectations of sur-
rounding code cause the expressions to be interpreted as AST con-
structions instead of expressions to evaluate. The constructed ASTs



can then be compiled to C++, CUDA, JavaScript, other targets, or
to Scala after optimization. AST constructions with LMS benefit
from the same type-checking infrastructure as normal expressions,
so a language implemented with LMS gains the benefit of static
typing in much the same way that a Racket-based language can
gain macro extensibility. LMS has been used for languages with
application to machine learning (Sujeeth et al. 2011), linear trans-
formations (Ofenbeck et al. 2013), fast linear algebra and other
data structure optimizations (Rompf et al. 2012), and more.

The Accelerate framework (Chakravarty et al. 2011; McDonell
et al. 2013) is similar to LMS, but in Haskell with type classes and
overloading. As with LMS, Accelerate programmers benefit from
the use of higher-order features in Haskell to construct a program
for a low-level target language with only first-order abstractions.

Copilot (Pike et al. 2013) is also a Haskell-embedded lan-
guage whose expressions are interpreted as AST constructions.
Like Racket, Copilot has a core language, into which programs
are transformed prior to execution. The Copilot implementation
includes two alternative back ends for generating C source code;
there is also an interpreter, which the authors have employed for
testing. Copilot’s intended domain is the implementation of pro-
grams to monitor the behavior of executing systems in order to
detect and report anomalies. The monitoring is based on periodic
sampling of values from C-language symbols of the monitored,
co-linked program. Since such symbols are not available to the
interpreter, the language comes built-in with a feature that the pro-
grammer may use to specify representative “interpreter values” for
any declared external values (Pike et al. 2012); this is similar to
Magnolisp’s support for “mocking” of foreign functions.

The Terra programming language (DeVito et al. 2013) appears
to take an approach similar to ours, as it adopts an existing language
(Lua) for compile-time manipulation of constructs in the run-time
language (Terra). Like Racket, Terra allows compile-time code to
refer to run-time names in a lexical scope respecting way. Ulti-
mately, however, Terra is not designed to support transcompilation,
and compiles to binaries via Terra as a fixed core language. Another
difference is Terra’s emphasis on supporting code generation at run
time, while ours is on separation of compile and run times.

CGen (Selgrad et al. 2014) is a reformulation of C with an S-
expression-based syntax, integrated into Common Lisp. An AST
for source-to-source compilation is produced by evaluating the
CGen core forms; this differs from our approach, where run-time
Racket core forms are not evaluated. Common Lisp’s defmacro
construct is available to CGen programs for defining language
extensions; Racket’s lexical-scope-respecting macros compose in a
more robust manner. Racket’s macro expansion also tracks source
locations, which would be a useful feature for a CGen-like tool.
CGen uses the Common Lisp package system to implement support
for locally and explicitly switching between CGen and Lisp binding
contexts, so that ambiguous names are shadowed; Racket does not
include a similar facility.

SC (Hiraishi et al. 2007) is another reformulation of C with an
S-expression-based syntax. It supports language extensions defined
by transformation rules written in a separate, Common Lisp based
domain-specific language (DSL). The rules treat SC programs as
data, and thus SC code is not subject to Lisp macro expansion (as
in our solution) or Lisp evaluation (as in CGen). Fully transformed
programs (in the base SC-0 language) are compiled to C source
code. SC programs themselves have access to a C-preprocessor-
style extension mechanism via which there is limited access to
Common Lisp macro functionality.

6. Conclusion
Regardless of the implementation approach of a programming lan-
guage, one might wish to extend it with additional features. Numer-

ous motivating examples of language extensions are documented in
literature (Hiraishi et al. 2007; Selgrad et al. 2014).

There are several technologies that specialize in language im-
plementation (e.g., Rascal and Spoofax), and some of them (e.g.,
Silver) even focus on supporting the implementation and composi-
tion of independently defined language extensions. However, exist-
ing solutions generally lack specific support for the implementation
of languages that are extensible from within themselves, and still
aim to support convenient definition of extensions that compose in
a safe manner. One exception is Racket, which supports the imple-
mentation of languages as libraries (Tobin-Hochstadt et al. 2011),
and aims for safe composition of not only functions, but also syn-
tactic forms. However, Racket-based languages have traditionally
been run on the Racket VM, making Racket an unlikely choice for
hosting transcompiled languages.

We have described a generic approach for having Racket host
the front end of a source-to-source compiler. It involves a “proper”
embedding of the hosted language into Racket, such that Racket’s
usual language definition facilities are not bypassed. Notably, the
macro and module systems are still available, and may be exposed
to the hosted language, to provide a way to implement and manage
language extensions within the language. Furthermore, tools such
as the DrRacket IDE still recognize the hosted language as a Racket
one, are aware of the binding structure of programs written in it,
and can usually trace the origins of macro-transformed code, for
example.

Racket’s macro system is expressive, allowing the syntax and
semantics of a variety of language extensions to be specified in
a robust way; general compile-time bindings for sharing of infor-
mation between macros, for example, are supported. Scoping of
language constructs can be controlled in a fine-grained manner us-
ing Racket’s module system, and it is also possible to define or
import macros for a local scope. With typical macros composing
safely, and scoping control reducing the likelihood of macro nam-
ing clashes and allowing macros to be defined privately, pervasive
use of syntactic abstraction becomes a real alternative to manual or
tools-assisted writing of repetitive code.

The benefits of syntactic abstraction can furthermore be ex-
tended to any program-describing metadata, whether present to
support transcompilation, or for other reasons; this can be done
simply by having “data-as-code,” thus making it subject to macro
expansion.

Racket-hosted base language implementations can likewise
leverage Racket’s syntax manipulation facilities to perform macro-
expansion-based transformations that produce non-Racket code.
The approach indeed requires some macro-expansion time work to
prepare separately loadable information for “transcompile time;”
this does not preclude additional work performed in preparation for
any optional Racket-VM-based run time.

Racket, with its general-purpose features and libraries, and abil-
ity to host program transformation domain specific sub-languages,
may also be an attractive substrate for implementing the rest of a
transcompilation pipeline.
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